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Abstract

Systemic lupus erythematosus is an autoimmune disease characterized by multi-system
involvement and autoantibody production. Abnormal T cell DNA methylation and type-I
interferon play an important role in the pathogenesis of lupus. We performed a genome-wide DNA
methylation study in two independent sets of lupus patients and matched healthy controls to
characterize the DNA methylome in naive CD4+ T cells in lupus. DNA methylation was
quantified for over 485,000 methylation sites across the genome, and differentially methylated
sites between lupus patients and controls were identified and then independently replicated. Gene
expression analysis was also performed from the same cells to investigate the relationship between
the DNA methylation changes observed and mRNA expression levels. We identified and
replicated 86 differentially methylated CG sites between patients and controls in 47 genes, with
the majority being hypomethylated. We observed significant hypomethylation in interferon-
regulated genes in naive T cells from lupus patients, including /F/71, IFIT3, MX1, STATI,
IFI44L, USP18, TRIMZ22 and BSTZ2, suggesting epigenetic transcriptional accessibility in these
genetic loci. Indeed, the majority of the hypomethylated genes (21 out of 35 hypomethylated
genes) are regulated by type | interferon. The hypomethylation in interferon-regulated genes was
not related to lupus disease activity. Gene expression analysis showed overexpression of these
genes in total but not naive CD4+ T cells from lupus patients. Our data suggest epigenetic
“poising” of interferon-regulated genes in lupus naive CD4+ T cells, argue for a novel pathogenic
implication for abnormal T cell DNA methylation in lupus, and suggest a mechanism for type-I
interferon hyper-responsiveness in lupus T cells.
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1. Introduction

Systemic lupus erythematosus is a chronic autoimmune disease characterized by the
production of antinuclear antibody and multiple organ involvement. The etiology of lupus is
incompletely understood, but clear evidence suggests an important role for abnormal T cell
DNA methylation in the pathogenesis of the disease [1]. Indeed, demethylated T cells are
sufficient to cause a lupus-like disease in mouse models [2].

DNA methylation is an epigenetic mechanism that regulates gene expression by altering
transcriptional accessibility of regulatory regions within gene sequences. This chemical
modification of cytosine residues most commonly occurs in CG dinucleotides, and is
mediated by DNA methyltransferase enzymes [3]. In general, methylation of CG
dinucleotides in regulatory sequences induces gene silencing, while hypomethylation allows
for transcriptional chromatin accessibility, and active gene expression when appropriate
transcription factors are available [3]. DNA methylation induces chromatin inaccessibility
by several mechanisms, including recruitment of histone deacetylases that remove acetyl
groups from histone tails thereby increasing the charge attraction between DNA and histone
proteins to generate more compact chromatin configuration that prevents access by the
transcriptional machinery [4].

DNA methylation plays an important role in T cell differentiation. Indeed, the interferon
gamma locus demethylates upon Tyl differentiation, and the interleukin (I1L)-4,5 and 13
common locus control region demethylates upon T2 differentiation, allowing for interferon
gamma, and IL-4, IL-5, and IL-13 production in differentiated Tyl and T2 cells,
respectively [5]. In contrast, both loci are heavily methylated in naive CD4+ T cells [5].

We have previously characterized DNA methylation changes in total CD4+ T cells from
lupus patients and revealed wide-spread DNA methylation changes in patients compared to
healthy controls [6]. Herein, we performed an extensive genome-wide DNA methylation
study in naive CD4+ T cells from lupus patients and controls, coupled with gene expression
profiling from the same cells. We identified DNA methylation changes prior to T cell
differentiation and activation in lupus and determined the effect of these methylation
changes on gene expression.

2. Methods

2.1 Lupus patients and controls

We studied two independent sets of female lupus patients and controls, each consisting of 36
participants (18 lupus patients and 18 healthy controls). We designed our study to include a
discovery cohort and a second independent cohort for replication. The discovery cohort was
recruited from the Oklahoma Lupus Cohort at the Oklahoma Medical Research Foundation
(OMREF), and the replication cohort was subsequently recruited from the University of
Michigan rheumatology clinics. Patients and controls in both sets were matched for age (+/-
5 years) and ethnicity (Table I). Our study was approved by the institutional review boards
at OMRF and the University of Michigan. All study participants singed a written informed
consent prior to participation in the study.
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2.2 Naive CD4+ T cell isolation and purity

Peripheral blood mononuclear cells (PBMCs) were isolated from fresh blood samples
obtained from patients and controls using density gradient centrifugation (Amersham
Biosciences, Uppsala, Sweden). Naive CD4+ T cells were separated from PBMCs using the
Naive CD4+ T Cell Isolation Kit Il (Miltenyi Biotec, Cambridge, MA) which allows for the
indirect isolation of untouched naive CD4+ T cells. Naive CD4+ T cell purity was
confirmed by flow cytometry using fluorochrome-conjugated antibodies against CD4 and
CDA45RA; we have consistently achieved cell purity of >95% (Supplementary Figure 1).
DNA was isolated using the DNeasy Kit (Qiagen, Valencia, CA) for subsequent use in the
DNA methylation studies. An aliquot of naive CD4+ T cells from a subset of the samples
was stored in TRIzol® reagent at —80C and later used for RNA extraction and mRNA
expression experiments.

2.3 DNA methylation studies and array validation

Genome-wide DNA methylation in naive CD4+ T cells from lupus patients and controls
included in the discovery and the replication cohorts was assessed using the Illumina
Infinium HumanMethylation450 BeadChip array. This array allows for the interrogation of
over 485,000 methylation sites within the entire genome. This array covers 99% of RefSeq
genes, with an average of 17 CG sites per gene across the promoter region, 5'-UTR, first
exon, gene body, and 3'-UTR. It also covers 96% of CG islands. Non CpG methylated sites
recently identified in human stem cells are also covered as well as microRNA promoter
regions. Validation of the array data was performed using bisulfite DNA sequencing in
known hypermethylated and hypomethylated regions as previously described [6].

2.4 Gene expression studies

RNA extraction was performed using a combination of TRIzol (Invitrogen, Carlsbad, CA)
and RNeasy Kits (Qiagen, Valencia, CA) as previously described [7]. RNA concentration
was determined with a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington,
DE) and then qualitatively assessed for degradation with 28:18S ribosomal RNA, using a
capillary gel electrophoresis system (Agilent 2100 Bioanalyzer, Agilent, Wilmington, DE).
Gene expression profiling was performed in naive CD4+ T cells from lupus patients and
controls using the HumanHT-12 v4 Expression BeadChip array (I1lumina).

2.5 Statistical and bioinformatics analysis

DNA methylation analysis was performed using GenomeStudio methylation analysis
package (Illumina) as previously described [6]. The average level of DNA methylation ()
on each CG site was first compared between lupus patients and controls in the discovery
cohort. Differentially methylated CG sites were identified in the discovery cohort and were
defined as CG site with an average difference in DNA methylation level of at least 1.2-fold,
and differential methylation score of > 33 (/< 0.001) after adjusting for multiple testing
using the Benjamini and Hochberg false discovery rate of 5%. Differential methylation score
is defined as 10*sgn(PRisk-pProtective)*log10~. CG sites assessed with probes with a
genetic variant located within 10bp of the 3’ end of the probe were excluded from the
analysis. CG sites that met the aforementioned criteria for being differentially methylated
between patients and controls in the discovery cohort were assessed in the replication
cohort. For these CG sites to be considered established differentially methylated sites and
included in further analysis, we required an FDR-adjusted differential methylation score of
at least 13 (/A< 0.05) in the replication set. Microarray expression data were normalized and
gene expression differences between patients and controls were detected using a 2-tailed t-
test adjusted for multiple testing using Bonferroni correction. Gene ontology, network, and
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pathway analysis was performed using Ingenuity Pathway Analysis (Redwood City, CA)
and the IRIDESCENT algorithm [8].

We identified and then validated DNA methylation changes in naive CD4+ T cells in lupus
using two independent sets of lupus patients and age-, sex-, and ethnicity-matched controls
(Table I). We identified and replicated 86 CG sites that are differentially methylated in naive
CDA4+ T cells from lupus patients. Sixty sites were hypomethylated and 26 were
hypermethylated in patients compared to controls (Supplementary Table I). A total of 47
differentially methylated unique genes were identified in naive CD4+ T cells from lupus
patients, with the majority (35 genes, 75%) being hypomethylated. Bisulfite DNA
sequencing was used to validate the DNA methylation array results in a number of known
hypermethylated and hypomethylated loci in the genome as described previously [6] in all
the samples included in the discovery set (cohort 1). The correlation r? value between the
array data and bisulfite sequencing data was 0.864.

Canonical pathway analysis identified interferon-signaling as the most significant pathway
unifying the differentially methylated genes in naive CD4+ T cells from lupus patients
(P=8.99x1077). Network analysis revealed a number of type-I interferon-regulated genes
among the differentially methylated loci detected, and most of these genes were
hypomethylated in naive CD4+ T cells from lupus patients (Figure 1). Indeed, the majority
of the hypomethylated genes (21 out of 35 hypomethylated genes) are interferon-regulated.
Significantly hypomethylated genes regulated by type I interferon include /F/71, IFIT3,
MX1, STATL, IFI44L, USP18, TRIM22and BST2among others (Table I1). An analysis of
transcription factor binding site enrichment within the promoters of the differentially
methylated genes identified canonical binding sites for numerous interferon regulatory
factors (Table I11).

To determine the functional consequences of the methylation changes we observed in naive
CDA4+ T cells from lupus patients, we performed gene expression analysis using RNA
extracted from the same naive CD4+ T cells isolated from a subset of the study participants.
Interestingly, none of the hypomethylated interferon-related genes were overexpressed in
naive CD4+ T cells from lupus patients (Supplementary Table I1). In contrast, analysis of
gene expression profiles for total CD4+ T cells from lupus patients and healthy controls
(Lauwerys et al.; GEO accession: GSE4588) showed that most of these interferon-regulated
genes are significantly overexpressed in total CD4+ T cells in lupus (Supplementary Table

11).

Hypomethylation of some of these same interferon-regulated genes, such as BS72and
IF144L, was also previously observed in total CD4+ lupus T cells using a different
methylation platform [6]. We show consistent hypomethylation across multiple CG sites in
the promoter regions of both genes in naive CD4+ T cells (Figure 2, 3), without evidence of
overexpression. In contrast, BS72and /F/44L are ~2 times and 18 times overexpressed in
total CD4+ T cells from lupus patients (P= 6.25x107° and 5.94x10 8respectively). Indeed,
hypomethylation of BS72and /F/44L in naive CD4+ T cells does not correlate with disease
activity as measured by SLEDAI scores in lupus patients (r= 0.001 and 0.017, and A= 0.85
and 0.46, respectively), suggesting that the hypomethylation observed in naive CD4+ T cells
in lupus is not influenced by disease activity (Figure 4).

J Autoimmun. Author manuscript; available in PMC 2014 June 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 5

4. Discussion

We performed a genome-wide DNA methylation study coupled with a gene expression
profiling experiment in naive CD4+ T cells from lupus patients and controls. DNA
methylation levels were quantified in over 485,000 methylation sites in naive CD4+ cells
across the entire genome in two independent sets of lupus patients and age-, sex-, and
ethnicity-matched controls. Differentially methylated CG sites in lupus were discovered and
then replicated, and the effect of the methylation changes detected upon gene expression
was examined using a subset of the same sample. The majority of the differentially
methylated genes in CD4+ T cells from lupus patients were hypomethylated, consistent with
a methylation defect previously described in lupus T cells [1, 6].

We found significant enrichment of interferon-regulated genes among hypomethylated loci
in naive CD4+ T cells from lupus patients. An analysis of canonical pathways, biological
interaction networks, and transcription factor binding site enrichment highlighted the
interferon signaling pathway in the genes differentially methylated in lupus. Indeed, type-I
interferon is strongly emphasized among differentially methylated genes in agreement with
the interferon expression signature described in lupus PBMCs [9, 10]. However, we show
that despite being hypomethylated, none of these interferon-regulated genes were
overexpressed in naive CD4+ T cells in contrast to total CD4+ T cells in lupus patients.

We propose that the lack of active expression of these hypomethylated genes may be
explained by the naive status of these CD4+ T cells. Active gene expression requires both
chromatin accessibility and appropriate transcription factors, and these transcription factors
would be lacking in naive T cells. Thus, these same interferon-related genes are
overexpressed in total CD4+ T cells from lupus patients, but not in naive CD4+ T cells. We
suggest that the presence of hypomethylated interferon-regulated genes makes the naive T
cells from lupus patients epigenetically “poised” to produce a rapid type-I interferon
response. Indeed, PBMCs from at least a subset of lupus patients have been previously
shown to have increased sensitivity to IFN-a [11]. The mechanism of this increased
sensitivity is currently unknown, and our data provide a novel possible explanation and adds
to the knowledge of the role of type-I interferon in the pathogenesis of lupus.

Among the hypomethylated genes in naive CD4+ T cells from lupus patients, we found
significant hypomethylation in BS72, an interferon-regulated gene involved in preventing
the release of viral particles from infected cells [12]. We have previously reported
hypomethylation and overexpression of BS72in total CD4+ T cells from lupus patients [6].
More recently, we have also reported similar hypomethylation in BS72in T cells from
healthy individuals that carry the lupus-risk variant in methyl-CpG-binding protein 2
(MECP2) compared to individuals with the protective genetic variants in this locus [13].
MECPZis a confirmed susceptibility locus for lupus and encodes for a transcription
regulator for the expression of methylation-sensitive genes.

Two of the hypermethylated genes that we identified in naive CD4+ T cells in lupus (CD247
and /L21R), are known lupus genetic susceptibility loci [14-16]. CD247encodes for the
TCR-zeta chain which is downregulated in lupus T cells [17]. Apoptosis-related genes,
including BCL2L 14, BCL2L 15, and SMAD3were also among the differentially methylated
genes detected (Supplementary Table ).

5. Conclusions

We identified and replicated DNA methylation changes in naive CD4+ T cells from lupus
patients for the first time. These data indicate that abnormal DNA methylation exists in
lupus T cells even before activation and differentiation. Therefore, our findings emphasize
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the role of DNA methylation defect in the pathogenesis of the disease. Notably, we propose
a model whereby interferon-regulated genes are epigenetically poised to respond to type-I
interferon upon T cell activation and provide evidence for an epigenetic architecture
favoring, and providing an explanation for, hyper-responsiveness to type-I interferon in
lupus T cells.

Supplement

ary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Network analysis identifies the interferon pathway among differentially methylated genes in
naive CD4+ T cells from lupus patients. Genes hypomethylated in lupus patients in this
network are in green, and hypermethylated genes are in red. Genes and molecules that are
brought into the network by the analysis software due to statistically enriched relationships
with differentially methylated genes are in colorless shapes. Analysis was performed using
ingenuity software.
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Table Il

Transcription factor analysis showing clear enrichment of interferon-regulated transcription factor binding
sites in the promoter regions of differentially methylated genes in naive CD4+ T cells from lupus patients

Transcription factor

P value of
overlap Target differentially methylated genes

NKX2-3
IRF7
STAT1
TRIM24
BRCA1
IRF1
IRF3
STAT3
STAT2
IRF5
NFATC2
GFI1
SATB1
IRF9

SP1
SMARCB1
HDAC3
IRF2
TBL1XR1
ISGF3
BRD7
TBL1X
IRF8
Stat1-Stat2
ZNF148
COPS5
ESR1
IKZF3
NR1D1
ELF1

5.19E-16 DDX58,DDX60,DHX58 EIFZAKZ,L Y6E,PARP14,PARPY PLSCR1,PRIC285STATI1, TRIMZZ2, TYMP,USP18
3.18E-15 DDX58,DHX58,IFI44L,IFIT1,IFIT3MX1,PLSCR1,RSAD2, STAT1, TRIM22,USP18
4.15E-12 CYP2ELEIF2AKZ HERCS6,IFIT1,L Y6E,RSAD2, SMAD3,STAT1, TRIM22, TYMP,USP18
4.54E-11 BST2,DDX58 DDX60,DHX58 HERCG,IFIT3,STAT1,USP18

4.92E-10 DDX58,FHIT,IFIT1,IFIT3MX1,PLSCR1,SMAD3,STAT1

1.09E-09 EIFZAKZ, IFI44L,IFIT1IFIT3MX1,RSAD2,STAT1, TRIMZ22

8.59E-09 DDX58,DHX58,IFIT1,IFIT3,MX1,RSADZ USP18

1.66E-05 EIFZAKZ IFIT1,IFIT3 MX1,PLSCR1,STATI1, TRIMZ22

4.88E-05 IFITLIFIT3MX1

1.88E-04 IFITI,PLSCR1,RSAD2

2.85E-04 MX1,PRIC285,RSADZ,STAT1

8.95E-04 EIFZAKZ SMAD3 STAT1

1.60E-03 EPSTI1,PRIC285 TRIMZ2

1.89E-03 IFIT3 STAT1

3.31E-03 ALOX5,EIFZAKZ,IL21IR,SMAD3 STAT1

5.31E-03 CYPZELEIFZAKZ MX1

5.33E-03 ALOX5,USP18

7.40E-03 EIFZAKZ,USP18

1.33E-02 USP18

1.77E-02 RSAD2

1.77E-02 TRIMZ22

1.77E-02 USP18

1.97E-02 IFI44L,STATI

2.20E-02 EIFZAK2

2.64E-02 STATI

2.86E-02 cD247

3.47E-02 ODF3B,SMAD3,STAT1

3.50E-02 ALOX5

3.72E-02 STATI

5.00E-02 cD247
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