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Reliable Identification of Genomic Variants
from RNA-Seq Data

Robert Piskol,1 Gokul Ramaswami,1 and Jin Billy Li1,*

Identifying genomic variation is a crucial step for unraveling the relationship between genotype and phenotype and can yield important

insights into human diseases. Prevailing methods rely on cost-intensive whole-genome sequencing (WGS) or whole-exome sequencing

(WES) approaches while the identification of genomic variants from often existing RNA sequencing (RNA-seq) data remains a challenge

because of the intrinsic complexity in the transcriptome. Here, we present a highly accurate approach termed SNPiR to identify SNPs in

RNA-seq data. We applied SNPiR to RNA-seq data of samples for which WGS and WES data are also available and achieved high spec-

ificity and sensitivity. Of the SNPs called from the RNA-seq data, >98% were also identified by WGS or WES. Over 70% of all expressed

coding variants were identified from RNA-seq, and comparable numbers of exonic variants were identified in RNA-seq andWES. Despite

our method’s limitation in detecting variants in expressed regions only, our results demonstrate that SNPiR outperforms current state-of-

the-art approaches for variant detection from RNA-seq data and offers a cost-effective and reliable alternative for SNP discovery.
Introduction

Our ability to decipher the relationship between genotype

and phenotype relies on the effective identification of

genomic variation. The advent of next-generation

sequencing has greatly facilitated this endeavor. Whole-

genome sequencing (WGS) or whole-exome sequencing

(WES) has been a common practice in many large-scale

projects, such as the 1000 Genomes and The Cancer

Genome Atlas projects, in which its main uses comprise

the identification of genomic variants,1–3 many of which

improve our understanding of human diseases.4–6 RNA

sequencing (RNA-seq) is arguably a more popular applica-

tion because it costs less than genome sequencing and

has the ability to address a multitude of different ques-

tions, such as the quantification of gene expression levels,

detection of alternative splicing, allele-specific expression,

gene fusions,7–10 or RNA editing.11–13

Employing RNA-seq data for identifying genomic vari-

ants, however, remains a challenge because of the tran-

scriptome’s intrinsic complexity (e.g., splicing), which

leads to the technical difficulty of the computational anal-

ysis. What are the benefits of calling variants from RNA-seq

data? First, a large number of samples with available RNA-

seq data do not come with matched WGS or WES data.

Calling variants in them is ‘‘free,’’ an additional deliverable

of the existing RNA-seq data. Second, a large number of

disease samples might have both RNA-seq and WGS or

WES data. Calling SNPs from the WGS or WES data can

be challenging because of the heterogeneity of the disease

samples (e.g., tumors). De novo variant calling in RNA-seq

data provides an efficient option to validate the findings

from the WGS or WES data.

Recent developments in computational approaches to

identifying SNPs in cancer14 and accurate mapping of

RNA-seq reads15 have resulted in the identification of
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potentially disease-associated variations in RNA-seq

data.16–18 These studies either imposed strong variant

filtering criteria and thus limited their analysis to several

candidate sites16 or required data from multiple individ-

uals and the aid of additional WES for the accurate identi-

fication of variants.19 This handful of studies also demon-

strates the utility of detecting genetic variants and somatic

mutations with the use of RNA-seq data, underscores the

considerable effort underlying these investigations, and

highlights the need for automated, high-accuracy determi-

nation of RNA variants. Correct mapping of RNA-seq reads

to the reference genome is crucial for avoiding mismatches

that are incorrectly interpreted as SNPs. The assignment of

reads to their original genomic location is mostly

hampered by (1) highly similar regions in the genome,20

(2) artifacts in library construction,21 and (3) the inability

of many computational pipelines to map reads in a

splice-aware manner (this last hindrance is possibly the

greatest challenge to the accurate detection of SNPs). The

vast majority (>90%) of the transcripts in the human

genome are spliced version of genes.22 In addition, recent

studies have revealed that alternative splicing occurs in

over 90% of genes.23 Given the average length of human

exons (~150 bp) and the read lengths of current

sequencing technologies (two paired-end 100 bp reads),

sequencing of these transcripts often results in sequencing

reads that span splice junctions. Current methods24–26

might achieve satisfactory mapping performance for

RNA-seq expression studies and the identification of alter-

native splicing. For the purpose of variant calling fromRNA-

seq data, however, they still suffer from an unacceptably

high rate of wrongly mapped reads. In addition, they fail to

account forotherRNA-seq-study specifics that couldhamper

the accurate identification of genomic variants. Recently,

several methods for the discovery of RNA-editing sites from

transcriptomedatahavebeendescribed.11–13,27–29Although
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many of them take some of the above concerns into consid-

eration, there exists no account that describes a fully

integrated approach for the detection of single-nucleotide

variants from RNA-seq experiments.

Here, we present a simple yet highly accurate method

termed SNPiR to identify SNPs in RNA-seq data. SNPiR con-

sists of (1) a modified RNA-seq read-mapping procedure

that allows alignment of reads to the reference in a

splice-aware manner, (2) variant calling using the Genome

Analysis Toolkit (GATK),30 and (3) vigorous filtering of

false-positive calls. The steps in our computational pipe-

line are inspired by common practice for mapping, variant

calling, and variant filtering inWGS andWES experiments

but were modified to account for the specific characteris-

tics of RNA-seq experiments, including errors introduced

during RNA-seq library preparation, sequencing, and

read-mapping difficulties due to highly similar genomic

regions. The application of our method to two well-charac-

terized samples allows a systematic assessment of sensi-

tivity and specificity and highlights the immense impor-

tance of variant filtering for avoiding false-positive calls.
Figure 1. A Computational Framework for the Identification of
SNPs from Transcriptome Data
Shown are RNA-seq readsmapped to the human reference genome
(blue lines) and all regions spanning known splice junctions (yel-
low lines separated by dashes). Subsequent variant calling used
GATK and filtering to remove spurious sites, generating a high-
confidence set of SNVs.
Material and Methods

SNPiR: A Pipeline for the Detection of SNPs

in RNA-Seq Data
We have developed a highly efficient procedure (SNPiR) to reli-

ably identify SNPs in RNA-seq data (Figure 1). First, RNA-seq

reads are mapped to the reference genome and all known splice

junctions. The presence of sequences that surround splice junc-

tions allows the short read mapper to correctly assign spliced

reads to their genomic location given that its originating junc-

tion is present in the reference. Uniquely mapped reads are

then used for calling the initial set of candidate variants with

the use of GATK,30 which takes the number of original and alter-

native alleles and their quality into account for variant calling.

Subsequently, these candidates are subjected to several filtering

criteria for ensuring the removal of technical artifacts that might

have been introduced during RNA-seq library preparation,

sequencing, or computational analysis.21 These filters include

removal of false calls in duplicated regions, in homopolymeric re-

gions, or close to splice junctions. The resulting set of RNA-seq

variants is further compared to the catalog of known RNA-editing

sites12,13 for the separation of genomic SNPs from RNA-editing

sites.

RNA-Seq Mapping
We obtained poly(A)þ RNA-seq data for (1) whole GM12878 lym-

phoblastoid cells from the ENCODE project (Gene Expression

Omnibus [GEO] accession number GSM758559) and (2) periph-

eral-blood mononuclear cells (PBMCs) from one healthy individ-

ual31 (GEO GSE33029). The strand-specific RNA-seq libraries

were made as described previously.32 Both samples were deeply

sequenced on the Illumina HiSeq platform. For GM12878 cells,

the transcriptome was sequenced in two biological replicates, re-

sulting in 235.8 and 263.7 million paired-end 76 bp sequencing

reads, respectively (Table S1, available online). The PBMC data

were obtained from samples of a 20-point time series, which re-

sulted in a total of 3,232 million paired-end 101 bp reads. We
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chose the Burrows-Wheeler Aligner (BWA)33 as the mapper for

RNA-seq reads because of its demonstrated high accuracy of align-

ment34 (although untested in our study, other gapped aligners

with high mapping specificity35,36 might give similar results).

We mapped each of the paired-end reads separately by using the

commands ‘‘bwa aln fastqfile’’ and ‘‘bwa samse -n4.’’ In contrast

to previous approaches, we mapped RNA-seq reads not only to

the reference genome11,29 or the transcriptome27,37 but to a

combination of the hg19 reference genome (UCSC Genome

Browser) plus exonic sequences surrounding all currently known

splice junctions from gene models available in annotations from

GENCODE, RefSeq, Ensembl, and the UCSC Genome Browser.

These short pseudochromosomes allowed us to capture reads

derived from transcript regions that span splice junctions and to

assign them to the correct genomic location. We chose the length

of these splice-junction regions to be slightly shorter than the

RNA-seq reads to avoid simultaneous hits to the reference genome

and the splice junctions (for 76 bp reads, a 75 bp region upstream

and downstream was chosen; for 101 bp reads, a 95 bp region up-

stream and downstream was chosen). When the adjacent exons

upstream and/or downstream of a splice junction were shorter

than the required length, we extended the regions across multiple

exons. Although this strategy can avoid the mismapping of most

split reads, some others might still be wrongly placed onto the

genome or split incorrectly. SNPiR avoids such potential false-pos-

itive variant calls through an additional BLAT step, as described in

the next paragraph. We only considered uniquely mapped reads

with mapping quality q > 10 and used SAMtools rmdup38 to
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remove identical reads (PCR duplicates) that mapped to the same

location. Of these identical reads, only the read with the highest

mapping quality was retained for further analysis.
RNA-Seq Variant Calling and Filtering
Mapped reads were subject to local realignment, base-score recali-

bration, and candidate-variant calling with the IndelRealigner,

TableRecalibration, and UnifiedGenotyper tools from GATK.30 In

contrast to common-practice variant calling, we called variants

with very loose criteria by using the UnifiedGenotyper tool with

options stand_call_conf of 0 and stand_emit_conf of 0 and output

mode EMIT_ALL_CONFIDENT_SITES, which allowed a high sensi-

tivity of SNPiR. This set of candidate variants was subject to several

filtering steps that increased the precision of SNPiR (Figure S1).

More specifically, we required a variant call quality Q > 20, dis-

carded variants if they occurred in the first six bases of a read,

and removed variants in repetitive regions according to Repeat-

Masker annotation provided through the UCSC Genome Browser.

Furthermore, we removed intronic variants if they were within

4 bp of splice junctions and filtered variants in homopolymer

runs R 5 bp. Both of these filter settings proved effective in the

removal of false-positive variant calls in previous sequence ana-

lyses.12,13 Moreover, we ensured that reads supporting a variant

were uniquely mapped to the genome. For that purpose, we

used BLAT39 to remap all reads supporting a variant to the

genome. For each read, we required that (1) the best hit overlap

with the variant site and (2) the second best hit have a score <

95% of the best hit. We only retained variant sites if the majority

of supporting reads fulfilled these criteria. Finally, we removed all

currently known RNA-editing sites that were found by recent

high-throughput studies.12,13 (This final step can be omitted if

the user chooses to identify not only genomic variants but also

RNA-editing sites.) We used ANNOVAR40 to annotate variants on

the basis of gene models from GENCODE, RefSeq, Ensembl, and

the UCSC Genome Browser. We defined all RNA-seq variants

that can also be identified fromWGS data or are present in dbSNP

(version 135) as ‘‘known’’ variants. Conversely, all RNA-seq

variants that cannot be found in WGS or in dbSNP were denoted

as ‘‘novel.’’ The precision of SNPiR was calculated as the number of

all known RNA-seq variants divided by the total number of known

and novel RNA-seq variants. To allow a fair comparison between

RNA-seq and WGS variants, we determined the sensitivity of

SNPiR as the fraction of coding exonic variants identified from

WGS.
WGS and WES Mapping and Variant Calling
WGS and WES data for the GM12878 cell line were provided in

mapped form by the 1000 Genomes Project (see Web Resources).

The genomewas sequenced at 443 coverage.1WGS andWES reads

for the PBMCs were available from the Sequence Read Archive

under accessions SRP008054.4 and SRA040093, respectively. We

mapped the PBMC data by using the BWA in paired-end mode

with commands ‘‘bwa aln fastqfile1,’’ ‘‘bwa aln fastqfile2,’’ and

‘‘bwa sampe.’’ Realignment, recalibration, and variant calling

were performed with GATK. For variant calling and filtering in

WGS and WES data, we applied the same parameter set as done

by the 1000 Genomes Project Consortium. More precisely, we

used the UnifiedGenotyper with options stand_call_conf of 30

and stand_emit_conf of 10 and filtering criteria as described by

the 1000 Genomes Project Consortium.1 We chose to use these

widely accepted guidelines for variant calling to obtain a high-
The Americ
confidence variant set that could be used as the gold standard in

our analysis.

Expression Analysis
The expression of known genes (i.e., expected fragments per kilo-

base of transcript per million fragments mapped [FPKM]) was

quantified with cufflinks41 (parameter -G) on the basis of

Tophat242 mappings. Gene models were obtained from the

UCSCGenome Browser for reference genes. If a variant overlapped

with several gene models, the average FPKM for all overlapping

genes was calculated.
Results

High Precision of SNP Detection in RNA-Seq Data

We applied SNPiR to data from the GM12878 human lym-

phoblastoid cell line1 and PBMCs from another healthy

individual31 (Table S1). These resources have three major

advantages. First, the transcriptome, exome, and whole

genome of these samples have been deeply sequenced

and allow accurate identification of variants from RNA

and DNA of the same individual. Second, the matched

RNA andDNA samples enable verification of RNA SNP calls

because they can be compared to variation present in the

DNA. Third, the GM12878 cell line has been extensively

studied, and SNPs detected in its genome have been

continuously deposited into dbSNP, making it a good

candidate set for evaluating the precision and sensitivity

of SNPiR.

Using the approach described in Figure 1, we identified

SNPs in the transcriptomes of GM12878 cells and PBMCs.

At the same time, we used common-practice variant calling

as performed by the 1000 Genomes Project1 to catalog var-

iants in the WGS andWES data of the same samples. In to-

tal, we were able to detect 172,982 variants in the

GM12878 RNA-seq data and 299,153 variants in the

PBMC RNA-seq data (Table S1). The larger number of

PBMC variants can be attributed to the larger size of the

RNA-seq data set and thus higher coverage and confidence

in variant calls. We found that SNPiR detected genomic

SNPs with high precision, given that 99.1% of the

GM12878 variants and 96.6% of the PBMC variants that

were discovered from RNA-seq were also called through

WGS data (Figure 2) and that 99.6% (172,322) of the

GM12878 variants and 97.7% (292,224) of the PBMC var-

iants were supported by evidence from WGS or dbSNP

v.135 (Figures S2A, S2C, S2D, and S2F). For both

GM12878 cells and PBMCs, these known sites exhibited

a transition-to-transversion (ts/tv) ratio of 2.25, which is

similar to the overall ts/tv ratio of 2.0–2.1 for the entire

human genome1,43–45 and estimates of ~3 for exonic re-

gions46 and thus is a good reflection of the genomic varia-

tion in transcribed regions.1 Also, the mutational profile of

known variants matched well with the expectations for

genomic regions given that similar profiles of variants

were observed in WGS data (Figure S3). For the remaining

(novel) sites (600 in GM12878 data and 6,929 in PBMC
an Journal of Human Genetics 93, 641–651, October 3, 2013 643



Figure 2. Comparison of SNPs Identified via RNA-Seq and WGS
of GM12878 Cells and PBMCs
SNPiR achieved high precision for both GM12878 (A) and PBMC
(B) data sets, given that most of the RNA-seq variants were also
identified by WGS of the same subject. Numbers in parentheses
give the percentage of RNA-seq variants found in WGS.

Figure 3. Characteristics of SNPs Identified from RNA-Seq Data
of GM12878 Cells
(A) The composition of genomic regions for variants in WGS,
WES, and RNA-seq suggests a high enrichment of RNA-seq vari-
ants in functionally important regions. Sites present in RNA-seq
and WES occurred substantially more often in coding exons.
(B) Overlap in coding variants detected from RNA-seq and WGS.
Of all coding variants, 40.2% were found by RNA-seq. The major-
ity of the remaining sites were not detected as a result of the lack of
expression. ‘‘No variation’’ indicates that the position was homo-
zygous in RNA, ‘‘OK but filtered’’ indicates that the position was
heterozygous but was removed by one of our filtering steps, and
‘‘not expressed’’ indicates that the position was not covered by
RNA-seq reads.
data), we observed higher ts/tv ratios than for the known

sites (2.49 in GM12878 data and 3.58 in PBMC data). We

found that ~27% of our novel variants in GM12878 data

and ~7% in PBMC data were supported by variant reads

in WGS data (Figure S4A). The remaining novel sites

showed a clear enrichment of A>G and T>C variation

(70.1% for GM12878 data and 71.1% for PBMC data),

indicative of the dominant A-to-I RNA editing47

(Figure S4B). The fraction of A>G and T>C variants was

even higher (92.1%) for the 64 novel sites shared between

the two data sets. Given the fact that the genomes of these

two individuals were deeply sequenced, most of the

genomic SNPs had already been identified. It was therefore

expected that novel SNPs identified in the RNA-seq data

would be enriched with RNA-editing sites. Although our

computational pipeline includes the removal of all

currently known RNA-editing variants identified from

high-throughput studies12,13 (1,369,030 sites in total),

this catalog is still far from being complete, and thus

some variants in our analysismight have remained uniden-

tified as RNA editing. However, our results show that RNA-

editing events are rare compared to the number of SNPs

that can be found in a human genome.Moreover, the rapid

growth of the RNA-editing catalog in humans will allow us

to filter known RNA-editing sites and thus increase the pre-

cision of SNPiR to find genomic variants only.

Enrichment of Variants in Functional Categories

For expressed genes, the use of RNA-seq data for SNP call-

ing can be advantageous compared to WGS because it en-
644 The American Journal of Human Genetics 93, 641–651, October
riches for expressed genic regions and thus increases the

power to detect functionally important SNPs. Using RNA-

seq data rather than WGS or WES allowed us to enrich

for variants in coding exons, UTRs, and introns

(Figure 3A). The SNPs discovered by SNPiR were highly

abundant in these three categories. Only a small fraction

fell into intergenic regions. The large number of intronic

variants in our analysis can be explained by the facts that

(1) poly(A)þ RNA-capturing protocols can also capture a

small fraction of pre-mRNAs (that still contain introns),

(2) introns compose a much larger fraction of the human

genome than do exonic regions, and (3) much more varia-

tion exists in introns than in exonic regions because of the

higher selective pressures on the exonic portion of the

genome to correctly encode proteins. Given the very

high sequencing coverage of the GM12878 sample,

many intronic regions were covered with low sequencing
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Figure 4. High Sensitivity of SNPiR Variant Calling in Coding
Regions of Expressed Genes of GM12878 Cells
(A) Sensitivity and number of detected variants called from RNA-
seq data in dependence of the minimum gene expression (in
FPKM).
(B) Cumulative distribution of expression levels (in FPKM) for all
reference genes.
depth. The high sensitivity of our method allowed us to

detect many intronic variants from these regions of low

sequence coverage. Although exome-capturing techniques

are commonly used to enrich genic regions, we have found

that WES variant calls for GM12878 and PBMC data only

overlap with variants discovered in the transcriptome to

a surprisingly small extent (Figures S2B and S2E). This sit-

uation occurs because exome-capturing kits are mostly de-

signed to capture the protein-coding portion of the

genome, whereas transcriptome sequencing also provides

information about UTRs and intronic regions. Neverthe-

less, the agreement between RNA-seq and WES is substan-

tially higher in coding regions than in any other category

(in Figure 3A, the fraction of coding sites is markedly

higher in the overlap between RNA-seq and WES than in

the single techniques). When focusing on coding sites

only, we found that 33.4% of SNPs identified by WES in

GM12878 cells were also identified by SNPiR using the

RNA-seq data. As a result of no or very low coverage,

81.5% of the remaining 66.6% of SNPs were not identified.

We have demonstrated that our method can achieve high-

ly confident variant calls. For that reason, the small overlap

between WES and RNA-seq variants suggests that RNA-seq

has the power to uncover variants that are in UTRs and in-

trons and that might have important regulatory functions

but are missed in WES screens. Therefore, our results sug-

gest that transcriptome variant discovery could serve as a

complementary approach to WES for the detection of

nucleotide variation.
The Americ
High Sensitivity in Coding Regions

To calculate the sensitivity of SNPiR, we focused on vari-

ants in coding regions only. The comparison of all RNA

variants to all whole-genome variants would not have

been fair because of the limited representation of the

human genome by RNA transcripts (Figure 3A). Neverthe-

less, we found that RNA-seq data alone enabled the discov-

ery of 40.2% and 47.7% of all coding variants identified by

WGS in GM12878 cells and PBMCs, respectively. At the

same time, RNA-seq only required a fraction of the

sequencing effort (e.g., 499 million [for RNA-seq] versus

2,976 million [for WGS] sequencing reads for GM12878

data). Naturally, SNPiR is restricted to the detection of var-

iants in genic regions, specifically in genes that are being

expressed in the cell under the sampling conditions.

Therefore, the SNPs that had known function in coding

exons but that were not detected by analysis of the tran-

scriptome were mainly missed because of the lack of tran-

scription of these genes (Figure 3B). When we compared

the RNA-seq variants only to WGS variants in expressed

genes (characterized by FPKM > 0.2), the sensitivity of

SNPiR increased from 40%–50% to >70% (Figure 4A).

This agrees with the fact that a large fraction of genes are

expressed at very low levels (Figure 4B). Therefore, our

initial results show that SNPiR achieves high sensitivity

and precision for variant calling in expressed genes.

Precision and Sensitivity for Low-Depth RNA-Seq Data

Many of the currently available RNA-seq data sets vary in

read lengths and read numbers. Our results are based on

very deeply sequenced RNA-seq libraries (499million reads

for GM12878 data and 3,232million reads for PBMC data).

However, in many other experimental settings, the

sequencing depth is often lower. To test the performance

of SNPiR for smaller RNA-seq data sets, we carried out three

random samplings of 5, 10, 20, 50, and 100 million reads

from the GM12878 RNA-seq data set. Our results were

highly reproducible for all sample sizes (Table S2). In gen-

eral, fewer sites were detected for smaller subsets

(Figure 5A). Nevertheless, we detected more than half of

the coding variants of the complete data set (499 million

reads) by using a subsample of only 20 million reads

(Figure 5B). In addition, we found an enrichment of coding

variants for smaller sample sizes (Figure 5C) as a result of

the overall higher coverage of coding regions with RNA-

seq reads (higher coverage allows reliable variant calls

despite the lower total read number). The precision of

SNPiR remained very high (0.980 - 0.997) for all sampling

sizes, given that nearly all detected variants are known

(Figure 5A), and the mutational profile was similar to

that generated from WGS data (Figure 5D).

Comparison of Sensitivity and Precision between

RNA-Seq and WES Experiments

To evaluate the performance of SNPiR, we compared its

sensitivity and precision to those of WES in (1) regions

that are annotated as protein coding in the Consensus
an Journal of Human Genetics 93, 641–651, October 3, 2013 645



Figure 5. Subsampling of RNA-Seq Reads
Subsamplings of 5, 10, 20, 50, and 100 million reads were generated from the total set of 499 million GM12878 RNA-seq reads. We
compared (A) the number of discovered variants, (B) the number of variants in coding regions, and (C) the genomic location of variants
between the random samplings and the complete set RNA-seq reads, as well as (D) themutational profile of known RNA-seq variants and
genomic variants. In (A) and (B), ‘‘known’’ variants denote all variant sites that were discovered from RNA-seq and were either confirmed
through WGS or present in dbSNP. Conversely, ‘‘novel’’ denotes all variants that were previously not found from WGS or dbSNP. The
total amounts of novel variants per sample size are shown as small numbers above the data series.
Coding Sequence (CCDS) database and are commonly tar-

geted in WES and (2) exonic regions (coding exons and

UTRs). For that purpose, we used the PBMC WES library

of 94.1 million mapped reads and matched its size by sub-

sampling the same number of reads from the larger PBMC

RNA-seq data. Sensitivity was calculated as the number of

correctly identified variants divided by the total number

of variants identified from high-coverage WGS in the

same regions. Precision was calculated as the number of

correct variant calls divided by the number of correct and

false variant calls.

In the CCDS regions, we identified 22,052 variants

through WGS and were able to recover 17,922 (81.3%)

and 9,892 (44.9%) of them through WES and RNA-seq,

respectively (Figure 6A). The majority of the variants

discovered by SNPiR overlapped with sites found in WES.

Although the number of variants discovered by SNPiR

decreased with coverage (Figures S5A and S5B), its sensi-

tivity increased rapidly with larger numbers of covering

reads (Figure S5C). SNPiR’s precision was remarkably

high for all coverage levels and could compete with that

of WES (Figure S5D). The smaller total number of variants

detected by SNPiR compared to WES can be explained by

the lower coverage of the CCDS regions by RNA-seq reads

and the nature of our method to scale with the number of

mapped reads. Only 35.1 million (37.3%) of the sampled

94.1 million RNA-seq reads covered CCDS annotations,

whereas 60.2 million (64%) of the WES reads were located

in the same regions and thus led to a larger number of de-
646 The American Journal of Human Genetics 93, 641–651, October
tected variants in WES. The remaining 62.7% of RNA-seq

reads that did not cover CCDS regions enabled us to

discover variation in genomic regions not commonly

covered by WES. When we targeted all 62,028 genomic

variants in exonic regions (coding and UTR exons), the

numbers of variants discovered through WES and RNA-

seq were very close to each other: we were able to recover

23,693 (38.2%) WGS variants by using WES and 24,987

(40.3%) variants by using RNA-seq (Figure 6B and Figures

S5A and S5B). This highlights the utility of SNPiR for the

detection of genomic variants that have potential regulato-

ry function but that are commonly not targeted by WES

and emphasizes its importance as a complementary

approach to variant discovery from WES.

SNPiR Achieves Higher Precision and Sensitivity than

RNASEQR

To further evaluate the performance of SNPiR, we

compared it to RNASEQR, which is the current most accu-

rate method for RNA-seq mapping given that compared to

other RNA-seq mappers, it yields the smallest number of

false-positive RNA-seq variant calls.15 RNASEQR uses a

three-step approach in which it maps (1) reads to the tran-

scriptome, (2) unmapped reads to the reference genome in

order to detect novel exons, and (3) unmapped reads in a

split fashion to the reference genome and transcriptome

to discover novel splice junctions. In contrast to SNPiR,

which uses the BWA33 as a mapping algorithm, RNASEQR

employs Bowtie (v.0.12.7),48 which we previously
3, 2013



Figure 6. Comparison of Genomic Variants Identified in CCDS
and Exonic Regions by WGS, WES, or RNA-Seq
An equal number of reads (94.1 million) of RNA-seq andWES data
was used for fair comparison of variants identified in CCDS re-
gions (A) and exonic regions (B).R

Figure 7. Comparison of SNPiR with RNASEQR
Overlap between the sites detected by SNPiR and RNASEQR on the
same RNA-seq data set for GM12878 cells (A) and the number of
known and novel variants discovered by SNPiR and RNASEQR,
the precision and sensitivity of variant calling, and the ts/tv ratio
for each category (B). Precision was calculated as the fraction of
RNA-seq variants either supported by WGS or present in dbSNP.
Sensitivity was determined as the fraction of WGS variants both
found in coding regions and discovered in the RNA-seq data.
demonstrated to have inferior performance for the detec-

tion of transcriptomic variants because it does not support

gapped alignment.21 We applied RNASEQR to the same

GM12878 and PBMC data that were used in our pipeline.

We called variants by using the same parameters as previ-

ously done with RNASEQR to identify SNPs in RNA-seq

data15 (Table S3). SNPiR detected a slightly smaller number

of variants (172,982 sites) in the GM12878 sample than

did RNASEQR (200,318 sites) (Figure 7A), mainly because

of an unexpected, large number of novel variants

(18,840) identified by RNASEQR (SNPiR only identified

660) (Figure 7B). The ts/tv ratio for known variants identi-

fied by SNPiR appeared to be in the normal range, whereas

novel variants showed the expected excess of A>G and

T>C (see above). On the other hand, the low ts/tv ratio

(1.23) for the novel SNPs identified by RNASEQR suggests

a higher false-positive rate (Figure 7B and Figure S6A). In

fact, a larger portion of the novel RNASEQR variants in

the GM12878 sample did not show any support in WGS

(compare Figures S4A and S6B) and did not show any

enrichment of A>G and T>C types (compare Figures S4B

and S6C).

We examined the 18,840 novel sites identified by RNA-

SEQR and found that the majority of them (>13,000)

were false calls. First, we found that despite the efforts by

RNASEQR to report uniquely mapped reads, 10,531 sites

(55.9%) were supported by nonunique mappings only

and were removed by the BLAT filter in SNPiR. Reads

that support such variants have the same or even higher

BLAT mapping scores in other genomic locations at which

the alternative nucleotide matches the reference genome

(Figure S7A). If mapped incorrectly, such reads result in

mismatches from the reference genome, which in turn

are wrongly identified as single-nucleotide variants. Sec-

ond, our BLAT filter was also able to identify 1,273 false

variants close to exon-intron junctions in the RNASEQR

mappings. By correctly mapping spliced reads across junc-

tions, it prevented them from extending into intronic re-

gions, where they could have caused mismatches

(Figure S7B). Third, variation at 50 read ends, most of which

was shown to be due to technical artifacts,21,49,50 ac-
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counted for 1,629 sites. Fourth, we found 53 sites located

in homopolymers. All together, we identified 71.6%

(13,486/18,840) of sites in the novel RNASEQR variant

calls as potential false positives. When comparing the

novel RNASEQR variants between GM12878 data and

PBMC data, we found 3,173 shared sites between two indi-

viduals. Of the 3,173 sites, 2,882 (90.8%) were among the

filtered sites, whereas only 1,266 (39.9%) were A>G and

T>C variants (potential RNA-editing sites). These results

suggest that systematic errors in the RNASEQR mapping

can occur in multiple individuals.

Although SNPiR called fewer SNPs and achieved higher

precision than did RNASEQR, its sensitivity was also higher

in coding regions. Of the 23,878 coding SNPs identified

from WGS, SNPiR identified 9,607 (40.2%) and RNASEQR

identified 5,571 (23.3%) (Figure 7B). Considering all

54,891 coding and UTR SNPs that were identified from

WGS, SNPiR was able to detect 21,608 (39.4%) and RNA-

SEQR detected 13,562 (24.7%). This demonstrates the

capability of our splice-aware mapping procedure to avoid

the incorrect mapping of entire reads. It also highlights the

importance of our filtering process, which specifically re-

moves false-positive variants.
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Discussion

In this work, we have devised SNPiR, a computational

approach that allows the accurate identification of

genomic variants from transcriptome sequencing through

the combination of a splice-aware RNA-seq read-mapping

procedure and subsequent variant filtering that takes the

specifics of RNA-seq experiments into account. We applied

SNPiR to the RNA-seq data from two individuals whose ge-

nomes and exomes had been deeply sequenced. On both

data sets, SNPiR was able to detect genomic variants at

high precision by removing false-positive calls. The usage

of RNA-seq data allowed us to enrich for variants in func-

tionally important regions and to achieve high sensitivity

in variant calling in expressed exonic regions. This high

precision and sensitivity were also maintained for low-

coverage sequencing data.

Of paramount importance to us was to achieve the high-

est possible accuracy of SNP calling from RNA-seq experi-

ments. For that purpose, we adapted a read-mapping strat-

egy that allows us to reduce the number of falsely mapped

reads. Reads are simultaneously mapped to the reference

genome and to short pseudochromosomes created from se-

quences around all currently known splice junctions.

Although this restricts our mapping to known isoforms

and, unlike other RNA-seq mappers,15,24–26 lacks the abil-

ity to discover novel splice junctions, it avoids the incor-

rect placement of reads from highly similar locations.

RNA-seq mappers that initially map reads to the transcrip-

tome can be restricted by the incompleteness of the tran-

scriptome and force reads from unannotated regions to

be mapped into transcripts. Similarly, initial mapping to

the reference genome alone can force split reads to be map-

ped in a continuous fashion to a suboptimal location. Both

scenarios result in falsely mapped reads and thus false SNP

calls. SNPiR is able to avoid both cases by using genome

and transcriptome information simultaneously. Similarly

to SNPiR, the most recent version of TopHat (TopHat2)42

can take genome and transcriptome information simulta-

neously into account during mapping. We tested the per-

formance of TopHat2 as a replacement for our mapping

strategy by calling variants and applying all SNPiR filtering

steps to the complete set of GM12878 RNA-seq reads that

were mapped with TopHat2. We found that TopHat2 map-

pings allowed the identification of more total variants.

However, these were less precise and lacked the sensitivity

of SNPiR mappings in coding regions (Figure S8). More-

over, our simple mapping procedure, based on the BWA

as the mapper, is at least four times faster on the same

RNA-seq sequencing library.

Calling of genomic variants from RNA-seq data can have

manifold applications. It enables researchers to use their

readily available RNA-seq data to profile samples for

known variants or allows confirmation of variants that

were detected by genome sequencing (e.g., validation of

somatic mutations related to cancer). Furthermore, it per-

mits the detection of previously unknown variants that
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might carry important functional implications. For

instance, we observed that proportionally more novel var-

iants were found in the previously unstudied PBMC data

than in the GM12878 data (the novel/known ratio was

0.024 in PBMC data and 0.004 in GM12878 data), in

which nucleotide variation is well characterized through

the HapMap and 1000 Genomes projects.1,2 This confirms

our initial hypothesis that more novel RNA variants would

be found in previously unstudied data sets, promising a

substantial yield of novel variants from other data sets.

Although previous screens were able to uncover common

genomic variants, the power of our analysis lies in the

diverse origin of RNA-seq samples and individuals, em-

powering us to detect rare SNPs that were not observed

before51 at minimal additional cost. Many of the rare and

low-frequency variants are thought to be functionally

important and responsible for the heritability of complex

diseases.52 Given the relatively small overlap between the

regions targeted by RNA-seq and WES, our method might

also find its application in the discovery of variants associ-

ated with rare Mendelian diseases—especially in genomic

regions that are not captured by WES experiments. For

nonhuman species without large-scale genome

sequencing efforts such as the 1000 Genomes Project,

SNPiR has the potential to identify a lot more novel SNPs

in the RNA-seq data, which can be obtained at a lower

cost. For nonmodel species without available reference ge-

nomes, sequencing the RNA and calling RNA variants

might be a very efficient approach to identifying genetic

markers that allow genetic mapping of traits of interest.53

Further development of SNPiR will be needed for meeting

the challenges of accurate read mapping without a well-

assembled genome and a well-annotated transcriptome.

Finally, in tumor sequencing projects such as the Cancer

Genome Atlas (TCGA), often the genome and/or exome

and RNA are both sequenced. Calling variants in the tumor

samples with the genome and/or exome sequencing data is

even more challenging because of the complexity of the

tumors (such as the heterogeneous nature). The ability to

independently call variants in the RNA-seq data will serve

as an efficient means to validate a large number of somatic

mutations identified in the genome and/or exome data.

SNPiR shows high performance in variant calling and

opens the door to many applications by using RNA-seq

data. At the same time, its abilities are limited by the nature

of RNA-seq experiments. SNPiR is predicated on the dis-

covery of functionally relevant variants, which, in most

cases, requires the expression of the transcript harboring

the variant. This becomes evident through the relatively

small overlap between variants detected from WES and

RNA-seq. WES experiments are specifically designed to

target predefined regions of interest (predominantly the

protein-coding portion of the genome). As such, WES

can identify variation in these regions with high sensi-

tivity, whereas comprehensive coverage and variant detec-

tion in the same portions of the genome are not guaran-

teed by RNA-seq because of the potential lack of
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expression. Furthermore, tissue-specific gene expression

might hamper the discovery of genomic variants given

that the collection of tissues related to the phenotype

can be challenging and easily accessible tissues might not

express the genes with disease-related variants. Further-

more, nonsense variants might be missed by our method

as a result of nonsense-mediated decay. Nevertheless,

SNPiR allows the detection of variants even for lowly ex-

pressed genes (Figure 4). In some cases, this translates to

as few as two to three reads per genomic locus. For obtain-

ing higher confidence in the called variants, pooling of

multiple data sets from the same individual (e.g., RNA-

seq from different tissues) can help to increase the coverage

and to facilitate variant discovery in regions of interest that

would otherwise lack sufficient coverage. This study, as

well as our previous work,13 demonstrates that variant call-

ing from RNA-seq experiments can tremendously profit

from an increased number of reads as the coverage of

genomic regions increases. Nevertheless, our subsampling

of the RNA-seq data shows that small sample sizes also

allow reliable calling of variants and enrich for variants

in exonic regions (Figure 5) as a result of the overall higher

coverage of exons compared to UTRs, introns, and inter-

genic positions. On the other hand, the simultaneous us-

age of multiple data sets from different individuals can

help to avoid systematic errors in variant detection.

Although the filtering steps in SNPiR effectively remove

false positives from single data sets, systematic errors

might still persist across data sets. In general, most com-

mon variants have already been discovered by previous

sequencing projects and appear in dbSNP. Therefore,

genuine novel variation is most likely to be restricted to

few individuals. Variants present in many samples are

likely to be either RNA-editing events, as exemplified by

the shared novel variants between the two data sets in

the SNPiR analysis, or systematic errors, as shown in the

case of the shared variants in the RNASEQR mappings.

These recurring variants can be identified via cross-com-

parison of variant calls between different RNA-seq data

sets. We also anticipate that the rapidly growing atlas of

known RNA-editing sites will permit the removal of such

positions with increasing efficiency in the future. Alterna-

tively, if highly confident variant calls are essential, all

A>G variants may be removed.

In addition to failing to call genomic variants in genes

that are not expressed, SNPiR might encounter difficulty

in calling variants in expressed genes as a result of mono-

allelic expression (in which only one parental allele is ex-

pressed). When only the reference allele is expressed, the

SNP will remain undetected. When only the nonreference

allele is expressed, the SNP will be miscalled as a homozy-

gous rather than a heterozygous variant. However, previ-

ous work suggests that only 5%–10% of human genes are

subject to monoallelic expression,54 which is also reflected

in our results. In the total set of genes with FPKM > 5, we

detected >80% of all coding variants (Figure 4), suggesting

that less than 20% of all coding variation will escape detec-
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tion and only part of it might be attributable to monoal-

lelic expression.

Despite the limitations of calling genomic variants from

RNA-seq data, our work demonstrates the feasibility of SNP

calling from RNA-seq data with high precision and sensi-

tivity. The framework described in this work will not

replace WGS or WES approaches but rather presents a

viable alternative to these two approaches in cases where

neither of them is available nor cost effective. Our

approach might complement whole-exome variant calling

and be used to validate SNPs that were discovered by either

WGS or WES. Therefore, it presents a powerful tool that

will empower the exploration of SNPs at the genomic level

from RNA-seq data alone.

Supplemental Data

Supplemental Data include eight figures and three tables and can

be found with this article online at http://www.cell.com/AJHG.
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