
An Algorithm for Constructing Parsimonious

Hybridization Networks with Multiple

Phylogenetic Trees

YUFENG WU

ABSTRACT

A phylogenetic network is a model for reticulate evolution. A hybridization network is one
type of phylogenetic network for a set of discordant gene trees and ‘‘displays’’ each gene
tree. A central computational problem on hybridization networks is: given a set of gene
trees, reconstruct the minimum (i.e., most parsimonious) hybridization network that dis-
plays each given gene tree. This problem is known to be NP-hard, and existing approaches
for this problem are either heuristics or making simplifying assumptions (e.g., work with
only two input trees or assume some topological properties).

In this article, we develop an exact algorithm (called PIRNC) for inferring the minimum
hybridization networks from multiple gene trees. The PIRNC algorithm does not rely on
structural assumptions (e.g., the so-called galled networks). To the best of our knowledge,
PIRNC is the first exact algorithm implemented for this formulation. When the number of
reticulation events is relatively small (say, four or fewer), PIRNC runs reasonably efficient
even for moderately large datasets. For building more complex networks, we also develop a
heuristic version of PIRNC called PIRNCH. Simulation shows that PIRNCH usually produces
networks with fewer reticulation events than those by an existing method.

PIRNC and PIRNCH have been implemented as part of the software package called PIRN
and is available online.

Key words: algorithms, hybridization network, parsimony, phylogenetic network, phylogenetics,

reticulate evolution.

1. INTRODUCTION

It is well known that reticulate evolution plays a significant role in shaping the evolutionary

history of many species. There are several reticulate evolutionary processes, such as horizontal gene

transfer and hybrid specification. To better model the effects of these reticulate evolutionary processes, a

network-based model called a phylogenetic network (rather than the traditional phylogenetic tree) is needed.

Briefly, a phylogenetic network is a directed acyclic graph, which has nodes (called reticulation nodes) with

Computer Science and Engineering Department, 371 Fairfield Road, Unit 2155, University of Connecticut Storrs,
CT 06269.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 20, Number 10, 2013

Mary Ann Liebert, Inc.

Pp. 792–804

DOI: 10.1089/cmb.2013.0072

792

more than one incoming edge. See Figure 1 for an illustration of phylogenetic networks. The study of

phylogenetic networks has received significant attention in recent years. Refer to the recent books by Huson

et al. (2010) and Morrison (2011) for more background on phylogenetic networks.

Different models and formulations of phylogenetic networks with various modeling assumptions and

different types of input have been proposed and studied. In this article, we focus on one specific formulation

of the phylogenetic network, called the ‘‘hybridization network’’ (Semple, 2007; Huson et al., 2010), which

takes a set of gene trees as input. Here, a gene tree models the evolutionary history of a gene. Due to

reticulate evolution, the gene trees may have different topologies. The goal is to construct a phylogenetic

FIG. 1. An illustration of a hybridization network with two reticulation events for three gene trees T1, T2, and T3.

Reticulation: square. Speciation (coalescence): oval. Dotted lines: time. Configurations are shown to the right, one for

each time line. Leaf labels: numbers. Internal nodes (subtrees) of gene trees are labeled by Greek letters.

ALGORITHM FOR HYBRIDIZATION NETWORKS WITH MULTIPLE TREES 793

network that ‘‘displays’’ each of the gene trees. We provide more precise definitions in Section 2. Most

current approaches for hybridization network inference are based on the parsimony principle (Huson et al.,

2010; Morrison, 2011). That is, the goal is to find the hybridization networks with the smallest amount of

reticulation events. In this article, we also follow the parsimony principle.

It is often believed that hybridization networks may be useful in studying reticulate evolution. However,

hybridization networks have not been widely used by biologists (Morrison, 2011). One obstacle is the

computational challenge. Many existing computational formulations for inferring hybridization networks

are known to be NP complete. Due to the computational difficulty, most existing approaches are heuristic.

Moreover, existing approaches often impose simplifications on the hybridization network formulation.

Simplification can be on the modeling of hybridization networks or the types of inputs allowed. For

example, phylogenetic networks with structural assumptions such as galled networks (Huson and Klopper,

2007) or the so-called level-k networks as in van Iersel et al. (2008) have been previously studied. There are

also approaches for building phylogenetic networks that display not full gene trees but clusters of gene trees

(e.g., van Iersel et al., 2010). Another simplification often made in the study of hybridization networks is

that only two input gene trees are allowed (e.g., Semple, 2007; Wu and Wang, 2010; Albrecht et al., 2012).

Clearly, methods allowing multiple gene trees are likely to be more useful with the more available gene

sequence data. Currently, there are only a few heuristic methods (Wu, 2010; Park and Nakhleh, 2012; Chen

and Wang, 2012, 2013) on hybridization network construction or reticulation level estimation that allow

multiple gene trees and do not rely on structural assumptions.

In this article, we develop an algorithm (called PIRNC) for inferring the parsimonious hybridization

networks from multiple gene trees. To the best of our knowledge, PIRNC is the first exact algorithm for this

formulation. PIRNC has the following features.

� PIRNC takes a set of rooted binary gene trees as input and constructs a hybridization network that

displays each of the gene trees.
� PIRNC is an exact algorithm (i.e., it infers the most parsimonious networks).
� PIRNC allows any number of gene trees in principle, although longer running time and larger amount

of memory may be needed for larger input. PIRNC also does not impose any structural constraints (for

example, ‘‘gall-like’’ structures as in Huson et al., 2009; Gusfield, 2005) on phylogenetic networks.
� The running time of PIRNC is largely decided by the number of reticulation events in the inferred

hybridization networks. When the number of reticulation events is relatively small (say five or fewer),

PIRNC runs reasonably fast even for moderately large problems (say, 5 gene trees with 30 taxa). On the

other hand, for some larger dataset with, say, 6 or more reticulation events for 5 gene trees with 30

taxa, PIRNC becomes slow.

PIRNC may be best applied for inferring hybridization networks with relatively simple structures (i.e.,

the number of reticulation events is relatively small). We note that real hybridization networks may indeed

have relatively small numbers of reticulation events as suggested in Morrison (2011). Nevertheless, con-

structing parsimonious hybridization networks with larger number of reticulations is still an interesting

problem from the computational perspective. In this article, we also develop a heuristic version of PIRNC,

called PIRNCH. PIRNCH does not always find the most parsimonious networks, but simulation shows that

PIRNCH usually produces networks with fewer reticulations than an existing method.

2. DEFINITIONS AND BACKGROUND

Throughout this article, we assume a phylogenetic tree is rooted, binary, and leaf-labeled by a set of species

(called taxa). In-degrees of all vertices (also called nodes) in a tree, except the root, are one. For convenience,

for a tree node v, we often call the subtree rooted at v as the subtree v. Our definition of hybridization networks

is essentially equivalent to that in Semple (2007) with only some minor differences. A hybridization network

(sometimes simply network) is a directed acyclic graph with vertex set V and edge set E, where some nodes in V

are labeled by taxa. V can be partitioned into VT (called tree nodes) and VR (called reticulation nodes). E can be

partitioned into ET (called tree edges) and ER (called reticulation edges). Moreover,

1. Except the root, each node must have at least one incoming edge.

2. Reticulation nodes have in-degree two. Tree nodes have in-degree one.

794 WU

3. ER contains edges that go into some reticulation nodes. ET contains edges that go into some tree nodes.

4. A node is labeled by some taxon iff its out-degree is zero (i.e., is a leaf).

In addition, we have one more restriction:

R1 For a network N , when only one of the incoming edges of each reticulation node is kept and the other

is deleted, we always derive a tree T 0.
In this article, we assume the in-degree of reticulation nodes is two. Note that we can always convert a

reticulation node with in-degree of three or more to several reticulation nodes with in-degree of two (Wu,

2010). Also a network with only reticulation nodes with in-degree of two may be consolidated when several

nodes with in-degree of two is merged into one node with in-degree of three or more. We call a branch of a

hybridization network or a tree a ‘‘lineage.’’ Intuitively, a lineage corresponds to some extant or ancestral

species modeled in the phylogenetic network. There are two types of lineages: leaf lineages (those orig-

inated from the leaves of the network) and internal lineages (which correspond to ancestral species of the

network). An internal lineage in a network is created by either a reticulation or a coalescence.

We first consider the derived tree T 0 (that is embedded in N) as stated in R1. When we recursively remove

nonlabeled leaves and contract edges to remove degree-two nodes of T 0 (called cleanup), we obtain a

phylogenetic tree T (for the same set of species as in N). Now suppose we are given a phylogenetic tree T.

We say T is displayed in N when we can obtain an induced tree T 0 from N by properly choosing a single

edge to keep at each reticulation node so that T 0 is topologically equivalent to T after cleanup. We denote the

induced T 0 (if exists) as TN . We call the choices of which reticulation edges to keep (and prune) the ‘‘display

choices.’’ In Figure 1, each of the three trees is displayed in the network. For example, one possible display

choice for T1 (the left-most gene tree) is keeping lineages b and d (and pruning lineages a and e).

For a hybridization network N , we define the hybridization number (denoted as HN) as the number of

reticulation nodes. Note that this is equivalent to using the summation of in-degree minus one of all retic-

ulation nodes as in Semple (2007), since the in-degree of a reticulation node is assumed to be two. Sometimes

HN is also called the number of reticulation events in N . Recall that the optimal hybridization network is the

one with the smallest hybridization number. Now we formulate the central problem in this article.

The most parsimonious hybridization network problem. Given K rooted and binary gene trees

T1‚ T2‚ . . . TK (with the same n taxa), construct the most parsimonious hybridization network N min such

that (i) each gene tree Ti is displayed in N min and (ii) HN min
is minimized among all possible such networks.

We call HN min
the hybridization number of T1‚ . . . ‚ TK .

Constructing parsimonious hybridization networks for a set of K gene trees is a computationally chal-

lenging problem. Even the two-gene-tree (i.e., K = 2) case is known to be NP-complete (Bordewich and

Semple, 2007). This two-gene-tree case is closely related to computing the subtree prune and regraft (SPR)

distance of two trees, a well-studied NP complete problem (Hein, et al., 1996; Bordewich and Semple,

2004) in phylogenetics. Nonetheless, there are several practical algorithms for the SPR distance problem

(e.g., Wu, 2009; Whidden and Zeh, 2009). For the two-gene-tree case of the hybridization network

problem, there are also several exact methods (Bordewich et al., 2007; Wu and Wang, 2010; Albrecht et al.,

2012). Although the worst case running time of these practical methods are exponential, these methods may

work reasonably well in practice. A commonly used concept in two-gene-tree case of reticulate networks

and the SPR distance problem is the so-called maximum agreement forest (MAF). This is essentially the

main formulation used by many existing approaches to these two problems. The divide and conquer

approach, developed in Whidden and Zeh (2009), and related approaches (Albrecht et al., 2012; Chen and

Wang, 2013) are currently the best performing approaches for these two problems.

It becomes more computationally challenging when there are three or more gene trees. There are

currently only a few heuristic methods for either estimating the hybridization number H(T1‚ . . . ‚ TK) or

reconstructing near optimal networks for trees T1‚ . . . ‚ TK when K ‡ 3 (Wu, 2010; Park and Nakhleh,

2012; Chen and Wang, 2012). There are no existing methods for the exact computation of the hybridization

number or reconstructing parsimonious networks with three or more trees.

3. CONSTRUCTING PARSIMONIOUS HYBRIDIZATION NETWORKS

Our approach does not follow the commonly used MAF formulation. Rather, it takes a backward-in-time

coalescent-style approach.

ALGORITHM FOR HYBRIDIZATION NETWORKS WITH MULTIPLE TREES 795

3.1. The backward/in/time view

The backward/in/time view is the foundation of our method. With a forward/in/time view, a tree node in

a hybridization network refers to a speciation event where one lineage splits into two lineages; at a

reticulation node a new lineage is created after two incoming lineages are merged. In this article, we take a

backward-in-time view instead. In this view of time, a tree node is called a coalescence: two lineages

coalesce into a single lineage at a tree node when looking backward in time. Similarly, in this view, two

new lineages are created by the reticulation of a lineage at a reticulation node. As an example, we consider

the network shown in Figure 1. Lineages 1 and b coalesce at time t2 to form the lineage c, and a reticulation

occurs for the lineage 4 at t3 and creates lineages d and e. Recall that a network needs to display gene trees.

So when we trace backward in time in the network, we need to ensure the network displays each gene tree T.

It is important to note that a lineage created by a reticulation may ‘‘vanish’’ (i.e., be pruned) when we make

the display choices for T. For example, to display T2 (the middle tree in Fig. 1), the lineage b vanishes.

Displaying a tree T within a network can also be explained with this view of time. Imagine that we ‘‘cut’’

the network with the time line at time t, and we only consider the portion of the network more recent than

time t. We say a subtree Ts of T is displayed by time t if Ts can be obtained at the lineage li where li is cut by

the time line t. That is, we can obtain Ts by following lineages backward in time to li at t. In this case, we

also say Ts is displayed in li or li displays Ts. When we start at the present time, only leaves (i.e., subtrees

with singleton taxa) of T are displayed. As the time line moves backward, larger and larger subtrees

are displayed. For example, in Figure 1, at time t0, only singleton subtrees of T1 are displayed by t0. When

we move the time back, the subtree a is also displayed by t2 (and is displayed in the lineage c). In the end,

we reach the root of the network where the entire T is displayed. This simple observation is important for

the PIRNC algorithm described here.

3.2. The high-level idea

Here is the high-level idea of the PIRNC algorithm. We take a coalescent-style approach by going

backward in time. At a particular time of phylogenetic history, there is a set of lineages that are present at

that time. Let us call the snapshot of the phylogenetic history at a particular time the ‘‘ancestral config-

uration’’ (or simply configuration), which specifies the set of ancestral lineages alive at that time. At present

time, there is a single fixed configuration, which contains all the n extant lineages in the given gene trees.

When moving backward in time, configuration changes when some genealogical events (namely coales-

cence and reticulation) occur. Here, we assume there are no two genealogical events occurring at exactly

the same time. For example, consider the sample network in Figure 1. The initial configuration (denoted as

C0) contains lineages 1, 2, 3, 4, and 5. The first event backward in time from the present time is the

reticulation r1 of lineage 2 at time t1, which creates two new lineages a and b. So right before (i.e., more

ancient than) t1, the configuration contains 1, 3, 4, 5, a, and b. When we continue tracing backward, the

coalescence between lineage 1 and b happens at time t2, which creates a new lineage c. Then the new

configuration right before t2 contains five lineages: 3, 4, 5, a, and c. Eventually we reach the final

configuration (denoted as Cf , which contains a single lineage j).

However, when only gene trees are given, we do not know what coalescent and reticulation events will

occur nor the series of configurations at the time of genealogical events when tracing backward in time. In

fact, if we knew, we would have already found the true hybridization network: configurations at all the

genealogical events specify precisely the phylogenetic history. The key for our approach is finding con-

figurations at genealogical events that correspond to the most parsimonious network. Suppose we start with

one configuration C and consider what configurations can be reached from C by a single genealogical event

backward in time. Here, each pair of lineages in C can coalesce and each lineage of C can have a

reticulation. New configurations are generated with these genealogical events. If we trace backward long

enough, we will reach the final configuration Cf , where the hybridization network corresponding to Cf

displays each given gene tree. If we also ensure Cf is the one that uses the fewest number of reticulations,

we then know the minimum number of reticulations needed for the given input gene trees. Once such a Cf is

found, we can then identify the series of genealogical events leading to Cf , and this allows us to build the

most parsimonious network.

The approach sketched above is a simple strategy. However, a moment of thoughts indicates that its

naı̈ve implementation will be too slow: the space of possible configurations is immense. Consider a

configuration with n lineages from which we are to search for new configurations. If no restriction is

796 WU

imposed, there are n
2

� �
possible coalescences and n reticulations among the n lineages. Suppose n is 30.

Then there are up to 465 new configurations reachable from one configuration with one reticulation or one

coalescence. The number of possible configurations to explore quickly becomes prohibitively large shortly

after the start of the configuration search. In this article, we show that the basic approach can be made much

faster with additional techniques, which allows us to ‘‘cut corners’’ while still ensuring the finding of

optimal hybridization networks. The key to our approach is that the search is guided by the given gene

trees. That is, our algorithm is based on guided configuration search and configurations that do not lead to

parsimonious networks for the given gene trees may be pruned early. We have also developed additional

speedup techniques that further improve the efficiency. Together they turn the basic strategy into a practical

approach.

3.3. The guided search for the parsimonious configurations

Ancestral configuration is the basic data structure used in our algorithm. An ancestral configuration C
contains a set of lineages l1 . . . lm. Recall that each subtree Ts of T is also displayed in some lineage li of the

network. Initially, C0 only displays the singleton subtrees. As we explore the configuration space backward

in time, we may find configurations where increasingly larger input subtrees are displayed within their

lineages. The search stops when each whole gene tree is displayed in the single lineage of the final

configuration Cf . Therefore, the set of subtrees displayed in a configuration measures the progress made

from C0 to the current configuration: the more large subtrees displayed in a configuration, the closer we are

in finishing the construction of hybridization networks. For example, in Figure 1, the lineage 2 only

displays singleton subtrees with taxon 2. And so do the lineages a and b. The lineage c is created by the

coalescence of lineages 1 and b. Thus, the lineage c displays the subtree a. Note that b is created by a

reticulation and thus b can vanish (i.e. b may be pruned in displaying a subtree). Thus, c also displays the

singleton subtree with taxon 1 (in case b vanishes).

The above discussion suggests the set of displayed subtrees of a lineage is key to configuration search.

We let a lineage li maintain the set of input subtrees, denoted as T(li), which are displayed in li. For

convenience, we sometimes use T(li) to represent the lineage li (as in Figure 2). For a leaf lineage li that is

labeled with taxon x, T(li) contains the singleton subtrees labeled by x (which appears in each gene tree).

When the lineage li is an internal lineage, T(li) is determined when li is created by genealogical events as

follows.

FIG. 2. The list of configurations of stages 0 and 1 for the example in Figure 1. A configuration (ellipse) contains a set

of lineages, where each lineage is represented by its set of displayed subtrees (in numerical taxa form and Greek letters

as in Figure 1).

ALGORITHM FOR HYBRIDIZATION NETWORKS WITH MULTIPLE TREES 797

1. If li is created by a reticulation of the lineage l0i, then T(li) = T(l0i).
2. If li is created by a coalescence of the lineages l1

i and l2i , then T(li) contains new subtrees formed

by coalescing one subtree displayed in l1i and another subtree displayed in l2
i . More specifically, T(li)

contains p(s1, s2) (if exists), where s1 2 T(l1
i)‚ s2 2 T(l2

i). Here, p(s1, s2) refers to the subtree in

some input gene tree that has subtrees s1 and s2 as children; if s1 and s2 do not form a subtree in a gene

tree, then p(s1, s2) does not exist. For example, in Figure 1, p(a, 3) = b, p(u, i) = j, but p(a, 4) does

not exist.

As alluded before, when determining T(li) formed by coalescing l1
i and l2

i , we also need to consider

whether l1i or l2
i is vanishable. We say a lineage li is vanishable if either li is created by a reticulation or li is

created by a coalescence between two lineages, where both of them are vanishable. Intuitively, a vanishable

lineage means that the lineage may vanish and thus does not involve forming new displayed subtrees with

the other lineage if certain display choices are made. For example, in Figure 1, the lineages a, b, d, and e

(and also h since both of its children a and d are vanishable) are vanishable while the lineages 1, 2, 3, 4, 5,

c, f, g, i, and j are not. Suppose one coalescing lineage (say l1i) is vanishable. Then T(li) also contains each

s 2 T(l2i). For example, in Figure 1, the lineage f is created by the coalescence of c and e, where T(c) = {1,

a} and T(e) = {4}. Then, subtrees 1 and 4 form the subtree � of T2, and thus � 2 T(f). Moreover, since e is

vanishable, 1‚ a 2 T(f). Also, c is not vanishable. Thus, T(f) = {1, a, e}.

A subtle issue for displayed subtrees. Occasionally, when a subtree is formed by a coalescence of

lineages l1 and l2, conflicts in the display choices of l1 and l2 may occur. This happens when displaying l1

and l2 relies on some shared reticulation. In this case, l1 and l2 can not both be displayed at the same time,

and thus they can not coalesce. To avoid such conflict, additional constraints in forming displayed

subtrees need to be imposed. In particular, we require two coalescing subtrees l1 and l2 do not share

reticulations. That is, if l1 and l2 share some reticulation, no coalesced subtree is formed. This is because

if there are shared reticulations within l1 and l2, l1 and l2 can not both be displayed at the same time. To

enforce this constraint, we maintain a set of reticulations R(s) for each displayed subtree s such that s is

displayed when display choices are made on reticulations in R. For the leaf lineage, its set of reticulation

is empty. When a subtree s is created by a coalescence of two displayed subtrees s1 and s2, R(s) =
R(s1) W R(s2), where R(s1) and R(s2) do not intersect. When a reticulation r occurs at a lineage, then for

each displayed subtree s on this lineage, R(s) = R(s) W {r}. Our experience shows that such conflicts in

displayed subtrees only occur rarely when the number of reticulation is small (where PIRNC is designed

to handle). However, when the network becomes more complex, it becomes more common to observe

such phenomenon, and when this occurs, the network does not display some gene trees. Thus, we

implement this additional check in PIRNC.

The configuration search algorithm. The basic algorithm for constructing parsimonious hybridization

networks explores configurations in a breadth-first search style. The algorithm runs in stages, where at each

stage the algorithm constructs a set of configurations in the following way. First, new configurations are

added to this stage with one reticulation performed upon configurations found during the previous stage.

Then, we perform as many coalescences on these newly formed configurations and obtain additional

configurations for this stage. That is, configurations on one stage are obtained from the same number of

reticulations from the initial configuration C0. More specifically, in this algorithm, R refers to the breath-

first search level and is equal to the number of reticulations performed so far from C0. LC(R) is the list of

configurations found at level R. Rmax is the user-defined maximum of reticulations allowed.

1. R) 0. LC(0))fC0g.
2. While R < Rmax

3. For each C 2 LC(R)
4. Perform one reticulation on each lineage of C and obtain new configurations C00.
5. For each C0, recursively try all ways of coalescences of two lineages in C0 to create new configurations C00; then

discard C00 if it is incompatible (defined later in this section); otherwise, LC(R + 1))LC(R + 1) [fC00g.
6. If a final configuration is found, construct the optimal network by trace-back and stop.

7. R) R + 1

8. Report there is no solution with less than Rmax reticulations.

See Figure 2 for an example of executing the configuration search algorithm on the trees shown in Figure

1 for the first two levels. At level 0, we start with a single configuration C0. With proper preprocessing (see

798 WU

below), we do not need to perform coalescences on C0. At level 1, a single reticulation is performed on C0 to

obtain new configurations C0; then all possible coalescences are performed on each C0. We find thirteen

configurations in total at level 1.

Optimality. The PIRNC algorithm examines configurations with nondecreasing reticulation distance

from C0. Since no configurations that lead to the final configuration are discarded, the found network is the

most parsimonious hybridization network.

Incompatible configurations. In principle, every pair of lineages in a configuration can coalesce to

create a new configuration. However, some coalescence will lead to a configuration C that is incompatible:

the final configuration Cf can not be obtained from C. Early removal of incompatible configurations can

significantly speed up the search for optimal networks. Here is a simple test for finding incompatible

configurations. Given a set of displayed subtrees S within a gene tree T, we say T is displayable from S if

each leaf of T is ‘‘covered’’ by some subtree in S. Otherwise, we say T is not displayable from S. A leaf is

covered by a subtree if the subtree contains the leaf. Intuitively, if subtrees in S can not cover each leaf of

T, then T can not be displayed by S. Checking whether a tree T is displayable from S can be easily done by

a traversal of T. A configuration C is incompatible if some input gene tree is not displayable from the set of

displayed subtrees of all the lineages in C.
We illustrate the concept of incompatible configurations through an example as shown in Figure 3.

Suppose we start with the initial configurations C0 = f(1)‚ (2)‚ (3)‚ (4)g with four leaf lineages. There are

different ways of coalescence from C0. Suppose we coalesce lineages 1 and 2 first. This creates a con-

figuration C1 = f(a‚ c)‚ (3)‚ (4)g (noting that lineages 1 and 2 coalesce to create subtrees a and c in T1 and T2

respectively). C1 is compatible because each leaf in T1 and T2 is covered by some lineage in C1. To see this,

first note that the leaf lineages 3 and 4 appear in each input tree and thus leaves 3 in T1 and T2 are covered

by lineage 3 in C1. So do leaves 4. Leaves 1 and 2 of T1 are covered by the subtree a of lineage (a, c).

Leaves 1 and 2 of T2 are covered by the subtree c of lineage (a, c). If, however, we first coalesce lineages 3

and 4 from C0, we get a different configuration C2 = f(1)‚ (2)‚ (b)g (noting that coalescing lineages 3 and 4

only forms a subtree b in T1 but not in T2). Now, C2 is incompatible because leaves 3 and 4 are not covered

by any of the three lineages in C2. One can verify that if we first reticulate the lineage 3 and then coalesce a

copy of the lineage 3 and the lineage 4, the resulting configurations are compatible. This example shows

that we can speed up the configuration search by pruning the incompatible configurations.

3.4. Other techniques for speed up

We now describe several other speed-up techniques that help to make the configuration search algorithm

practical while still ensuring the optimality of the approach.

FIG. 3. An illustration of compatible and incompatible configurations for the two gene trees T1 and T2.

ALGORITHM FOR HYBRIDIZATION NETWORKS WITH MULTIPLE TREES 799

3.4.1. Avoiding redundant coalescences. Note that there are usually more possible coalescences

than reticulations: for a configuration with n lineages, there are O(n2) possible coalescences and only O(n)

reticulations. Some coalescences are redundant in the sense that optimal networks can still be found even

when these coalescences are not allowed. To speed up the configuration search, it is important to identify

these redundant coalescences. There are several cases in which a coalescence can be determined to be

redundant. First, sometimes a coalescence creates a lineage that has no displayed subtrees. In this case, the

coalescence is clearly redundant and can be ignored. Similarly, if the new lineage l of a coalescence

contains exactly the same displayed subtrees as one of the coalesced lineages l0, this coalescence is

redundant since we can always use l0 instead of l in all future operations.

Preprocessing of input gene trees can be used for avoiding redundant coalescences. Preprocessing is a

common technique for algorithms for hybridization network construction. Similar to Semple (2007) and

Wu (2009), we first preprocess the input gene trees by contracting common subtrees into a single taxon. A

common subtree is a subtree that appears in each input gene tree. Contracting common subtrees is known to

preserve optimal solutions (Semple, 2007). After common subtrees are contracted, the initial stage contains

only C0 and thus search time is reduced by directly moving to the next stage. That is, no coalescences can

be performed on C0. This is because each lineage in C0 is always present, and thus coalescing two lineages

labeling with taxa a and b in C0 implies that there is a common subtree of a and b (while preprocessing

should have already removed such common subtrees).

3.4.2. Comparing configurations and symmetry. We have also implemented several other speed-

up techniques. First, suppose we obtain two configurations C and C0 at one stage. Normally, we need to

explore new configurations from both C and C0. Sometimes we can infer C is ‘‘beaten’’ by C0, and in this

case we only explore new configurations from C0 and remove C from consideration. We say a lineage l is

beaten by another lineage l0 if the set of the displayed subtrees of l is a subset of the displayed subtrees of l0.
For example, if T(l) = {a, /} and T(l0) = {a, /, i}, then l is beaten by l0. We say C is beaten by C0 if each

lineage in C is ‘‘beaten’’ by some distinct lineage in C0. Intuitively, if C is beaten by C0, C0 can be used in

place of C: if C leads to an optimal network, C0 can also lead to an optimal network and thus it is safe to

remove C from consideration. Thus, when a new configuration C is created, we remove C from consider-

ation if C is beaten by some existing configurations at the same stage. At the same time, an existing

configuration beaten by C is also removed from consideration. This sometimes reduces the number of

configurations to explore in the next stage significantly.

Another speed-up technique is avoiding symmetry in exploring new configurations. Suppose there are

four lineages l1, l2, l3, and l4 in a configuration C, where a new configuration C0 are created when l1
coalesces with l2, followed by l3 coalescing with l4. Since we allow all pairs of lineages to coalesce, the first

coalescence from C can be either between l1 and l2 or between l3 and l4, and both will lead to the same C0
when the remaining pair of lineages coalesce. Such symmetry leads to redundant efforts by reaching the

same configurations multiple times. To break symmetry, each lineage in C is arbitrarily assigned an integer

as its rank. Coalescences are required to be performed at lineages in nondecreasing order. For example, if

the last coalescence is performed between lineages 10 and 11, then a coalescence involving lineage 7 and 8

are not allowed.

Sometimes, some reticulation can be deferred and thus reduce the time spent on performing searches

from this reticulation. As an example, consider the initial configuration C0 = f(1)‚ (2)‚ (3)‚ (4)‚ (5)g in

Figure 2. The reticulation of lineage 5 can be deferred because the reticulation at lineage 5 alone does

not start the coalescence; taxon 5 does not directly coalesce with any other leaf lineages in the gene trees.

Thus reticulation must also occur at some other lineage and the reticulation of lineage 5 can thus be

deferred.

3.5. PIRNCH: a heuristic

PIRNC becomes slow when the number of reticulations increases. In order to construct more complex

networks, we develop a heuristic called PIRNCH, which is based on the same principle of PIRNC but has

more aggressive approaches to trim the search space of configurations.

PIRNCH uses a scoring scheme to rank configurations so that lower-ranked configurations may be pruned.

The score of a configuration C is based upon the progress made by the configuration toward the final

800 WU

configuration. The progress of the configuration C is measured by s(C) =
PK

i = 1 s(Ti‚ C). Here s(T‚ C) is the

score for gene tree T and C and is equal to the smallest number of disjoint subtrees displayed in C whose

union contains all the taxa in T. For example, s(T‚ C0) = n since only singleton leaves are displayed in C0. In

Figure 2, for the configuration C = f(1‚ a)‚ (2)‚ (3)‚ (4)‚ (5)g, s(T1‚ C) = 4 since the displayed subtrees a, 3, 4,

and 5 together cover all the leaves in T1. The smaller the score is of a configuration, the higher ranked it is.

Then we can keep the top Nc ranked configurations and prune the rest at each stage. The value of Nc is

chosen by the user. There is a trade-off between accuracy and efficiency in choosing the value of Nc. Note

that it is possible that configurations leading to good networks may be dropped since these configurations

may appear to be less promising than others at an earlier stage. When this happens, either the heuristic runs

very slow (by exploring the wrong portion of the configuration space) or the constructed networks are far

from the optimum. However, this happens very rarely in our simulation.

PIRNCH also implements several other rules to further trim the search space. For example, PIRNCH does

not consider a coalescence of two lineages where no new displayed subtrees are generated after the

coalescence. With these heuristic rules, PIRNCH can not ensure always finding the optimal networks.

Nonetheless, PIRNCH can construct more complex networks and seems to perform reasonably well in

practice (see Section 4).

4. RESULTS

4.1. Implementation

We have implemented both PIRNC and PIRNCH for building the parsimonious network as part of the

software package PIRN. It is available online for download. PIRNC can find optimal networks for multiple

gene trees. It runs reasonably well for gene trees with relatively small reticulation numbers (say five or

less). PIRNC can handle larger gene trees (say with 30 taxa). PIRNCH takes a heuristic approach and can

find networks with larger hybridization number. When a proper setting is chosen, PIRNCH can find good

networks for gene trees with hybridization numbers of up to 10. Both PIRNC and PIRNCH output the found

network in the extended Newick format (see, e.g., Huson et al., 2010).

4.2. Simulation results

We test our new algorithms with simulated data on a 3192 MHz Intel Xeon workstation. We use the same

simulation data generated by a two-stage approach, as in Wu (2010). Since PIRNC is designed to build

networks with relatively small numbers of reticulation, we use the datasets generated in Wu (2010) with

lower reticulation level. We test for several settings of n (the number of taxa) and K (the number of gene

trees).

To test PIRNC, we compare the bounds computed by the program PIRN (Wu, 2010). PIRN provides a

lower bound (called the RH bound) and an upper bound (called the SIT bound). Note that when the RH

bound matches the SIT bound, PIRN finds the optimal network. When the two bounds do not match, we

only know the range of hybridization number but not the true hybridization number, and this is a major

weakness of the PIRN approach (Wu, 2010). Wu (2010) shows that the lower and upper bounds match

often for lower reticulation level and smaller number of gene trees, but diverge more for higher reticulation

level and larger number of gene trees. The reason for comparing with PIRN is that PIRN appears to infer

networks that, in practice, are close to the optimum (Wu, 2010; Park and Nakhleh, 2012). In our simulation,

we restrict our attention to datasets whose hybridization number is at most 4 since PIRNC is designed for

data with a smaller hybridization number. For datasets with a higher hybridization number, PIRNC simply

reports that their hybridization number is larger than 4 and no network is constructed. Table 1 shows the

results of our simulation. The ‘‘#Data £ 4’’ refers to the percentage of datasets that have a hybridization

number of 4 or less, and we only give results for these datasets (i.e., PIRNC does not give results for some

datasets). Table 1 shows that PIRNC can find optimal networks where PIRN does not: for example, for

n = 10 and K = 4 case, PIRNC finds the true optimum for 6 out of 98 datasets, where the bounds of PIRN do

not match (and thus PIRN does not know whether its solutions are optimal or not) for these datasets. For

some other settings, PIRNC gives the same results as PIRN does. Still, it may be useful to have a method

that always finds optimal solutions. The ability to find optimal networks is the key advantage of PIRNC

when compared with existing methods like PIRN. The running time of PIRNC is more influenced by the

ALGORITHM FOR HYBRIDIZATION NETWORKS WITH MULTIPLE TREES 801

hybridization number than by n or K. The case of hybridization number being 4 (or even 5) or smaller is

usually practically solvable by PIRNC.

For handling more complex networks, we also test our heuristic PIRNCH on datasets with higher

hybridization numbers. Note that the choices of PIRNCH parameters (e.g., Nc, the maximum number of

configurations kept at each search level) have a large impact on the accuracy and efficiency. For this

simulation, we set Nc to be 100,000. Results are shown in Table 2. The coarse mode of the SIT bound is

used for larger data (when n = 40 and 50) as in Wu (2010). As shown in Table 2, PIRNCH performs well

against PIRN: there is only one out of 900 datasets in which PIRNCH constructs a network using more

reticulation than PIRN; and PIRNCH finds optimal networks (when its reticulation number matches the

RH bound) for 82% of data with 50 taxa and 5 gene trees, while the SIT bound can only do the same for

58%. Also the gap between the results of PIRNCH and the SIT bound increases for larger and more

complex data.

Table 1. Average Performance of PIRNC over 100 Datasets for Each Setting on Simulated Data

n = 10 n = 20 n = 30

K = 3 K = 4 K = 5 K = 3 K = 4 K = 5 K = 3 K = 4 K = 5

#Data £ 4 98 98 93 88 77 65 84 76 65

PIRNC = RH 96 93 90 88 74 63 84 75 61

PIRNC > RH 2 5 3 0 3 2 0 1 4

PIRNC < SIT 0 1 0 0 1 0 0 1 0

PIRNC = SIT 98 97 93 88 76 65 84 75 65

PIRNC > SIT 0 0 0 0 0 0 0 0 0

#Data not optimal by SIT 2 6 3 0 4 2 0 1 4

Time 13.4 49.9 92.6 276.8 705.8 1686.6 606.7 2227.1 2811.5

RH, lower bound; SIT, upper bound.

Results are only for those datasets with a hybridization number of 4 or less (i.e., datasets with a hybridization number of 5 or more

are excluded). #Data £ 4: percentage of datasets with the hybridization number of 4 or less (where PIRNC constructs the optimal

networks). PIRNC = RH (resp. PIRNC > RH): among the datasets where PIRNC gives optimal results, the percentage of datasets

PIRNC gives the same (resp. larger) hybridization number as given by the RH lower bound. PIRNC < SIT (the other two are

straightforward): percentage of datasets PIRNC gives the smaller hybridization number as given by the SIT upper bound. #Data not

optimal by SIT: percentage of data where the RH bound and SIT bounds do not match (and thus the optimality is not determined by the

two bounds) while PIRNC gives optimal solution. Time: average run time of PIRNC in seconds.

Table 2. Performance of PIRNCH on 100 Simulated Datasets Per Setting

n = 30 n = 40* n = 50*

K = 3 K = 4 K = 5 K = 3 K = 4 K = 5 K = 3 K = 4 K = 5

= RH 98 93 77 97 90 83 98 89 82

SIT = RH 97 92 78 92 73 55 96 75 58

Gap(RH) 0.02 0.08 0.25 0.03 0.11 0.18 0.02 0.10 0.18

< SIT 1 3 3 5 22 37 2 16 34

= SIT 99 97 96 95 78 63 98 84 66

> SIT 0 0 1 0 0 0 0 0 0

Gap(SIT) 0.01 0.03 0.02 0.06 0.25 0.54 0.02 0.17 0.39

Time 850.6 3,321.3 6,453.6 2,942.7 5,299.8 16,384.3 2073.7 8,204.7 13,846.64

= RH (resp. SIT = RH): the number of datasets PIRNCH (resp. SIT bound) gives the same results as the RH lower bound (and thus

optimal networks are found). *: coarse mode of the SIT bound is used for n = 40 and 50. Gap(RH): average gap between PIRNCH

results and the RH bound. < SIT (the other two are straightforward): the number of datasets PIRNCH gives the smaller hybridization

number as given by the SIT upper bound. Gap(SIT): average gap between PIRNCH results and the SIT bound. Gap of two values a and

b is defined as a - b. Time: the time of PIRNCH in seconds.

802 WU

5. DISCUSSION

Simulation shows that PIRNC and PIRNCH perform reasonably well compared to PIRN (previously the

best approach for building hybridization networks of multiple trees). Our approach is based on the concept

of ancestral configuration. This is different from most existing approaches to this subject, which mainly use

the maximum agreement forest (MAF) formulation or its variation. One advantage of the ancestral con-

figuration approach is its flexibility and its potential application to other evolutionary processes. A similar

data structure has been used in studying the discordance of gene trees caused by the so-called incomplete

lineage sorting (another important evolutionary process for the so-called gene tree and species tree prob-

lem) (Wu, 2012). Ancestral configurations may be useful in developing new algorithms for studying

multiple evolutionary processes together (e.g., reticulate evolution and incomplete lineage sorting) on a

proper model. We expect more research will be conducted along these lines in the near future.

Constructing optimal hybridization networks is still challenging computationally. We expect the study of

the hybridization network with multiple trees is likely to continue (see, e.g., van Iersel and Linz, 2013).

More theoretical observations for revealing properties of hybridization networks may be obtained. On the

other hand, an important issue is finding more biological applications of the hybridization network model.

So far, there have been a number of computational tools that may allow the solving of hard optimization

problems on hybridization networks of realistic biological datasets. It will be interesting to see more

applications of these tools for the hybridization network model.

ACKNOWLEDGMENTS

This work is partly supported by U.S. National Science Foundation grants IIS-0803440 and CCF-

1116175.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Albrecht, B., Scornavacca, C., Cenci, A., and Huson, D.H. 2012. Fast computation of minimum hybridization networks.

Bioinformatics 28, 191–197.

Bordewich, M., and Semple, C. 2004. On the computational complexity of the rooted subtree prune and regraft

distance. Annals of Combinatorics 8, 409–423, 2004.

Bordewich, M., and Semple, C. 2007. Computing the minimum number of hybridization events for a consistent

evolutionary history. Discrete Applied Mathematics 155,914–928.

Bordewich, M., Linz, S., John, K.S., and Semple, C. 2007. A reduction algorithm for computing the hybridization

number of two trees. Evolutionary Bioinformatics 3, 86–98.

Chen, Z., and Wang, L. 2012. Algorithms for reticulate networks of multiple phylogenetic trees. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics 9, 372–384.

Chen, Z., and Wang, L. 2013. An ultrafast tool for minimum reticulate networks. J. of Comp. Biol. 20, 38–41.

Gusfield, D. 2005. Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with constrained and

structured recombination. J. Comp. Sys. Sci. 70, 381–398.

Hein, J., Jiang, T., Wang, L., and Zhang, K. 1996. On the complexity of comparing evolutionary trees. Discrete Appl.

Math 71, 153–169.

Huson, D., and Klopper, T. 2007. Beyond galled trees - decomposition and computation of galled networks, 211–225.

In Speed, T., and Huang, H., ed. Proc. of RECOMB 2007: The 11th Ann. International Conference Research in

Computational Molecular Biology. Springer, New York.

Huson, D., Rupp, R., Gambette, P., and Paul, C. 2009. Computing galled networks from real data. Bioinformatics 25,

i85–i93.

Huson, D.H., Rupp, R., and Scornavacca, C. 2010. Phylogenetic Networks: Concepts, Algorithms and Applications.

Cambridge University Press, Cambridge, U.K.

Morrison, D.A. 2011. Introduction to Phylogenetic Networks. RJR Productions, Uppsala, Sweden.

ALGORITHM FOR HYBRIDIZATION NETWORKS WITH MULTIPLE TREES 803

Park, H.J., and Nakhleh, L. 2012. Murpar: A fast heuristic for inferring parsimonious phylogenetic networks from

multiple gene trees, 213–224. In Proc. of Bioinformatics Research and Applications (ISBRA 2012). Springer, LNCS

7292, 2012.

Semple, C. 2007. Hybridization networks, 277–309. In Gascuel, O., and M., Steel, ed. Reconstructing Evolution: New

Mathematical and Computational Advances. Oxford.

van Iersel, L., and Linz S. 2013. A quadratic kernel for computing the hybridization number of multiple trees.

Information Processing Letters 113, 318–323.

van Iersel, L., Keijsper, J., Kelk, S. et al. 2008. Constructing level-2 phylogenetic networks from triplets, 450–462. In

Vingron, M., and Wong, L., ed. Proc. of RECOMB 2008: The 12th Ann. International Conference Research in

Computational Molecular Biology(RECOMB 08). Springer, New York.

van Iersel, L., Kelk, S., Rupp, R., and Huson, D. 2010. Phylogenetic networks do not need to be complex: using fewer

reticulations to represent conflicting clusters. Bioinformatics (supplement issue for ISMB 2010 proceedings) 26,

i124–i131.

Whidden, C., and Zeh, N. 2009. A unifying view on approximation and fpt of agreement forests, 390–402. In Proc. of

Algorithms in Bioinformatics (WABI 2009). Springer, New York.

Wu, Y. 2009. A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25, 190–

196.

Wu, Y. 2010. Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees.

Bioinformatics (supplement issue for ISMB 2010 proceedings) 26, 140–148.

Wu, Y. 2012. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by

maximum likelihood. Evolution 66, 763–775.

Wu, Y. and Wang, J. 2010. Fast computation of the exact hybridization number of two phylogenetic trees, 203–214. In

Proceedings of International Symposium on Bioinforamtics Research and Applications (ISBRA) 2010. Springer-

Verlag, Berlin, Germany.

Address correspondence to:

Dr. Yufeng Wu

Computer Science and Engineering Department

University of Connecticut

371 Fairfield Road, Unit 2155

Storrs, CT 06269

E-mail: ywu@engr.uconn.edu

804 WU

