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Mutations in AGBL1 Cause
Dominant Late-Onset Fuchs Corneal Dystrophy
and Alter Protein-Protein Interaction with TCF4

S. Amer Riazuddin,1 Shivakumar Vasanth,2 Nicholas Katsanis,2 and John D. Gottsch1,*

Fuchs corneal dystrophy (FCD) is a hereditary dystrophy of the corneal endothelium and is responsible for majority of the corneal

transplantation performed in the United States. Here, we describe three generations of a family with 12 individuals affected by late-onset

FCD and in which three individuals are unaffected. Genome-wide mapping provided suggestive linkage at two loci on chromosomal

arms 3p and 15q. Alleles at either locus alone were not sufficient to explain FCD; however, considered together, both loci could explain

the disorder in this pedigree. Subsequent next-generation sequencing identified a nonsense mutation in AGBL1 in the 15q locus; this

mutation would result in a premature termination of AGBL1. Consistent with a causal role for this transcript, further sequencing of

our cohort of late-onset-FCD-affected individuals identified two cases harboring the same nonsense mutation and a further three

unrelated individuals bearing a secondmissense allele. AGBL1 encodes a glutamate decarboxylase previously identified in serial analysis

of gene expression of corneal endothelium, a finding confirmed by immunohistochemical staining. Wild-type AGBL1 localizes predom-

inantly to the cytoplasm; in sharp contrast, the truncated protein showed distinct nuclear localization. Finally, we show that AGBL1

interacts biochemically with the FCD-associated protein TCF4 and that the mutations found in our cohort of FCD individuals diminish

this interaction. Taken together, our data identify a locus for FCD, extend the complex genetic architecture of the disorder, provide direct

evidence for the involvement of TCF4 in FCD pathogenesis, and begin to explain how causal FCDmutations affect discrete biochemical

complexes.
Fuchs corneal dystrophy (FCD) is the most common

genetic disorder of the corneal endothelium1–3 and

accounts for a significant fraction of the corneal transplan-

tations performed in the United States yearly.4,5 Clinically,

FCD is marked by thickening of Descemets membrane and

excrescences, called guttae, that appear typically in the

fourth or fifth decade.6,7 Disease progression results in

decreased visual acuity as a result of increasing corneal

edema, and end-stage disease is marked by painful epithe-

lial bullae.8

FCD is genetically heterogeneous. A rare early-onset

form of an endothelial dystrophy with some of the clinical

features of FCD has been ascribed to mutations in COL8A2

(MIM 120252),9,10 whereas mutations in SLC4A11

(MIM 610206), TCF8 (MIM 189909), and LOXHD1 (MIM

613267) have been implicated in the pathogenesis of

the common form of late-onset FCD.9–15 Additionally,

researchers have used large pedigrees that exhibit

dominant inheritance with nonpenetrance and variable

expressivity to map four loci, FCD1, FCD2, FCD3, and

FCD4, on chromosomes 13, 18, 5, and 9, respec-

tively.13,16–18 Finally, rs613872, a common intronic SNP

at the TCF4 (MIM 602272) locus on chromosomal arm

18q has also been associated with late-onset FCD.19–21

However haplotype analyses have suggested that this

risk factor is most likely independent of FCD2,21 inti-

mating that multiple loci might account for the repli-

cated linkage and association signals on chromosomal

arm 18q.
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As part of our ongoing effort to understand the genetic

and molecular pathomechanisms of FCD, we recruited a

large, three-generation family, DA (Figure 1). All partici-

pating individuals provided an informed written consent

prior to joining the study, which was approved by the

Johns Hopkins University School of Medicine Institutional

Review Board (IRB) and was performed in accordance with

the tenets of the Declaration of Helsinki. Overall, we were

able to recruit and examine through slit-lamp bio-

microscopy 16 individuals. Of these, we found 12 (nine fe-

males, three males) who fulfilled the phenotypic criteria

for an FCD diagnosis (12 or more central guttae in one or

in both eyes of individuals above 60 years of age). The clin-

ical characteristics of the affected individuals of family DA

present a nonuniform severity profile that typifies this dis-

order; some of those affected manifested a severe clinical

phenotype, whereas others presented a milder phenotype

(Table 1).

We first asked whether FCD in this family might be

linked to any of the four reported FCD loci and/or whether

affected family members might harbor mutations in

the three genes causally associated with late-onset FCD.

Therefore, we genotyped all available individuals with

STR (short tandem repeat) microsatellite markers that

span the critical intervals of FCD1–FCD4; both haplotype

and linkage analyses ruled out these four loci (data

not shown). Next, we sequenced all the coding exons

along with the exon-intron boundaries of SLC4A11,

TCF8, and LOXHD1; we did not find any causal variants
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Figure 1. Family DA Cyrillic Pedigrees Showing Haplotype, Alleles of Chromosomal Arm 3p and 15q STR Markers, and the Presence
of the c.3082C>T Variant Identified in AGBL1
(A) Alleles forming haplotypes at chromosomal arm 3p.
(B) Alleles forming haplotypes at chromosomal arm 15q.
Filled symbol: affected individual. Diagonal line through a symbol: deceased individual. Black bars: alleles forming the disease-bearing
haplotype. Note: A dot represents an individual who possesses less than 12 central guttae in one or both eyes and who therefore cannot
be graded ‘‘1’’ on the Krachmer scale.
(data not shown). Taken together, these data are suggestive

of a hitherto unknown gene or locus as the driver for FCD

in this family.

To map such a locus, we performed a genome-wide two-

point linkage analysis under an autosomal-dominant

model with a disease allele frequency of 0.04. Initial ana-

lyses failed to detect any loci with significant LOD scores.

We therefore took into consideration the nonuniform

severity profile of family DA and reasoned that FCD in

this family might be heterogeneous and that multiple

causal alleles might be responsible for the disease pheno-

type, a phenomenon we have observed previously in our

linkage and positional cloning studies of this disorder.13

Thus, we recomputed linkage under a multi-locus model

under the following conditions: (1) all individuals with

FCD at a severity of >3.0 bilaterally on the Krachmer scale
The Americ
must harbor alleles at each locus; (2) individuals with FCD

at a Krachmer grade % 3.0 might harbor alleles at each

locus; and (3) individuals whose parents both exhibit

symptoms of FCD might not harbor alleles at any loci

(the assumption was that these individuals manifest FCD

as a result of a causal allele received from the parent

marrying into the family DA). Even under these condi-

tions, we did not find significant linkage; however, we

did note two loci on chromosomal arms 3p and 15q; these

were the only appreciable positive signals in the genome-

wide scan.

To explore this finding further, we performed next-gen-

eration sequencing to pair-end sequence the exome of

two affected individuals and one unaffected individual of

family DA at the Cincinnati Children’s Hospital and Med-

ical Center (CCHMC) core facility. Genomic DNAs were
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Table 1. Clinical Characteristics of the Affected Individuals of
Family DA

ID Age (Years) Sex

Severity

AGBL1 MutationOD OS

I:1 89 F PK PK c.3082C>T

II:1 71 M 3.5 1.5 wild-type

II:2 70 F 1.0 1.0 wild-type

II:3 69 F 2.0 2.0 c.3082C>T

II:4 65 M Trace - wild-type

II:6 69 F 5 5 c.3082C>T

II:8 64 F 1.5 1.5 c.3082C>T

II:10 59 M 2.5 3.0 c.3082C>T

II:11 57 F 1.5 2.0 c.3082C>T

II:12 55 F 3.5 3.5 c.3082C>T

III:1 47 F Trace 1.0 wild-type

III:2 35 F 2.5 2.0 c.3082C>T

III:4 39 M 1.0 1.25 wild-type

OD: oculus dexter (right eye). OS: oculus sinister (left eye). PK: penetrating ker-
atoplasty. F: female. M: male. Penetrating keratoplasty was performed on each
eye separately, and only once had the severity of disease reached 6 on the
modified scale proposed by Krachmer and colleagues.6 Note: Individual II:6
has undergone penetrating keratoplasty since the first examination.
captured with the Agilent SureSelect Human All Exon kit

according to the manufacturer’s instructions (Agilent).

Subsequent to capture and enrichment, the paired-end

library was sequenced on the Illumina HiSeq2000 Genome

Analyzer (Illumina). Multiplexing of three samples per

lane on a HiSeq 2000 Genome Analyzer generated >108

paired-end reads per lane. We determined that 75% of

reads for each sample aligned to the reference sequence

and passed quality-control filters, which was sufficient

to generate on average 503 coverage for the exome,

including both potential critical intervals.

The raw data were aligned to the UCSC Hg19 reference

sequence by ELAND and mapped to the UCSC Hg19

reference sequence by SeqMate; SNP and INDEL (inser-

tion/deletion) calls for each sample were made according

to the GATK recommendations. The whole-exome data

consisted on average of ~30,000 single-base changes

and ~1,500 insertion/ deletions (indels). We examined

these data by passing them through our filtering pipe-

line. First, we removed all the variants that were not pre-

sent in either linkage interval. Subsequently, we removed

all the alleles that were homozygous for the reference

allele in the affected individuals. Next, we removed all

variants that were heterozygous or homozygous for

the alternative (nonreference) allele in the unaffected

individual. Finally, we excluded all SNPs with a minor-

allele frequency (MAF) > 2% in one or both affected

individuals. We termed the resulting set of alleles as

potential casual variants and confirmed them by dideoxy

sequencing.
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We identified four potential causal variants residing in

the chromosome 3 region; however, none of them passed

the criterion of FCD causality, suggesting (1) that this locus

is an artifact and/or false-positive signal due to a miscall of

alleles, (2) that the causal driver in that region does not

fulfill our genetic filtering criteria, or (3) that the allele

on chromosome 3 was not covered by the exome capture.

In contrast, we found a C-to-T transition, c.3082C>T

(Figure S1A) in ATP/GTP binding protein-like 1 (AGBL1;

RefSeq accession number NM_152336.2), a metallocar-

boxypeptidase that mediates deglutamylation of target

proteins residing with the putative critical interval on

chromosome 15. The variant results in a premature stop

codon at position 1028: p.Arg1028*. Subsequent dideoxy

sequencing in the entire sibship showed that this allele

segregated with an FCD haplotype in family DA (Figure 1)

under the multi-locus model. Subsequently, we evaluated

384 ethnically matched controls (768 chromosomes) that

had been examined thoroughly to exclude anterior

segment anomalies and searched the NHLBI exome variant

server database for the presence of the c.3082C>T variant.

We did find this variant in two control subjects and in the

NHLBI exome variant server database; however, the MAFs

of 0.0026 and 0.0035 observed in control subjects and in

the Northern European (Caucasian American) population,

respectively, is considerably below the >4% prevalence of

late-onset FCD in the US population.

To evaluate the candidacy of AGBL1 further, we

sequenced our entire FCD cohort of simplex and familial

cases irrespective of known mutational burden. We identi-

fied two unrelated FCD-affected individuals who harbor

the same nonsense mutation as the one found in family

DA. In addition, we found a heterozygous missense

variant, c.2969G>C (Figure S1B) that results in noncon-

served amino acid substitution (p.Cys990Ser). The Cys at

position 990 is completely conserved in all recognizable

AGBL1 orthologs of the 32 species reported in the UCSC

genome browser (Figure S2). This allele was absent from

384 ethnically matched controls but present in NHLBI

exome variant server at a low MAF of 0.0025 in the Euro-

pean American population.

We noted that AGBL1 was identified previously in serial

analysis of gene expression (SAGE) of human corneal

endothelium (HCE).22 To provide biological verification

of that observation, we extracted HCE from postmortem

eyes. We purified total RNA with Trizol (Invitrogen), and

we synthesized cDNA (Invitrogen) with polydT specific

primers. We then used custom Taqman probes to perform

quantitative RT-PCR in triplicatewith an Applied Bio-

systems 7900HT system. Results were analyzed with

sequence-detection software (Applied Biosystems). We

recorded the mean threshold cycle (CT) value for each

target (AGBL1) and endogenous reference (b-actin); this

value represents the PCR cycle at which the ABI 7900HT

detection system first detects a noticeable increase in

reporter florescence above the baseline signal. We were

able to detect expression of AGBL1 in HCE at low levels
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Figure 2. Immunohistochemical Analyses of AGBL1 in 10 mm Cryosections of Human Cornea from a Patient Who Had Undergone
Corneal Transplantation
For examination of AGBL1 expression in corneal endothelium, cornea sections were stained with (A) DAPI and (B) AGBL1 antibody,
whereas control slides were stained only with (E) DAPI and (F) the secondary antibody. (C and G) Merged view of images shown in
(A) and (B) and in (D) and (E), respectively. (D and H) Enlarged images of boxed areas in (C) and (G).
(data not shown), confirming the expression of AGBL1 in

corneal endothelial cells.

In parallel, we evaluated the presence of AGBL1 in a

human corneal section of a patient who had undergone

corneal transplantation. Corneal tissue was fixed with

formaldehyde and embedded in paraffin; 12-mm-thick sec-

tions were treated with rabbit polyclonal anti-ABGL1 anti-

body (Sigma-Aldrich) at 1:250 dilution for 4 hr at room

temperature or overnight at 4�C, then with anti-rabbit

IgG conjugated with AlexaFluor 594 at a 1:400 dilution

(Jackson Immuno Research). Slides were costained for

nuclei with DAPI (40, 6-diamidino-2-phenylindole) at a

1:10,000 dilution(Sigma-Aldrich). Control slides were

only stained with anti-rabbit IgG conjugated with Alexa-

Fluor 594 and DAPI. Sectioned images were captured

with a Zeiss-Axioskop2microscope (Carl Zeiss Microscopy)

and digitalized with ImagePro plus software, which

showed distinct staining in the corneal endothelium

(Figure 2).

Next, to examine the localization pattern of wild-type

and mutant AGBL1, we obtained a commercially available

AGBL1 cDNA (GeneCopoeia, Rockville MD) and cloned

into a 3X-Flag-tagged vector (3XFlag-pCMV10, Sigma) by

amplifying the wild-type cDNA and ligating with vector

by In-Fusion cloning (Clontech) as per the manufacturer’s

protocol. Both the missense and nonsense mutations were

constructed with the QuikChange II XL Site-Directed

Mutagenesis Kit (Agilent). NIH 3T3 cells were grown on

cover glass pretreated with poly-L-lysine and were trans-

fected with 1.5 mg of wild-type and mutant AGBL1 Flag-

tagged constructs and Lipofectamine 2000 (Invitrogen).

Cells were fixed 24 hr after transfection in 4% PFA, permea-
The Americ
bilized, and blocked in 0.1% Triton X-100 and 1% BSA in

PBS. Cells were incubated with primary and secondary

antibodies at room temperature for 1 hr in blocking buffer,

treated with DAPI, and mounted with VectaShield (Vector

Laboratories) mountingmedium. As shown in Figure 3 and

Figure S3, the wild-type and the missense mutant localized

to the cytoplasm. In sharp contrast, the mutant protein

lacking 38 amino acids from the C terminus localized pre-

dominantly to the nucleus (p ¼ 0.0001).

Taken together, our data indicate that mutations in

AGBL1 are causal to late-onset FCD and account for

approximately 1%–2% of the genetic burden of the disor-

der. This contribution is similar to that of LOXHD1,

SLC4A11, and TCF8 mutations. To interrogate the biolog-

ical significance of these findings, we asked whether

AGBL1 might participate in the same biological processes

as other genes previously implicated in the pathogenesis

of FCD, including the associated locus TFC4. LOXHD1

and SLC4A11 are both plasma membrane proteins; how-

ever, being a transcription factor, TCF8 is found primarily

in the nucleus. We therefore decided to examine the possi-

bility that AGBL1 can interact biochemically with TCF8

(especially because one of the AGBL1 mutants is found

abundantly in the nucleus). We also included TCF4,

another transcription factor, because rs613872 has been

associated with late-onset FCD.

HEK293 cells were transfected with Flag-AGBL1 and

tested for its interaction with either Myc-TCF4 or Myc-

TCF8. Two days after transfection, cells were lysed in a

Triton lysis buffer with protease inhibitor cocktail and

centrifuged at 13,000 g for 30 s. Lysates were then immu-

noprecipitated with anti-Flag-M2-antibody-conjugated
an Journal of Human Genetics 93, 758–764, October 3, 2013 761



Figure 3. The AGBL1 Nonsense Variant Is Enriched in the
Nucleus
NIH 3T3 cells were transfected with plasmids encoding Flag-
tagged wild-type AGBL1 and with the two mutants, p.Cys990Ser
and p.Arg1028*. Cells were stained with anti-Flag antibody (A,
D, G) and DAPI (B, E and H) and co-localization was visualized
by merging the two images (C, F, and I).

Figure 4. AGBL1 Interacts with a Previously Identified Fuchs
Locus, TCF4
(A) HEK293 cells were transfected with Flag-AGBL1 and tested for
its interaction with either Myc-TCF4 or Myc-TCF8, as shown.
Immunoprecipitated lysates suggested that AGBL1 specifically in-
teracts with TCF4 and not with TCF8.
(B) HEK293 cells were cotransfected with TCF4 and AGBL1 wild-
type construct and two variants. The two AGBL1 mutants,
p.Cys990Ser and pArg1028*, interact with TCF4; however, the
amount of immunoprecipitated protein is diminished signifi-
cantly in comparison to wild-type AGBL1, despite the higher pro-
tein amounts of mutant AGBL1.
Note: The asterisk in panels (A) and (B) indicates the heavy chain
of IgG antibody that was used for immunoprecipitation.
agarose beads (Sigma), or normal mouse IgG (Santa Cruz)

bound to Protein-G agarose (Santa Cruz) overnight at

4�C. Lysates were thenwashed three times with Triton lysis

buffer. Immunoprecipitated lysates probed with anti-Myc

antibody suggested that AGBL1 interacts specifically with

TCF4, but not with TCF8 (Figure 4A).

The nonsense mutation in our three FCD cases is pre-

dicted to abolish the terminal 38 amino acids, whereas

the missense allele was found to be a conserved residue

in the other three independent FCD cases. Given the

observed interaction with TCF4, we wondered whether

these two variations in AGBL1 might perturb that interac-

tion. Transfection with each of the two mutant forms of

AGBL1 and wild-type TCF4 showed that the introduction

of the C-terminal deletion (p.Arg1028*) significantly in-

creases the abundance of AGBL1, whereas the p.Cys990Ser

variation diminished the relative abundance of AGBL1 in

comparison to the wild-type AGBL1 (Figure 4B). The differ-

ence in the relative protein levels of mutant AGBL1

strongly predicts altered stability of the mutant proteins

compared to the wild-type AGBL1. Furthermore, immuno-

precipitation of either of the two mutant alleles sig-

nificantly reduced binding affinity to TCF4 (Figure 4B),

suggesting that ablation of this interaction might

contribute to disease pathogenesis.

Here we have identified AGBL1 as a causal locus for late-

onset FCD. Similar to other genes previously implicated in

the pathogenesis of FCD, most notably TCF8,13 the famil-

ial inheritance pattern of AGBL1 is not purely Mendelian,
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as evidenced by the fact that three FCD in affected individ-

uals in our index pedigree had been contributed by

another locus (there was a possible signal on chromo-

some 3). This is not surprising, given the high frequency

of the disease in the adult population and the recent

documentation of both common and rare alleles, identi-

fied though a blend of association and targeted resequenc-

ing studies and affecting the causality and modification

of the phenotypic expressivity of the disorder in

FCD-affected individuals.13 Despite these complexities,

however, the study of large multigenerational pedigrees
3, 2013



remains important in the discovery of causal alleles in

FCD.13–15,18 Here, we add a glutamylase to the series of

proteins that drive the disorder. The glutamylase enzyme

(metallocarboxypeptidase) catalyzes the deglutamylation

of polyglutamate side chains generated by posttransla-

tional polyglutamylation in proteins.23 It has been shown

that controlling the length of the polyglutamate side

chains on tubulin is critical for neuronal survival and

that the lack of such control results in neurodegeneration

in mice.23

Importantly, the observed interaction between AGBL1

and TCF4 directly intimates the latter protein in the causal-

ity of FCD (prior evidence being exclusively based on

GWAS association) and provides a potential mechanism

for the observed AGBL1 mutations. We speculate that

TCF4 might be an enzymatic target for AGBL1. Although

this result will require experimental validation, it is

tempting to speculate that other targets of AGBL1 might

now become natural candidates for causing FCD as well,

whereas restoration of lost glutamylase activity and its

consequences might be an area of potential therapeutic-

target development.
Supplemental Data

Supplemental Data include three figures and can be found with

this article online at http://www.cell.com/AJHG/.
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