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Abstract

Mounting evidence suggests that Herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer’s disease
(AD). Previous work from our laboratory has shown HSV-1 infection to induce the most important pathological hallmarks of
AD brains. Oxidative damage is one of the earliest events of AD and is thought to play a crucial role in the onset and
development of the disease. Indeed, many studies show the biomarkers of oxidative stress to be elevated in AD brains. In
the present work the combined effects of HSV-1 infection and oxidative stress on Ab levels and autophagy
(neurodegeneration markers characteristic of AD) were investigated. Oxidative stress significantly potentiated the
accumulation of intracellular Ab mediated by HSV-1 infection, and further inhibited its secretion to the extracellular
medium. It also triggered the accumulation of autophagic compartments without increasing the degradation of long-lived
proteins, and enhanced the inhibition of the autophagic flux induced by HSV-1. These effects of oxidative stress were not
due to enhanced virus replication. Together, these results suggest that HSV-1 infection and oxidative damage interact to
promote the neurodegeneration events seen in AD.
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Introduction

Most of the human population is infected with Herpes simplex

virus type 1 (HSV-1), which causes life-long latent infections in

neurons. Different stimuli induce HSV-1 reactivation, which

usually leads to little more than renewed fever blisters. However,

on some occasions, new viral particles may spread within the

central nervous system, causing encephalitis, meningitis and even

epilepsy [1].

HSV-1 infection has also been associated with sporadic

Alzheimer’s disease (AD). The first evidence for this emerged

when epidemiological studies showed that people infected with

HSV-1 who also carried the apolipoprotein E type 4 allele were at

higher risk of developing the disease [2]. Other studies have now

connected HSV-1 with the main neuropathological hallmarks of

AD. For example, HSV-1 is now known to induce the

accumulation of b-amyloid peptide (Ab) [3,4,5,6], hyperpho-

sphorylated tau protein [7,8,9,10] and immature autophagic

vesicles [11,12] in several infection models. Recently, the presence

of IgM anti-HSV antibodies in serum - a marker of recent HSV

reactivation - was also correlated with an increased risk of

developing AD [13]. In addition, the analysis of data gathered in

genome-wide association studies involving thousands of Europeans

with AD and controls [14] identified a set of AD-linked gene

variants that might increase the susceptibility of the brain to HSV-

1 infection [15].

A growing number of studies also point to oxidative stress as key

in the pathogenesis of neurodegenerative diseases. The brain is

particularly susceptible to oxidative stress given its high polyun-

saturated fatty acid content, high oxygen demand, and low levels

of antioxidants [16]. An increase in markers of oxidative stress in

AD brains, including protein, RNA and DNA damage and lipid

peroxidation, has been reported, and experimental data from AD

animal models confirm the presence of oxidative stress during

early disease development [17]. In addition, oxidative stress plays

a prominent role in the progression of AD and contributes towards

the generation of Ab deposits and neurofibrillary tangles (reviewed

in [18]). However, the oxidative stress hypothesis has recently

come under fire, largely due to the negative results obtained in

clinical trials with antioxidants [19].

Herpesvirus infections are frequently associated with the

generation of oxidative stress in infected cells. HSV-1 has been

reported to induce the depletion of glutathione, the main

antioxidant defence [20,21], and to increase ROS levels and lipid

peroxidation [22]. In addition, numerous studies have shown

oxidative damage to occur in different cell and animal models of

HSV-1 infection (reviewed in [23,24]).
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The present work examines the interaction between oxidative

stress and HSV-1 infection in the appearance of neurodegener-

ation markers characteristic of AD. Both mild oxidative stress and

HSV-1 infection impaired the autophagic process and inhibited

Ab secretion. In addition, oxidative stress significantly enhanced

the effects of HSV-1 on Ab accumulation and secretion, as well as

the impairment of autophagy. These effects are not mediated by

the facilitation of infection since oxidative stress reduced the

quantity of viral DNA and proteins present and the formation of

viral infective particles in HSV-1-infected cells. The results

therefore suggest that the increase in oxidative stress concomitant

with aging promotes the neurodegeneration events associated with

HSV-1 infection.

Materials and Methods

Drugs, Plasmids and Antibodies
The rapamycin (0.2 mg/ml), xanthine (10 mM) and bafilomycin

A1 (100 nM) used in this study were obtained from Sigma.

Leupeptin (0.1 mM) and xanthine oxidase (50 mU/ml) were

obtained from Roche. 49, 6-diamidino-2-phenylindole (DAPI;

5 mg/ml) and ammonium chloride (20 mM) were purchased from

Merck.

The GFP-LC3 expression vector (pGFP-LC3) and the

mCherry-GFP-LC3 construct (dtLC3) were kindly provided by

T. Yoshimori and N. Mizushima [25] and by T. Johansen [26]

respectively. Goat anti-MAP LC3 (F14) was supplied by Santa

Cruz Biotech. Antibodies that recognized HSV-1 proteins were

supplied by DAKO (rabbit polyclonal anti-HSV-1), Sigma (rabbit

polyclonal anti-VP16) and Abcam [anti-HSV1 gC Envelope

Protein [3G9] and anti-HSV 1 ICP4 Immediate Early Protein

(10F1)]. Rabbit anti-GFP serum, rabbit polyclonal anti-Ab40 and

rabbit polyclonal anti-Ab42 unconjugated antibodies were pur-

chased from Invitrogen. Mouse monoclonal anti-tubulin antibody

was supplied by Sigma. The secondary antibodies used for

immunostaining were horseradish peroxidase-coupled and pur-

chased from VECTOR, or labelled with Alexa Fluor 488 or 555

dye and purchased from Invitrogen.

Cell Cultures and Transfection
SK-N-MC human neuroblastoma cells were obtained from the

American Type Culture Collection (HTB10). Cells stably

expressing human APP (SK-APP, cell line C2) and rat LC3 fused

to EGFP (SK-LC3) have been described elsewhere [5,27]. All SK-

N-MC cells were grown as monolayers in minimal Eagle’s medium

(MEM) supplemented with 10% heat-inactivated foetal calf serum

(FCS), 2 mM glutamine and 50 mg/ml gentamicin. Vero cells

were passaged in Dulbecco’s modified Eagle medium (DMEM)

supplemented with 5% FCS, 2 mM glutamine and 50 mg/ml

gentamicin. All cells were grown at 37uC in a 5% CO2

atmosphere. For dtLC3 cell assays, SK-N-MC cells were

transiently transfected using the AmaxaH cell line NucleofectorH
method following the manufacturer’s instructions. Briefly, a pellet

of 46106 cells was resuspended in 100 ml of NucleofectorH
solution V, mixed with 15 mg of dtLC3 plasmid, and subjected to

nucleofection following the program C-009. After electroporation,

the cells were seeded onto the growth medium. Two days after

transfection, they were treated with the appropriate stimuli.

Infection Conditions and Exposure to Oxidative Stress
The wild-type HSV-1 strain KOS 1.1 was propagated and

purified as previously described [28]. SK-N-MC cells seeded in

complete MEM at 70–80% confluency were exposed to HSV-1 at

37uC for 1h. Mock infections were performed using a virus-free

suspension. Unbound virus was removed and the cells incubated

in complete MEM at 37uC. Time and multiplicity of infection

(moi; expressed as plaque-forming units [pfu] per millilitre)

conditions are indicated in each experiment. The particle to

PFU ratio was not determined. The infectious titres of HSV-1

were determined by plaque assay. Briefly, the titration of serially

diluted HSV-1 was performed in Vero cells grown in 24-well

plates. Cells were overlain with a mixture of DMEM containing

2% FCS and 0.7% agar. After 48 h the cells were fixed and

stained overnight with 1% crystal violet in 5% formaldehyde and

the plaques counted.

To induce oxidative stress, SK-N-MC cells were placed in fresh

medium for 1 h before X-XOD addition. Exposure times are

indicated in each experiment. In samples exposed to oxidative

stress and HSV-1, X-XOD was added during the time of virus

adsorption and maintained until the end of infection.

Measurement of Secreted and Intracellular Ab
For ELISA assays, SK-APP cells were mock-infected or infected

with HSV-1 and the conditioned media and cell lysates assayed for

human Ab40 and Ab42 using commercial ELISA sandwich kits

(Invitrogen) according to the manufacturer’s instructions. Briefly,

the conditioned media were treated with Complete Mini Protease

Inhibitor Cocktail (Roche) and concentrated 10-fold by lyophili-

zation. The cells were then suspended in lysis buffer (0.5% Triton

X-100, 2.5 mM EDTA in PBS containing the same protease

inhibitor cocktail) and sonicated for 60 s. Media and lysate

samples were added to ELISA plates pre-coated with mouse

monoclonal antibodies specific for the N-terminus of human Ab
(the capture antibody), followed by a rabbit anti-mouse antibody

specific for the amino acid sequence (amino acids 1–40 or 1–42) of

Ab (the detection antibody). The detection antibody bound was

quantified using a horseradish peroxidase-labelled anti-rabbit

antibody producing a coloured signal. The absorbance was read

at 450 nm within 30 min of the completion of the procedure.

Comparison with the Ab standard curve allowed the calculation of

absolute values for Ab40 and Ab42 (in pg/ml of incubation

medium, or pg/mg of protein).

Immunofluorescence Imaging
Immunofluorescence assays were performed on cells grown on

coverslips. These were fixed in 4% paraformaldehyde and

incubated with the appropriate primary and secondary antibodies.

DAPI (5 mg/ml) was added 10 min before the end of the

procedure to visualize the nuclei. GFP-LC3 and dtLC3 imaging

was performed in the same way but without antibody incubations.

All cells were examined using a Zeiss LSM510 META confocal

microscope or a Zeiss Axiovert 200 fluorescence microscope

equipped with 636 and 1006 oil-immersion objectives. Images

were captured by a Spot RT slider digital camera (Diagnostic)

using MetaMorphTM imaging software, and processed using

Adobe Photoshop CS4. Fluorescent-tagged dtLC3 spots were

counted and processed using Image J software (NIH).

Immunoblot Analysis
For immunoblot assays, cells were lysed in cell lysis buffer

(50 mM Tris-HCl pH 7.6, 300 mM NaCl and 0.5% Triton X-

100) containing Complete Mini Protease Inhibitor Cocktail

(Roche), and incubated for 30 min at 4uC. The protein

concentration of the lysates was quantified using the BCA Kit

(Pierce). Cell lysates were mixed with 26 Laemmli buffer,

sonicated, and heated for 5 min at 100uC. After electrophoretic

separation, the gels were blotted and stained with the appropriate

antibodies. A peroxidase-coupled antibody was used as the
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secondary antibody. Detection by enhanced chemiluminiscence

was performed using ECLTM Western Blotting Detection

Reagents (Amersham Biosciences) according to the manufacturer’s

instructions.

Analysis of Cell Viability
Cell viability was assessed using the 3-(4,5-dimethylthiazolyl-2)-

2,5-diphenyl tetrazolium bromide (MTT; Sigma) assay. Briefly,

M-96 plates were seeded at a rate of 56105 cells/well and, after

exposure to the different stimuli, incubated with 0.5 mg/ml MTT

for 3 h at 37uC. The MTT/formazan released from the cells

during overnight incubation at 37uC with 100 ml extraction buffer

(20% sodium dodecyl sulphate [SDS], 50% formamide adjusted to

pH 4.7 with 0.02% acetic acid and 0.025 N HCl) was then

determined. Optical densities were measured at 570 nm using an

automated Model 680 (Bio-Rad) microplate reader.

Long-lived Protein Degradation
SK-N-MC cells were labelled for 24 h in medium containing

60 mM unlabelled leucine and [3H]leucine (1 mCi/ml). They were

then washed and incubated for 24 h in MEM containing 2 mM

unlabelled leucine. After the chase, cells were incubated in MEM

plus rapamycin, or treated with X-XOD and infected with HSV-1

for 18 h. The cells and media were then collected and separately

precipitated by the addition of 10% ice-cold trichloroacetic acid

(TCA). Radioactivity was then measured in a liquid scintillation

counter. The percentage of long-lived protein degradation was

calculated as (TCA-soluble counts from medium)/(TCA-soluble

counts from medium)+(TCA-insoluble counts from the cells) [29].

HSV-1 DNA Quantification
The concentration of HSV-1 DNA was quantified by real-time

quantitative PCR as previously described [30] using the Custom

TaqMan assay (a specific assay for a sequence belonging to the

US12 viral gene), employing an ABI Prism 7900HT SD system

(Applied Biosystems) The quantification of human genomic DNA

was performed using an Assay-On-Demand probe specific for the

GAPDH housekeeping gene (Applied Byosystems; item nu
Hs99999905_m1). The quantification results were calculated as

viral DNA copy numbers per ng of genomic DNA.

Statistical Analysis
Bar graph values are expressed as means and standard errors of

the mean (SEM). Differences between groups were analysed using

the Student t-test. Significance was recorded at p,0.05 (*), 0.01

(**) and 0.001 (***). Before analysis, the largest and the smallest

variances were tested for homogeneity using the F-test.

Results

Oxidative Stress Enhances the Accumulation of
Intracellular Ab and the Inhibition of Ab Secretion
Induced by HSV-1 Infection
We have previously shown that HSV-1 causes the accumulation

of intracellular Ab and intensely inhibits its secretion [5]. In

addition, we reported that, in SK-N-MC cells, the xanthine/

xanthine oxidase (X-XOD) free radical generating system

regulates the metabolism/processing of the APP protein [31,32].

Since both events are putative primary events in AD pathogenesis,

the effects of oxidative stress on the neurodegeneration markers

induced by HSV-1 infection in neuronal cell models were

examined.

Ab levels in the SK-N-MC cell line overexpressing the human

APP protein (SK-APP) were examined by double labelling

immunofluorescence assays. Intracellular Ab was undetectable in

non-infected cells and in cells treated with X-XOD alone (Fig. 1A).

In contrast, a strong accumulation of both Ab species occurred in

HSV-1-infected cells in the presence and absence of X-XOD,

although Ab immunoreactivity was stronger in the X-XOD

treated cells (Fig. 1B). To quantify the effects of oxidative stress on

Ab production, ELISA assays with antibodies specific for Ab40
and Ab42 were performed. As suggested by the immunofluores-

cence experiments, treatment with X-XOD was unable to induce

any increase in intracellular Ab levels in non-infected cells, but in

HSV-1-infected cells it significantly enhanced the cell content of

both Ab isoforms (by about two-fold; Fig. 1C). X-XOD provoked

a marked suppression of secretion of Ab40 (two fold; p,0.001)

and Ab42 (six fold; p,0.01) to the extracellular medium, although

in both cases this reduction was smaller than that induced by

HSV-1. In addition, X-XOD potentiated the inhibition of Ab
secretion in HSV-1-infected cells, reducing to half the amount of

Ab40 secreted, and Ab42 to undetectable levels (Fig. 1D). Similar

results were obtained when SK-APP cells were infected at a lower

dose (moi 0.1 pfu/cell for 48 h), a situation more like that of

natural HSV-1 infection (Fig. 1E). X-XOD did not affect the

amount of APP either in mock- or HSV-1-infected cells, ruling out

the possibility that the modification of Ab levels induced by

oxidative stress was due to an alteration in APP content (Fig. 1F).

We previously described Ab to accumulate in autophagic

compartments in HSV-1-infected cells [5]. To determine whether

oxidative stress affected this accumulation, the distribution of

endogenous LC3, an autophagic vesicle marker, and Ab was

investigated in its presence. Confocal microscopy analysis revealed

immunoreactive Ab structures to colocalize with endogenous LC3-

positive vesicles in HSV-1-infected cells independent of their

oxidative status (Fig. 2). In contrast, Ab and LC3 immunoreac-

tivities were undetectable in mock-infected cells (data not shown).

Altogether, these results suggest that oxidative stress significantly

increases the accumulation of intracellular Ab and the inhibition

of its secretion (both of which are caused by HSV-1 infection) but

does not alter the accumulation of Ab in autophagosomes in HSV-

1-infected cells.

Oxidative Stress Enhances the Autophagosome
Accumulation Induced by HSV-1 Infection
LC3 is the most widely monitored autophagy-related protein.

LC3 is a ubiquitin-like protein initially synthesized in an

unprocessed form, proLC3, which is converted into a proteolyt-

ically processed form lacking amino acids from the C-terminus

termed LC3-I. LC3-I can be conjugated to phosphatidylethanol-

amine upon the activation of autophagy, leading to the formation

of the isoform LC3-II that remains bound to double membrane

autophagic vesicles [25]. We previously reported HSV-1 to induce

the accumulation of autophagosomes in a viral dose- and time-

dependent manner [12]. To determine whether oxidative stress

affected this, the distribution of GFP-LC3 in SK-N-MC cells

infected with HSV-1 and stably expressing the GFP-LC3 fusion

protein (SK-LC3) was monitored in the presence of X-XOD

(Fig. 3A). Fluorescence microscopy analysis showed a cytosolic

distribution but few GFP-LC3 spots were seen in non-treated,

non-infected cells. In contrast, in X-XOD-treated or infected cells,

a strong increase was seen in the number of cells with numerous

GFP-LC3 spots. Certainly, the accumulation of GFP-LC3 spots

appeared greater in HSV-1-infected cells treated with X-XOD

than in non-treated infected cells (Fig. 3A).

Oxidative Stress Enhances HSV-1-Induced AD Markers
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To better quantify the effects of oxidative stress, GFP-LC3-II

levels were analysed by immunoblotting (Fig. 3B). Consistent with

the data obtained in the fluorescence microscopy experiments,

increased levels of GFP-LC3-II were observed in SK-LC3 cells

following the addition of X-XOD. These results agree with a

recent report from our group showing an increase in endogenous

LC3-II in SK-N-MC cells treated with X-XOD [31], and confirm

that oxidative stress induces autophagosome accumulation in

human neuroblastoma cells. HSV-1 infection also induced a

strong increase of GFP-LC3-II levels. A marked increase in GFP-

LC3-II following X-XOD addition was also observed in HSV-1-

infected cells by densitometric analysis of the GFP-LC3 bands

(Fig. 3B). These data indicate that oxidative stress not only induces

autophagosome accumulation but enhances the autophagosome

accumulation induced by HSV-1.

Oxidative Stress Enhances the Inhibition of the
Autophagic Flux Provoked by HSV-1
The accumulation of autophagosomes at determined time

points results from either an increase in the rate of their formation

or a reduction in autophagosome turnover. To investigate the

cause of this accumulation in cells subjected to oxidative stress, a

series of experiments was performed to measure the autophagic

flux. Autophagic flux refers to the entire process of autophagy,

including the delivery of cargos to lysosomes, their subsequent

breakdown, and the release of the resulting macromolecules to the

cytosol [33]. The effect of oxidative stress on LC3-II turnover in

the presence of the lysosomal inhibitors leupeptin and ammonium

chloride was determined by immunoblotting (Fig. 3B). A strong

increase in GFP-LC3-II levels (,9-fold) was observed in mock-

infected cells in the presence of lysosomal inhibitors, indicating the

high level of autophagic flux in SK-LC3 cells. In contrast, the

addition of X-XOD only caused a modest increase in GFP-LC3-II

levels (,1.6-fold) (Fig. 3C). We recently reported similar results

when the effect of oxidative stress on endogenous LC3 levels was

examined in the presence of lysosomal inhibitors [31]. These

inhibitors induced a smaller increase in GFP-LC3-II levels in

HSV-1-infected cells (,1.4-fold). The increase induced by

lysosomal inhibitors in cells treated with X-XOD, or infected

with HSV-1, was completely abolished when both stimuli were

Figure 1. Effects of oxidative stress on Ab levels in HSV-1-infected SK-APP cells. A) Confocal microscopy images showing Ab40, Ab42 and
gC immunoreactivities in SK-APP cells non-treated or treated with X-XOD for 18 h. Scale bar: 10 mm. B) Confocal microscopy images showing Ab40
and Ab42 immunoreactivities in cells infected with HSV-1 at a moi of 10 for 18 h (identified with an antibody that recognizes the glycoprotein C of
HSV-1) in the presence and absence of X-XOD. Green (Ab) and red (gC) channels were merged. Scale bar: 10 mm. C) ELISA analysis of intracellular Ab
levels, normalized by the amount of total protein, in HSV-1-infected cells at a moi of 10 for 18 h in the presence of X-XOD (**p,0.01). D and E) ELISA
analysis of Ab levels in the medium of cells treated with X-XOD and infected with HSV-1 at a moi of 10 for 18 h (D) or 0.1 for 42 h (E) (**p,0.01;
***p,0.001). In (C-E) the results are the means of at least four experiments. Bars show the SEM. F) Analysis of APP levels by Western blotting in SK-N-
MC cells infected with HSV-1 at a moi of 10 for 18 h. The effect of X-XOD is shown. A control ensuring equal loading - a tubulin blot - is also shown.
The ratio of APP to tubulin is shown below the blots. The blots are representative of four independent experiments.
doi:10.1371/journal.pone.0075842.g001

Oxidative Stress Enhances HSV-1-Induced AD Markers

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e75842



combined (Fig. 3C). Taken together, these results suggest that

autophagy is induced as a consequence of oxidative stress and

HSV-1 infection, but that the final stages of autophagy are

inhibited.

The accumulation of LC3-II can be obtained by interrupting

the autophagosome-lysosome fusion step. To determine whether

this is impaired by oxidative stress, SK-N-MC cells were

transfected with a tandem repeat GFP-mCherry-LC3 construct

[26]. This reporter shows dual red-green fluorescence in

phagophores and autophagosomes, but loses the GFP signal in

the acidic environment of autolysosomes. X-XOD treatment

increased the appearance of both GFP-LC3 and mCherry-LC3

fluorescent spots and their colocalization (‘‘yellow’’ vesicles,

indicative of autophagosomes) compared to that seen in non-

treated cells. A significant increase in the number of yellow-

fluorescence vesicles in HSV-1-infected cells was also seen,

confirming previous results [12]. In contrast, control and

rapamycin-treated cells demonstrated functional autophagy with

a preponderance of autolysosomes (‘‘red-only’’ LC3 vesicles)

(Fig. 4A). These data suggest that X-XOD blocks the autophagic

flux. To quantify the inhibition of autophagosome-lysosome

fusion, the proportion of autophagosomes (‘‘yellow’’ vesicles) was

calculated. This proportion increased greatly in cells exposed to X-

XOD (58%) or HSV-1 (80%) compared to control and

rapamycin-treated cells (35% and 24% respectively). It further

increased to 90% when the cells were treated with both X-XOD

and HSV-1, although this increase was not statistically significant.

This ratio was similar to that obtained in cells treated with

bafilomycin A1, an inhibitor of autophagosome-lysosome fusion

(Fig. 4B).

Finally, the effect of oxidative stress on autophagic protein

degradation was tested using long-lived protein degradation assay,

a well established method for measuring autophagic flux [33]. As

previously reported, HSV-1 did not affect the long-lived protein

degradation rate [12]. Rapamycin, a classical inducer of autoph-

agy, significantly increased the degradation of long-lived cell

proteins as expected. In contrast, X-XOD treatment resulted in a

significant reduction of protein degradation, both in mock- and

HSV-1-infected cells (Fig. 4C).

These results suggest that oxidative stress provokes inefficient

fusion between autophagosomes and lysosomes, resulting in

reduced autophagic protein degradation and potentiation of the

impairment of autophagy induced by HSV-1 infection.

Figure 2. Oxidative stress does not affect the autophagosomal
localization of Ab in HSV-1-infected cells. Confocal images
obtained with anti-Ab and anti-LC3 antibodies showing endogenous
LC3 and Ab patterns in HSV-1-infected SK-APP cells at a moi of 10 for
18 h in the presence and absence of oxidative stress (X-XOD).
Colocalization is shown by yellow fluorescence signals in the merged
panels. Scale bar: 10 mm.
doi:10.1371/journal.pone.0075842.g002

Figure 3. Effects of oxidative stress on autophagy. A) SK-LC3 cells were simultaneously treated with X-XOD and infected with HSV-1 at a moi
of 10 for 18 h and the cellular distribution of GFP-LC3 assessed by fluorescence microscopy. Scale bar: 10 mm. B) Analysis of GFP-LC3 levels by
Western blotting with an anti-GFP antibody in SK-LC3 cells simultaneously treated with X-XOD and infected with HSV-1 (moi of 10 for 18 h). The
effects of the lysosomal inhibitors leupeptin and ammonium chloride are shown. Blots are representative of four independent experiments; a tubulin
blot was performed as a loading control. The ratio of LC3-II to tubulin is shown below the blots. C) The graph represents the fold increase in GFP-LC3-
II levels, normalized by tubulin, in leupeptin/NH4Cl-treated cells compared to non-treated cells in all conditions assayed in (B).
doi:10.1371/journal.pone.0075842.g003
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Oxidative Stress Inhibits HSV-1 Replication
The additive effects of oxidative stress on neurodegeneration

events induced by HSV-1 could be argued due to the facilitation of

infection. To test this hypothesis, the levels of several viral proteins,

viral DNA and infectious particles were monitored in the presence

of the X-XOD system.

To determine whether oxidative stress enhances viral entry into

SK-N-MC cells, the latter were simultaneously treated with X-

XOD and infected with HSV-1 and the number of infected cells at

early stages of infection (3 and 5 h.p.i. [hours post-infection])

determined by immunofluorescence analysis using a specific

antibody for ICP4 (Fig. 5A). ICP4 is coded for by an

immediate-early gene, the expression of which begins at early

stages of infection, and it accumulates in the nucleus of infected

cells. The quantification of ICP4-positive cells revealed the

percentage of infected cells not to be modified by X-XOD

treatment (Fig. 5B). Consistent with these results, immunoblotting

showed the ICP4 levels to remain constant in HSV-1-infected cells

in the presence of X-XOD (Fig. 5C). These data indicate that

oxidative stress does not facilitate viral entry into human

neuroblastoma cells.

To determine whether oxidative stress has any effect on viral

protein synthesis, the expression of representative viral proteins at

late stages of infection (18 h.p.i.) was assessed in SK-N-MC cells in

the presence of X-XOD. Immunoblotting analyses were per-

formed using antibodies specific for ICP4 (an immediate early

protein, the expression of which begins before HSV-1 DNA

replication takes place), VP16 (a c1 late protein, the expression of

which is not strictly dependent on viral DNA synthesis) and

glycoprotein C (gC, which belongs to the class of c2 ‘‘true late’’

genes, the expression of which requires viral DNA synthesis).

When SK-N-MC cells were infected with different viral doses (moi

1 and 10) in the presence of X-XOD, no differences in the amount

of ICP4 were observed compared to non-treated infected cells at

18 h.p.i. (Fig. 6A). Similar levels of VP16 were detected in HSV-1-

infected cells irrespective of the addition of X-XOD (Fig. 6A).

Finally, X-XOD treatment greatly reduced gC levels in infected

cells (67% of reduction at a moi of 1 and 55% at a moi of 10;

Fig. 6A), indicating that oxidative stress only altered the levels of

viral proteins whose expression is strictly dependent on viral DNA

synthesis. When the levels of HSV-1 proteins were assessed in SK-

N-MC cells infected for longer, i.e., when a replication cycle had

been completed (moi 0.1 for 42 h), large reductions in ICP4, VP16

and gC levels were recorded (Fig. 6B). These results indicate that

Figure 4. Oxidative stress and HSV-1 infection induced inefficient fusion between autophagosomes and lysosomes. A) SK-N-MC cells
were transfected with dtLC3 and then infected with HSV-1 at a moi of 10 for 18 h, or treated with bafilomycin A1 (baf A1), rapamycin (rapa) or X-XOD
for 18 h. Representative confocal microscopy images are shown; the GFP (green) and mCherry (red) channels were merged. Scale bars: 10 mm. B)
Graphic representation of the proportion of autophagosomes (yellow dots). The number of fluorescent bodies in 100 cells was counted for each
condition. C) Degradation of long-lived proteins in SK-N-MC cells infected with HSV-1 at a moi of 10 for 18 h in the presence or absence of X-XOD.
Rapamycin (rapa) was used as a positive control of autophagy stimulation. Results are the mean6 SEM of three independent experiments performed
in triplicate (*p,0.05; ***p,0.001).
doi:10.1371/journal.pone.0075842.g004
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oxidative stress reduces viral protein levels in the second

replication cycle. It may therefore inhibit the replication of viral

DNA and protect from HSV-1-induced cell death. To test this

hypothesis, viral DNA replication was analysed in real-time

quantitative PCR assays (Fig. 7A). X-XOD caused a significant

reduction in viral DNA levels under the different moi conditions

assayed (a 55% and 33% reduction at moi 1 and 10 respectively at

18 h.p.i, and .95% at moi 0.1 at 42 h.p.i). Finally, the effect of

oxidative stress on HSV-1 titres was measured by plaque assays. A

strong reduction in the production of infectious HSV-1 particles

was seen after X-XOD addition (.90% in all conditions assayed;

Fig. 7B). Since oxidative stress induced the inhibition of HSV-1

replication, its effect on the viability of HSV-1-infected cells was

also tested. We have previously reported that the oxidative stress

induced by the X-XOD treatment leads to apoptotic cell death in

human neuroblastoma cells, starting at 36 h [34]. In the present

work, MTT assays revealed significantly reduced cell viability after

42 h of exposure. At 18 h.p.i., the number of dead cells increased

with viral dose, reaching , 40% at a moi of 10 (Fig. 7C). When

the SK-N-MC cells were infected at a moi 0.1 for 48 h, a situation

more like that of natural HSV-1 infection, the proportion of dead

cells reached 40%. Treatment with X-XOD led to a significant

reduction in cell death in HSV-1-infected cells at all viral doses

and times assayed (Fig. 7C).

Taken together, these results confirm that oxidative stress

reduces HSV-1 replication and protects against cell death

provoked by the virus in human neuroblastoma cells.

Discussion

Viral infections are commonly associated with the appearance

of oxidative stress in infected cells. Certainly, HSV-1 shifts the

intracellular redox balance towards a pro-oxidant state (reviewed

in [23,24]). Oxidative damage could therefore be an infection-

induced mechanism of neuronal injury. However, the interplay

between oxidative stress and HSV-1 infection has not been

extensively studied and, until now, it was unknown whether these

two factors interact in some way to promote neurodegeneration.

The free radical-generating X-XOD system has been employed

in the experimental induction of oxidative stress [35]. In earlier

work we developed a human neuronal cell model of mild oxidative

stress using this system that allowed the analysis of free radical-

induced events preceding cell death. We recently reported the X-

XOD system to alter cholesterol biosynthesis [34] and APP

metabolism/processing [31,32]. Since X-XOD-modulated pro-

cesses are altered in the AD brain, we investigated the effects of X-

XOD on AD-like neurodegeneration events induced by HSV-1

infection.

We have previously shown that HSV-1 impairs two processes

intimately related to neurodegeneration: autophagy and the APP

proteolytic process. HSV-1 induces an abortive autophagic

response resulting in autophagosome accumulation [12]. Addi-

tionally, the intracellular accumulation of Ab in autophagic

compartments induced by HSV-1 infection is caused by the

inhibition of Ab secretion and the failure of Ab degradation by

autophagy [5]. We therefore performed a series of experiments to

examine the relationship between HSV-1 and oxidative stress. In

Figure 5. Effects of oxidative stress on HSV-1 entry. A) Immunofluorescence analysis of HSV-1-infected SK-N-MC cells at a moi of 10 in the
presence and absence of X-XOD. The immunoreactivity of ICP4 protein is shown at 3 and 5 hours post-infection (h.p.i.). Nuclei are stained with DAPI.
Scale bar: 20 mm. B) Quantification of infected cells by ICP4 staining. The graph shows the percentage of ICP4-positive cells. At least 400 nuclei were
counted for each condition. C) Analysis of ICP4 levels by Western blotting in SK-N-MC cells infected with HSV-1 at a moi of 1 and 10 for 3 h and 5 h, in
the presence and absence of X-XOD.
doi:10.1371/journal.pone.0075842.g005
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human neuroblastoma cells, oxidative stress was found to

significantly enhance the accumulation of intracellular Ab and

the inhibition of Ab secretion mediated by HSV-1 infection. With

respect to autophagy, oxidative stress potentiated the accumula-

tion of autophagic compartments as a result of an increase of the

inhibition of autophagic flux in infected cells. Consistent with these

data, oxidative stress did not affect Ab accumulation in autophagic

vesicles in infected cells. In earlier work, we showed that mild

oxidative stress increases LC3-II and p62 levels, both substrates of

autophagic process, suggesting that the observed accumulation of

autophagosomes was due to the interruption of autophagic flux

[31]. In this report, pH-sensitive double-tagged mCherry-GFP-

LC3 assay confirms that oxidative stress induces abnormal

autophagy via inefficient fusion between autophagosomes and

lysosomes in neuronal cells. This oxidative stress-mediated

inhibition of autophagic flux could contribute to the increased

accumulation of intracellular Ab in autophagosomes in HSV-1-

infected cells. It has been reported that HSV-1 is able to modulate

autophagy through two viral proteins. The HSV-1 neurovirulence

protein ICP34.5 blocks autophagy by promoting eIF2a dephos-

phorylation and by inhibiting the essential autophagy protein

beclin 1 [36,37]. In addition, the late viral protein Us11 is also able

to block autophagy by direct inhibition of the double-stranded

RNA-dependent protein kinase PKR [38]. These findings reveal

that HSV-1 infection strongly controls the autophagic process

through multiple mechanisms.

The question arises as to whether the enhancement of

neurodegeneration events provoked by oxidative stress is merely

due to greater facilitation of infection. However, oxidative stress

was seen to have no effect on the number of infected cells at early

stages of infection or on the levels of immediate early (a) and leaky

late (c1) proteins. This indicates that oxidative stress does not affect
virus entry or the transcription of replication-independent genes.

In addition, a significant reduction in true late protein (c2) gC
levels was observed. The expression of true late c2 class genes

strictly depends on viral DNA synthesis. This suggests that the viral

DNA production is affected by oxidative stress. Indeed, analysis of

HSV-1 DNA replication showed a significant reduction in viral

DNA levels and an inhibition of the formation of new infectious

particles induced by oxidative stress. Consistent with our results,

the cellular antioxidant chaperone Hsp27 is required for efficient

HSV-1 replication [39] and the accumulation of oxidized proteins

was enhanced in infected cells in the absence of Hsp27 [40].

However, the inhibition of the formation of new infectious

particles in the presence of oxidative stress was much stronger

than the inhibition of viral DNA replication, suggesting that an

additional defect in a late stage of infection might occur (e.g.

maturation of viral particle). The present results therefore confirm

Figure 6. Effects of oxidative stress on HSV-1 protein
expression. The accumulation of viral proteins ICP4, VP16 and gC
was analysed by immunoblotting in SK-N-MC cells simultaneously
treated with X-XOD and infected with HSV-1 at a moi of 1 and 10 for
18 h (A) or at a moi of 0.1 for 42 h (B). The blots shown are
representative of three independent experiments. A tubulin blot was
performed as a loading control. In all blots, the ratio of viral proteins to
tubulin is shown below the blots.
doi:10.1371/journal.pone.0075842.g006

Figure 7. Oxidative stress reduces HSV-1 replication and
increases cell viability of infected cells. A) Quantification of viral
DNA by real-time quantitative PCR in SK-N-MC cells simultaneously
treated with X-XOD and infected with HSV-1 at a moi of 1 and 10 for
18 h or at a moi of 0.1 for 42 h. B) Intracellular (intra) and extracellular
(extra) viral titres were determined by plaque assays in SK-N-MC cells
infected under the same conditions as in (A). In (A) and (B), the data
represent the mean 6 SEM of five experiments performed in triplicate
and are expressed as a percentage with respect to untreated cells (- X-
XOD) (*p,0.05; **p,0.01; ***p,0.001). C) The cell viability of mock
and HSV-1-infected SK-N-MC cells exposed to X-XOD was monitored
using the MTT reduction assay. Cells were infected with HSV-1 at a moi
of 1 and 10 for 18 h or at a moi of 0.1 for 42 h. Values are expressed
relative to the optical density of untreated mock-infected cells. The data
shown represent the mean 6 SEM for four independent experiments
performed in triplicate (*p,0.05; **p,0.01).
doi:10.1371/journal.pone.0075842.g007
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that oxidative stress reduces HSV-1 replication and protects

human neuroblastoma cells from death provoked by HSV-1

infection. In addition, they show that the strengthening of

neurodegeneration markers induced by oxidative stress in HSV-

1-infected cells cannot be attributed to any facilitation of infection.

Further investigations are needed to better understand the basic

mechanisms involved in these alterations. In this respect, we are

currently engaging in microarray analyses of differential gene

expression in cellular infection models in order to identify the

genes and/or pathways involved in the effects of oxidative stress on

HSV-1 infection.

Few reports exist on the effects of oxidative agents on HSV-1

infection. In agreement with the present results, a recent report

showed that HSV-1 contains catalase, an enzyme that catalyses

the decomposition of hydrogen peroxide. This suggests viral

replication needs to be protected from oxidising environments

[41]. In contrast, Arimoto et al. showed hydrogen peroxide to

promote the release of HSV-1 from epithelial cells, increasing the

amount of cell-free virus without reducing levels of cell-associated

virus [42]. The difference between the present results and those

obtained by Arimoto et al. might be explained in several ways: i)

the use of different cell types, ii) maintaining the oxidation inducer

throughout the experiment in the present work, but adding it just

2 h before the end of infection in the work of these other authors,

and iii) the intensity of the oxidative damage generated. Hydrogen

peroxide at the concentration used in the Arimoto study (1 and

5 mM) acts as a strong oxidizing agent that causes a significant

increase in cell death just 2 h after its addition, whereas the X-

XOD system used in the present work induces mild oxidative

stress that does not affect cell viability at 18 h.

Since oxidative stress blocks HSV-1 replication, a reduction in

the neurodegenerative effects induced by infection might be

expected. However, the accumulation of autophagosomes and

intracellular Ab observed in infected cells treated with X-XOD

was significantly stronger than in infected but non-X-XOD-

treated cells. Consistent with this finding, previous experiments

performed in human neuronal cells in the presence of the viral

DNA synthesis inhibitor phosphonoacetic acid showed that a

productive infection is not required to induce all the AD-like

neurodegeneration events [5,7,12]. Since the non-treated cells

were more susceptible to HSV-1 replication than were the X-

XOD-treated cells, the rapid lysis of the former may have

precluded stronger Ab and autophagosome production. In this

scenario, oxidative stress might attenuate the infection process,

maintaining the negative effects of infection on the host cells for

longer.

Another possibility is that oxidative damage provides a second

mechanism by which HSV-1-induced neuronal injury may occur.

Consequently, oxidative stress produced in vitro (X-XOD treat-

ment) or in vivo (microglial response) may enhance the neurode-

generative effects provoked by HSV-1. In line with this hypothesis,

De Chiara et al. [3] found that antioxidant compounds prevented

the formation of Ab oligomers induced by HSV-1 in SH-SY5Y

human neuroblastoma cells, suggesting that oxidative stress is

involved in this process. In addition, alterations in the redox state

have been associated with the appearance of the characteristic

pathological anomalies that accumulate in AD brains. Indeed,

numerous studies have shown that pro-oxidant agents can increase

the production of Ab [43,44], and a recent report has revealed

that antioxidant therapy interrupts the progression of amyloid and

tau pathology in a mouse model of AD [45]. Further, several

kinases involved in tau phosphorylation belong to the stress-

activated protein kinase family known to be activated during

oxidative stress [46].

In summary, the present findings indicate that, in the present

model, mild oxidative stress caused by the X-XOD system strongly

affects the neurodegeneration markers induced by HSV-1; it

significantly enhances the effects of HSV-1 on Ab accumulation

and secretion and contributes to the impairment of autophagy

observed in HSV-1-infected cells (thus increasing the inhibition of

autophagic flux). Interestingly, HSV-1 replication is severely

compromised in cells subjected to oxidative stress; the effects of

oxidative stress on neurodegeneration events cannot, therefore, be

a consequence of an increase in HSV-1 replication. Taken

together, the present results identify an interesting link between

oxidative stress and HSV-1 infection; their interaction may

promote neurodegeneration events in AD brains.
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