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Identification of Small Exonic CNV
from Whole-Exome Sequence Data
and Application to Autism Spectrum Disorder

Christopher S. Poultney,1,2 Arthur P. Goldberg,1,2,3 Elodie Drapeau,1,2 Yan Kou,1,4

Hala Harony-Nicolas,1,2 Yuji Kajiwara,1,2 Silvia De Rubeis,1,2 Simon Durand,1,2 Christine Stevens,5

Karola Rehnström,6,7 Aarno Palotie,5,6 Mark J. Daly,5,8 Avi Ma’ayan,4 Menachem Fromer,2,9

and Joseph D. Buxbaum1,2,3,9,10,*

Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease.

Most studies of CNV carried out to date have made use of chromosomemicroarray and have had a lower size limit for detection of about

30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare

exonic CNV in the size range of 1–30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both

transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can

be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n ¼ 811, mean per-target read

depth ¼ 161) and observed a significant increase in the burden of rare (MAF %1%) 1–30 kb CNV, 1–30 kb deletions, and 1–10 kb dele-

tions in ASD. CNV in the 1–30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and

pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary,

our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare

1–30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in develop-

mental delay syndromes.
Introduction

Copy number variation (CNV) has been identified as a

major determinant of genetic diversity and disease and

has been implicated in many neuropsychiatric disorders

including developmental delay syndromes.1–7 Most

studies examining CNV in human disease have used

chromosome microarray and have an effective lower reso-

lution of ca. 30 kilobases (kb); however, there is reason to

believe that CNV in the 1–30 kb range are important in

both human diversity and disease because CNV in this

range have been detected in whole-genome studies.8

There is evidence for a role for CNV in autism spectrum

disorder (ASD [MIM 209850]).2,6,7 ASD is characterized

by impairments in reciprocal social interaction and

communication and by the presence of restricted interests

and/or repetitive and stereotyped behaviors.9–11 ASD

affects ~1% of the population and is highly heritable,

and estimates from multiple studies have indicated that

there might be 1,000 genes or loci that contribute to

ASD.2,12–15 Rare, deleterious genetic variation at all scales

can contribute to ASD, from de novo, recessive, or X-linked

single nucleotide variation (SNV) to aneuploidy.16 Rare
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CNV, both inherited and de novo, has been repeatedly

implicated in ASD, but for practical reasons the primary

focus has been on CNV larger than 30 kb.2,7,17,18

Whole-exome sequencing (WES) has emerged as a cost-

effective and efficient means to identify rare genic SNV

contributing to risk for multiple disorders including

ASD.12–15 With the widespread use of WES, methods

have been developed to call CNV from WES data. XHMM

(exome-hidden Markov model) is a recent approach that

uses principal-component analysis to normalize exome

read depth and a hidden Markov model (HMM) to identify

exonic CNV from WES data.19 In the first report of

this method, XHMM calls were validated with two

approaches. First, transmission of CNV from parent to

child was used to show that median per-family transmis-

sion rates were at about 50% for all CNV with estimated

size >100 kb, with similar results for all CNV <100 kb.

Second, XHMM calls of CNV >100 kb in length were

compared with calls from chromosome microarray run

on the same samples. These results provided strong sup-

port for XHMM as a method for calling larger exonic

CNV and indicated that smaller CNV (encompassing as

few as three exons) could also be reliably called by
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XHMM. Although validation of smaller CNV calling by

XHMMwas not carried out to the same extent as for larger

CNV, smaller exonic CNV were quite common, with 82%

of CNV identified being <100 kb and the median size of

CNV being 18 kb in length. This indicates that effective

identification of exonic CNV in the 1–30 kb range could

be an important means to understand genetic risk in hu-

man disease.

In the current study, we further evaluated XHMM for the

reliable identification of rare exonic CNV from WES,

focusing exclusively on CNV with an estimated size of

1–30 kb in length. We used transmission data to set the

calling quality threshold and employed molecular valida-

tion in an independent data set to confirm that XHMM

can reliably call CNV in this size range. We applied

XHMM to an ancestry-matched sample of ASD cases and

controls and observed an increase in small CNV in ASD

cases. The CNV in cases disrupted genes coding for pro-

teins in the actin cytoskeleton network and genes involved

in autophagy, highlighting potential new pathways in ASD

risk. Our results indicated that XHMM is useful for identi-

fying small exonic CNV from whole-exome data and

implicated a previously unidentified pathway in ASD.
Material and Methods

Processing and Validation Pipeline Overview
Our processing pipeline (see Figure S1 available online) started

with WES. We then called CNV with XHMM, filtered the CNV,

and obtained burden statistics with PLINK. We subsequently per-

formed computational and molecular validation. We describe

these stages in detail below.

CNV Calling with XHMM
The study was approved by the appropriate institutional review

board of all participating institutions, and written informed con-

sent from all subjects was obtained. We analyzed two data sets.

The first data set was a set of 261 trios that we used solely for assess-

ing transmission of parental CNV. Our second data set, sequenced

on the same platform and at the same site as the trio samples, con-

sisted of 432 ASD cases of European ancestry and 379 ancestry-

matched controls, totaling 811 individuals.20 Exonic DNA was

captured with Agilent SureSelect Human All Exon v.2. Mean per-

target depth of coverage across all targets was 161, with 90% of

targets sequenced to an average of 173 or greater. Further details

on sample collection, ancestry, control matching, and lab proce-

dures can be found in Lim et al.20 After whole-exome sequencing,

the data were mapped to the hg19 human reference genome with

BWA21 and processed with Picard to mark duplicate reads, realign

around indels, and recalibrate quality scores.

We calculated read depth per target in the WES by using GATK

for each of the 189,979 targets in our exome capture. To call CNV,

we ran XHMM,19 which infers CNV from read depth calculated

from WES, by using the steps summarized in the online tutorial.

Additional GATK arguments were as follows: -dt BY_SAMPLE

-dcov 5000 --minBaseQuality 0 --minMappingQuality 20 --start

1 --stop 5000 --nBins 200 --includeRefNSites.

As described in detail previously,19 XHMM consists of two main

steps. In the first step, systematic noise is removed by transform-
608 The American Journal of Human Genetics 93, 607–619, October
ing the data into PCA space and removing the highest-variance

dimensions. Many of these dimensions show high correlation

with quantities such as GC content, mean sample read depth,

mean target read depth, platform, and batch, which are not related

to CNV; other dimensions do not correlate clearly with these sys-

tematic effects but are also not indicative of CNV. In the second

step, average read depths at each target are converted to Z scores

based on the distribution across samples. These Z scores are used

as input to a hidden Markov model that calculates, for each sam-

ple, the most likely series of states (diploid, deletion, duplication)

across all targets, which is finally output as a set of regions of dele-

tion or duplication (composed of contiguous targets) for each sam-

ple. As a result, XHMM is not dependent on a minimum-read

depth threshold, but only on sufficient dynamic range in read

depth signal to reflect changes in copy number (see the Fromer

et al.19 for a full discussion of XHMM’s handling of read depth).

XHMM accepts threshold arguments to remove outlier samples

and targets based on properties of the read depth distribution. The

values we used are shown in Table S1. Values were chosen to

include as many samples and targets as possible, excluding only

the extreme outliers, with the intention of finding as many

instances of potential CNV as possible and then applying more

stringent filters to the results. For the ASD data set, these parameter

settings removed 25 individuals from the data set, and removed

16,528 targets from the set of targets considered in step two of

the XHMM algorithm. With the values given, XHMM called

4,608 CNV in 770 individuals.

The genotyping stage of XHMM (scoring CNV called in one or

more samples across all samples) uses values from a parameter

file, and we used the default values (Table S2). CNV and samples

were then filtered on six attributes: XHMM quality score (SQ)

R65, exons spanned R3, estimated CNV length R1 kb, minor

allele frequency (MAF) <1%, per sample CNV count >0 CNV

and %55 CNV, and per sample total CNV %18 Mb. The SQ

threshold was set on the basis of a transmission analysis of CNV

called by XHMM on the set of 261 trios, which, like the ASD

case-control data set, were sequenced at the Broad Institute with

identical approaches. These analyses showed a stable median

transmission rate per trio of 50% for CNV in 1–30 kb at SQ thresh-

olds from 55–85 (Figure 1). Given this, as well as the prior work of

Fromer et al. 19 (which used a threshold of 60), and similar studies

in additional data sets (M.F., unpublished data), we set a conserva-

tive threshold of 65; note that evidence for excess small CNV in

ASD was robust to various thresholds, as described below. All

filtering was performed with PLINK.22 After applying the above

filters, we retained 1,386 CNV (803 case, 583 control) in 559

samples (299 cases, 260 controls) in the ASD data set. This set of

CNV constitutes our set of high-confidence CNV calls and is the

base set on which all later stratification was performed. These

CNV calls are publicly available as dbVar nstd86.

Because a goal was to probe the lower range (%30 kb) of CNV in

ASD and to also do some comparisons across ranges of these small

CNV, we stratified our high-confidence set by size (1–10 kb and

10–30 kb). This yielded subsets by type and by size for further anal-

ysis. Size and type stratification was performed with PLINK.
Burden Analysis
For the ASD sample, we used burden analysis as implemented in

PLINK22 to evaluate sets for increased burden in cases. PLINK

burden analysis was performed by permutation, generating p

values for a one-sided comparison of case versus controls. Our
3, 2013
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Figure 1. Transmission Analysis
Transmission rate of CNV from parents to child is shown as a function of XHMM quality score threshold (SQ) for CNV of size 1–30 kb
(left), 1–10 kb (center), and 10–30 kb (right). At each SQ threshold, transmission was calculated and aggregated per family. The red
line indicates the median per-family transmission rate at each threshold, with gray bars indicating the interquartile range at each
threshold. A minor allele frequency (MAF) filter of 5% was applied to the entire set of CNV before size stratification and
transmission analysis.
analyses were confined to the three PLINK tests that have been

used previously in ASD:2,7 RATE, which reflects the number of

CNV per sample; PROP, reflecting the proportion of samples

with one or more CNV; and GRATE, reflecting the average number

of genes spanned by CNV per sample.

We computed burden analysis by using the --cnv-indiv-perm

and --mperm 10000 options, with the --cnv-count option and a

list of genes with corresponding hg19 coordinates to enable per-

gene tests. The hg19 gene coordinate list was produced by down-

loading the RefSeq genes track from the UCSC Table Browser23 and

then removing most duplicate entries by (1) collapsing multiple

entries with identical gene names and transcription start and

end positions and (2) merging entries with identical gene names

and overlapping transcription start and end positions. This pro-

duced a list of 24,527 genes (23,642 unique). Per-segment enrich-

ment was calculated with the --mperm 50000 option; per-gene

enrichment was calculated with the --cnv-intersect, --cnv-test-

region, and --mperm 10000 options.
Computational Validation
We performed several types of computational validation of our

results in ASD to confirm XHMM quality score cutoffs, assess the

stability of our findings, and reduce the effect of potential covari-

ates such as mean sample read depth.

We chose to further validate our SQ cutoff and investigate our

choice of MAF by assessing the sensitivity of our findings to SQ

and MAF cutoffs across a range of values. For each combination

of SQ and MAF value, we performed PLINK burden analysis on

the 1–30 kb deletion set and plotted the results of the three tests

(Figure S2). If our results were due to a particular combination of

cutoff values, we would expect to see a sharp change from one cut-

off value to another. Instead, values are reasonably stable, particu-

larly in the SQ range 55–70 for MAF from 0.5% to 2.0%.

It was important to ensure that our finding of burden in small

CNV in ASD was not an artifact of differences in mean read depth

caused by different sequencing platform and batch. In detailed
The Americ
exploratory analyses, we saw some borderline evidence that

mean sample read depth differed between cases and controls. In

order to minimize the influence of mean read depth, we created

three subsets of samples, each of similar read depth, based on

the distribution of read depth by batch. These sets were then

used as ‘‘clusters’’ by PLINK to specify that permutation should

only be performed within clusters while calculating empirical

p values. This was done by adding the --within argument when

assessing burden with --cnv-indiv-perm and the other arguments

specified in PLINK. The results (Figure S3) showed the same

enrichment pattern as burden tests performed without within-

cluster permutation (Figure 2). Hence, variation in read depth

captured in the clusters that we defined based on sequencing

batch did not seem to have appreciable effect on the burden in

1–10 or 1–30 kb deletions.

We chose a set of 66 1–30 kb deletions for molecular validation

by using real-time quantitative PCR (qPCR). All but 3 of the 66

examples of CNV were chosen from the set of singleton CNV in

the 1–30 kb range: Singleton CNV were a subset of the base 1%

MAF set that were chosen because events observed only once are

more likely to be false-positive events although at the same time,

if real, are more likely to be contributing to risk. Samples with

CNV were chosen to span a range of CNV length (1–30 kb), num-

ber of exons (3–19), and XHMM quality score (65–99). Universal

Probe Library (Roche) probe and primers sets were designed for

all target regions with ProbeFinder software (Roche), and qPCR

was performed on an ABI 7500 Real Time PCR instrument. Each

sample was analyzed in duplicate in a 10 ml volume (100 nM

UPL probe, 200 nM of each primer, 13 KAPA PROBE FAST Univer-

sal qPCRMasterMixwith ROX fromKAPA Biosystem, and 25 ng of

genomic DNA). Results were analyzed with the qBaseþ software

package (Biogazelle) with normalization of all assays to two con-

trol genes (COBL [MIM 610317] and SNCA [MIM 163890]). Each

sample was further compared to DNA from a control subject

without any known CNV. Finally, for each primer set, data were

normalized to give a value of 1 for the control subject, and the rela-

tive levels of DNA for the case DNAwere determined at each probe.
an Journal of Human Genetics 93, 607–619, October 3, 2013 609
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Figure 2. Enrichment of Small Deletions
in Autism
(A) Case/control comparisons for 1–30 kb
CNV (deletions and duplications) in the
top row, and 1–30 kb deletions in the bot-
tom row.
(B) Case/control comparisons for 1–10 kb
CNV (deletions and duplications) in the
top row, and 1–10 kb deletions in the bot-
tom row. Error bars represent SEM.
For the purposes of this study, we consider a CNV to be validated

with a CNV-directed probe showing 75% or less of control levels.

We also attempted to further validate seven CNVand determine

precise start and end points by using PCR followed by Sanger

sequencing. In two of the seven cases, we could not localize the

deletion breakpoints. This is not surprising given the nature of

CNV called from WES: breakpoints will be located in intronic or

intragenic regions upstream and downstream of the called CNV

extent and might be located as far away as the next upstream or

downstream target evaluated by XHMM. In addition, XHMM

only makes use of reliably called exons, which is dependent on

the existence of appropriate target capture probes, read depth,

and additional parameters. Breakpoint localization is therefore

difficult given this large possible range for breakpoint location,

combined with the limitation of amplicon size to 6 kb for optimal

speed and accuracy. For the other five deletions, genomic frag-

ments harboring expected deletions were amplified with Phusion

Hot Start High-Fidelity polymerase. Sanger sequencing of PCR-
610 The American Journal of Human Genetics 93, 607–619, October 3, 2013
amplified fragments was carried out at

Genewiz (South Plainfield). For MRPS15

(MIM 611979), amplification was carried

out with primers 50-accacagaggatgaga
gttgg-30 and 50-aggggtgggctatttaagga-30;
for RPGRIP1 (MIM 605446), with primers

50-agacgggaggccttgtctat-30 and 50-tttggc
tctgggaaatt-30; for DNAH5 (MIM 603335),

with primers 50-tcatggactactctaacaaaa
ctggt-30 and 50-ggaaaacattatggcagtctgaa-3;
for ATP8B3 (MIM 605866), 50-ggtggcacg
caactgtaat-30 and 50-gcctgcttgacggtttctta-
30; and for SULT1A2 (MIM 601292), 50-gag
cagcccctcctgtct-30 and 50-ctgggaaagtcgcct
cact-30.

Pathway and Network Analyses
We derived case and control gene lists

from genes overlapped by 1–30 kb dele-

tions. By using the filtering described

above, including the 1% MAF filter, this

produced case and control lists of 142

and 96 genes, respectively, with 21 genes

appearing in both lists. We also derived

gene lists from singleton CNV (by using

the same filtering steps as before, but re-

placing the 1% MAF filter with a filter to

retain only singleton CNV). This produced

case and control lists of 86 and 60 genes

respectively, with two genes in both lists

(nonoverlapping CNV can still hit the

same gene).
The case and control gene lists with MAF %1% were analyzed

with DAPPLE24 to build separate networks for each list and

compare connectivity within each list of encoded proteins. The

number of genes submitted, gene symbols recognized, genes in

the source protein-protein interaction (PPI) network InWeb,25

and genes sharing a common interactor (CI) in InWeb were 142,

123, 75, and 59 for case genes and 96, 83, 55, and 38 for control

genes. In terms of percents, 42% of case genes and 40% of control

genes were among the genes with CIs in InWeb. (A CI is an inter-

mediate gene with direct connections to two genes in the input

gene list; input genes that are in InWeb but that do not share com-

mon interactors cannot be connected to any other input gene via

only one intermediate gene.)

In addition to the DAPPLE network, a larger PPI network,

created from HPRD,26 MINT,27 BioGRID,28 IntAct,29 and

KEGG,30 was also made use of, allowing for a more detailed look

at intermediate proteins that connect the case genes and 115

gene products previously identified from genes showing de novo
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Figure 3. Molecular Validation of XHMM
Calls
Each panel shows ten examples of qPCR-
validated deletions in differing size ranges,
as indicated in the panel. Each deletion is
represented by a pair of bars representing
the dosage of DNA relative to control as
assayed by using qPCR for a probe placed
within the called deletion. The left bar
shows the result, normalized to 1.0, for
the control probe; the right bar shows the
normalized dosage for the probe in the
sample with the called deletion. Error
bars represent SEM. Note that the right-
most sample in the upper panel
(04C38268A, gene ATP8B3) is likely a ho-
mozygous deletion.
loss-of-function (LoF) mutations in ASD12–15. It is estimated

that about half of these genes will be true ASD genes.14 The case

(MAF % 1%) and de novo LoF genes were seeded into the PPI

network previously described.31 An ASD network was then ge-

nerated including direct interactions between seed genes and

interaction through adjacent intermediates that connect two

seed genes. Each intermediate node was given a p value from a

proportion test, which indicates the specificity of the intermediate

protein to the seed genes compared with all other interacting

partners in the background network. The network clustering was

implemented with the organic clustering method in yEd.
The American Journal of Human G
Finally, we used the gene-set enrichment

tool Enrichr32 to separately analyze case

and control gene lists for overlap with

pathway gene-set libraries (specifically,

with the Enrichr database PPI Hub Pro-

teins, which uses PPI from Genes2Net-

works33) and gene-set libraries created

from Gene Ontology.34 We considered a

pathway or ontology term enriched for a

gene list if the Benjamini-Hochberg cor-

rected p value was significant at p < 0.01

and if there were more than two overlap-

ping genes.

Results

Reliable Calling of Rare Small

CNV from Whole-Exome

Sequencing Data

We called rare, small (1–30 kb) exonic

CNV in two data sets for which DNA

had been subjected to whole-exome

sequencing (WES). Depth of read

coverage was calculated with the

genome analysis toolkit (GATK35),

and the average per-exon coverage

was used to call CNV with the eXome

Hidden Markov Model (XHMM19)

program. CNV called by XHMM

were then filtered with PLINK22 to
retain only CNV meeting quality, length, and MAF thresh-

olds, as well as per-sample CNV number and length thresh-

olds. The CNV quality threshold was determined on a

separate set of exomes obtained from trios, where we

observed a median 50% transmission per trio of CNV

from parents to the child (indicative of randomMendelian

transmission and hence reliable CNV calling) in both the

smaller (1–10 kb) and larger (10–30 kb) CNV bins. A con-

servative quality score of 65 was used in further analyses,

similar to the value of 60 used previously.19 Molecular
enetics 93, 607–619, October 3, 2013 611



Table 1. Validation Rate of Deletions as a Function of CNV Size

Size Range (kb) Tested # Validated % Validated

1–10 31 25 80.7

10–20 22 20 90.9

20–30 13 11 84.6

Total 66 56 84.9

Example CNV (n ¼ 66) were chosen from among all CNV to include CNV in
different size bins and quality scores. Sixty-three of the chosen CNV were
singleton. qPCR probes were designed within the predicted deleted region.
A CNV was considered validated if one internal probe showed a >25%
decrease in dosage as compared to a control sample without the CNV. Exam-
ples are shown in Figure 3.
validation (see below) in an independent sample provided

further evidence that XHMM was reliable for calling small

CNV from WES data.

Excess of Small Deletions in ASD

We called CNV in a sample consisting of 811 subjects,

including 432 individuals with ASD and 379 controls, all

matched for European ancestry by using available

genome-wide SNP data.20 After filtering, we retained 559

samples (299 cases, 260 controls) with 1,386 CNV events

(803 in cases and 583 in controls). When we compared

rare 1–30 kb exonic CNV in ASD cases as compared to

the ancestry matched controls, we observed enrichment

in cases for 1–30 kb and for the subset of 1–10 kb CNV,

as measured by CNV per sample and the correlated metric

of genes hit by CNV per sample (Figure 2). Permutation p

values correcting for mean sample read depth, sex,

sequencing batch, and sequencing platform confirmed

these significant findings (Figure S3).

The increased numbers of CNV in individuals with ASD

appeared to be primarily driven by enrichment for dele-

tions (Figure 2) because deletions, whether considering

the entire size range (1–30 kb) or just the bin of smallest

(1–10 kb) CNV, were enriched in individuals with ASD

when examining CNV per subject, genes hit by CNV per

subject, or fraction of subjects with CNV. The findings of

increased small deletions in ASD were observed across an

SQ range from 55 from 70 and a MAF range from 0.5%

to 2.0% (Figure S2). In fact, even singleton deletions

showed some enrichment for deletions in ASD even in

this significantly smaller subsample (Figure S4). In contrast

to the robust findings with deletions, we observed only

nonsignificant enrichment of duplications in cases versus

controls (Figure S5).

Subjects with ASD also demonstrated a greater likelihood

of having multiple small events (Figure S6). For example,

22 subjects with ASD (5.65%) had two or three small

exonic deletions in the 1–30 kb range, whereas only eight

controls (2.4%) did. Similarly, nine subjects with ASD

(2.3%) had two or three small exonic deletions in the

1–10 kb range, whereas only two controls (0.6%) did.

To further confirm the accuracy of XHMM for deletions

in the%30 kb range, we chose a set of 66 1–30 kb deletions
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for molecular validation by using PCR. All but three of the

66 CNV were chosen from singleton CNV in the 1–30 kb

range, a subset of CNV that should be most likely to be

false positive. In addition, we chose the CNV to span a

range of CNV length (1–30 kb), number of exons (3–19),

and XHMM quality score (65–99). For qPCR, for each pre-

dicted deletion, we chose two target segments predicted to

lie within the deletion extent. Validation rates averaged

85% (Figure 3; Table 1), with no evidence for better or

worse performance of XHMM in any of three size bins.

For five CNV that encompassed just 3 exons, we were

able to amplify the disrupted allele by PCR and sequence

the product. We observed agreement of XHMM calls

with the deletions identified by Sanger sequencing

(Figure 4).

For completeness, we also examined larger CNV size bins

of 30–100 kb and 100þ kb. There was no significant

increased burden in deletions or duplications in CNV in

these size bins.

Small CNV Implicates Dysregulation of Autophagy in

ASD

Given the small size of CNV studied here, most (68%) hit

only one gene, which, in contrast to larger CNV, makes

them easily suited for gene discovery. We carried out three

analyses of the genes disrupted by rare small CNV. First, we

constructed separate networks from genes hit by case and

control CNV by using DAPPLE.24 The case gene network

(Figure 5, left) showed significant enrichment for direct

connections between input genes (p ¼ 0.006) and mean

number of direct connections per input gene (p ¼ 0.002),

while the control gene network (Figure 5, right) was not

enriched for either (p ¼ 0.106, p ¼ 0.855, respectively).

This indicates that the genes disrupted by small CNV in

cases tend to cluster into pathways.

We next used Enrichr32 to look at enrichment with prior

gene sets, focusing on gene ontology (GO) categories. The

genes disrupted by deletions in cases were enriched for the

GOMolecular Function (MF) categories of structural mole-

cule activity (GO:0005198; Padj¼ 4.32E-04) and structural

constituent of cytoskeleton (GO:0005200; Padj ¼ 4.32E-

04). The disrupted genes overlapped for these two enriched

categories (ACTG1 [MIM 102560], MYH4 [MIM 160742],

VILL, MYOM2 [MIM 603509], RPL27 [MIM 607526],

RPL8 [MIM 604177], KRT6A [MIM 148041], KRT6B [MIM

148042], KRT5 [MIM 148040], KRT3 [MIM 148043], and

ACTB [MIM 102630] for GO:0005198, and VILL, ACTG1,

KRT6A, KRT6B, KRT5, and ACTB for GO:0005200). For

genes disrupted by deletions in controls, there were no

similarly significant enrichments, with the two most sig-

nificant findings observed in chloride channel activity

(GO:0005254 with genes CLCNKA [MIM 602024],

CLCNKB [MIM 602023], and BEST1 [MIM 607854]) and

the overlapping anion transmembrane transporter activity

category (GO:0008509, with genes CLCNKA, CLCNKB,

BEST1, and SLCO1B3 [MIM 605495]) (Padj ¼ 0.027 for

both).
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Figure 4. Breakpoint Determination via Sanger Sequencing
Each panel shows the results from Sanger sequencing of one of five validated deletions. In each panel, exons and transcripts are shown
on the top, followed by the extent of the called and validated deletions, and finally the sequence surrounding deletion start and end
points. Regions of surrounding sequence that differ from control are shown in red.
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genes and the network was significantly
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input genes (p ¼ 0.006) and mean number
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0.002). For control genes, there were four
connections between eight genes and the
network showed no enrichment for direct
connections between input genes (p ¼
0.106) or mean number of direct connec-
tions per input gene (p ¼ 0.855).
We also used Enrichr to determine whether there could

be enrichment for networks associated with specific PPI

Hub Proteins33 (Table 2; Figure 6). We observed very signif-

icant enrichment with five related PPI Hub Proteins. These

five proteins are mammalian orthologs to the yeast auto-

phagy gene Atg8 and include GABARAPL2 (MIM 607452;

Padj ¼ 4.88E-10), GABARAPL1 (MIM 607420; Padj ¼
1.19E-8), MAP1LC3A (MIM 601242; Padj ¼ 3.98E-5), GA-

BARAP (MIM 605125; Padj ¼ 3.98E-5), and MAP1LC3B

(MIM 609604; Padj ¼ 3.31E-3). Two actin related PPI

Hub Proteins, ACTB and ACTG1, also showed significant

finding in case genes with p values of 8.87E-05 and

0.00510, respectively. There were no significant findings

in the control gene lists (Padj > 0.5).

We also examined singleton CNV for enrichment in

these PPI Hub Proteins. There were two Hub Proteins

that showed significant findings with case singleton

CNV: GABARAPL2 (Padj ¼ 0.02, with genes RPL27, ATG7

[MIM 608760], RPL8, HBG1 [MIM 142200], CALCOCO2

[MIM 604587], and EPRS [MIM 138295]) and MAP3K14

(MIM 604655; Padj ¼ 0.02, with genes ACTG1, RPL8,

EPRS, and RPL27). There were no significant findings

with control singleton CNV. These results provide further
Table 2. Top PPI Hub Protein Enrichments for ASD CNV

PPI Hub Protein Overlap Adjusted p Value Genes

GABARAPL2 17/539 4.88E-10 RPS18, RPL27,
KRT6C, KRT6A

GABARAPL1 15/499 1.19E-08 RPS18, RPL27,
KRT6B, KRT5,

MAP3K14 7/166 8.35E-05 ACTG1, RPS18

MAP1LC3A 10/383 3.98E-05 PLOD1, EPRS,

GABARAP 11/479 3.98E-05 RPS18, RPL27,

ACTB 9/339 8.87E-05 ACTG1, TANC

PRKCE 6/193 0.00180 ACTG1, RPS18

ACTG1 6/246 0.00510 ACTG1, MYH4

MAP1LC3B 7/322 0.00331 TRAP1, ATG7,

For each PPI Hub Protein, the number of genes disrupted by CNV is shown as a f
protein. Adjusted p values and gene names are shown as well. All enrichment with
control genes (all p > 0.5).
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support for both autophagy and actin dynamics as poten-

tial ASD pathways.

Finally, to determine whether the current findings from

small CNV show relationship to recent whole-exome find-

ings of de novo loss-of-function (LoF) mutations,12–15,26

we examined the relationship of the CNV with these LoF

mutations by using the larger PPI network we assembled

(Figure 7). We observedmanymodules that included genes

identified both in the current study and in theWES studies

on de novo LoF genes in ASD. Of the genes hit by CNV in

Figure 7, 65%were the only gene hit by that CNV. Interest-

ingly, GABARAPL2 is a central node in a module (circled)

that includes CNV findings as identified here, as well as

de novo LoF findings from the prior WES studies in ASD

trios.
Discussion

There is now abundant evidence for a major role of CNV in

human disease.1–7 To date, such studies most commonly

focused on CNV that were>30 kb because of the presumed

limits of reliable calling of CNV from chromosome
ATG7, HNRNPA2B1, RPL8, HBG1, CALCOCO2, PLOD1, EPRS, TRAP1,
, KRT6B, KRT5, KRT3, GAPDH, ACTB

ATG7, HNRNPA2B1, RPL8, CALCOCO2, PLOD1, TRAP1, KRT6C, KRT6A,
KRT3, GAPDH, ACTB

, RPL8, EPRS, GAPDH, ACTB, RPL27

TRAP1, ATG7, HNRNPA2B1, RPL8, CALCOCO2, KRT5, GAPDH, ACTB

ATG7,HNRNPA2B1, RPL8, PLOD1, TRAP1, KRT6C, KRT5,GAPDH, ACTB

1, MYH4, RPS18, PARVB, HNRNPA2B1, DNASE1, GAPDH, ACTB

, HNRNPA2B1, GAPDH, ACTB, AKR1B1

, PARVB, DNASE1, GAPDH, ACTB

HNRNPA2B1, RPL8, KRT5, GAPDH, ACTB

raction of the total number of gene products known to associate with the hub
Padj < 0.05 are shown for case CNV. There was no equivalent enrichment with
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Figure 6. Interaction of Genes Hit by 1–30 kb Deletions in Cases
with Autophagy Genes
We made use of a carefully curated PPI network13 to explore the
autophagy pathway and its relation with genes hit by small dele-
tions in ASD subjects. Circular nodes represent genes hit by
CNV in ASD subjects. Green nodes participate in the autophagy
pathway according to the NCBI Gene Database and green rectan-
gular nodes are categorized as hub proteins in the pathway.32
microarray studies. With the widespread adoption of WES

in genetic studies, we asked whether exonic CNV smaller

than 30 kb could be reliably called. We made use of

XHMM, which had been developed and validated for a

broad range of CNV, and assessed how reliably it performed

for smaller CNV, focusing on rare CNV.

XHMM takes per-target read depth data, uses principle

component analysis to remove systematic batch effects

unrelated to underlying changes in copy number, and

then uses a hidden Markov model to remove noise and

identify regions of deletion or duplication. As previously

shown,19 XHMM converges to the expected rate of 50%

transmission of CNV from parents to children as the

quality cutoff is raised. We reproduced this result on an

independent data set for CNV in the 1–30 kb range.

This indicates that XHMM exhibits high specificity and

sensitivity at sufficiently high threshold, because inaccu-

rate or missed calls would manifest as Mendelian errors.

We have added evidence of specificity by demonstrating

a validation rate of 85% for 1–30 kb deletions by using

independent molecular methods. XHMM also exhibits

high sensitivity for calls of three or more exons when

compared to Birdsuite36 calls on Affymetrix arrays for

the same samples.19

We identified breakpoints for five small deletions called

by XHMM. In four cases, there were stretches of homolo-

gous sequences of 25 bp to 1.8 kb flanking the deletion,

which could havemediated nonallelic homologous recom-

bination.
The Americ
We observed an average of 0.49 small rare duplications

and 0.35 small rare deletions in affected individuals,

with 0.38 small rare duplications and 0.24 small rare

deletions in controls. Such CNV is genic and is

hence potentially associated with functional changes

in many cases. In addition, such CNV often disrupts

just one or two genes, such that the disruption that

contributes to a given phenotype can be more readily

interpreted.

There is extensive evidence for rare CNV in risk for

ASD,2,6,7 particularly for CNV>30 kb. Consistent with pre-

vious studies looking at larger CNV, we observed an

increased number of CNV in ASD cases as compared to

ancestry-matched controls. This was associated with an

increased number of genes disrupted by small rare CNV

in ASD. Looking at deletions and duplications separately,

rare, small, genic deletions were specifically associated

with ASD. The difference in proportion of individuals

with one or more 1–30 kb deletions (28% versus 21%, p

¼ 0.017) indicated that potentially disease-associated

1–30 kb exonic deletions could be present in up to 7% of

individuals with ASD.

While previous studies showed burden in larger

CNV (>100 kb or >500 kb), we did not reproduce those

results here. Given the low false-positive and false-negative

rates for XHMM discussed above, this likely reflects

an issue of sample size rather than caller reliability.

This is not unexpected given the premise that large

CNV have larger effect sizes, but are far less frequent due

to strong selective pressure. Previous studies showing

burden in larger CNV2,7 used samples of several thousand

individuals.

Previous studies have also shown that de novo CNV

show increased association with disease. Because this study

was carried out on case-control data, we could do no large-

scale assessment of de novo CNV on those data. When we

reanalyzed the independent trio data set by using the stan-

dard XHMM rules for determining transmission19 and

considering only CNV for which transmission could be

reliably determined, we observed that 6% of 1–30 kb dele-

tions and 5% of 1–30 kb duplications were de novo accord-

ing to PLINK/SEQ. In addition, for a small proportion of

the cases in our study, we had parental DNA available

and assessed de novo status by attempting to validate

case (child) CNV in the parents by using qPCR as described

earlier. Out of 27 CNV in trios where we had complete

DNA, 2 out of the 27 validated small exonic deletions

were de novo (7.4%). While these numbers are small, the

proportion that are de novo is consistent with the

in silico analyses.

The genes disrupted by deletions in ASD cases showed

significant connectivity and were enriched for the GO

Molecular Function categories of structural molecule activ-

ity (GO:0005198; Padj¼ 4.32E-04) and structural constitu-

ent of cytoskeleton (GO:0005200; Padj ¼ 4.32E-04). The

actin cytoskeleton plays a critical role in synaptic develop-

ment and plasticity.37 Dysregulation of this process in ASD
an Journal of Human Genetics 93, 607–619, October 3, 2013 615



Figure 7. Networks of ASD Genes Disrupted by Small CNV or De Novo Loss-of-Function Mutations
We made use of a carefully curated PPI network31 to explore the relationship of genes disrupted by small CNV (this study) or de novo
loss-of-function mutations12–15. All nodes were sized based on connectivity degree. Green nodes denote small CNV case genes, blue no-
des represent LoF genes, and the orange- to brown-color nodes are intermediate proteins where the shade is based on p value computed
by using a proportion test, with darker color indicating smaller p value.
is implicated by mutations in genes that directly or indi-

rectly modulate the synaptic cytoskeleton (e.g., SHANK3

[MIM 606230]38) and by alterations in gene expression of

actin-associated genes in postmortem ASD brain sam-

ples.39 Our finding of disruption of networks involving

the actin cytoskeleton by small CNV in ASD is consistent

with these prior findings.

Looking at PPI Hub Proteins to understand the pathways

that might be implicated by genes disrupted by deletions

in cases, we observed very significant enrichment with

five related PPI Hub Proteins (GABARAP, GABARAPL1,
616 The American Journal of Human Genetics 93, 607–619, October
GABARAPL2, MAP1LC3A, and MAP1LC3B), which are all

mammalian orthologs to the yeast autophagy gene Atg8.

Autophagy is a process responsible for the lysosomal turn-

over of organelles and proteins.

The sample size for this study was too small to have com-

plete confidence in the pathways implicated by the ASD-

associated CNV; however, the findings are consistent

with some prior publications. In a very recent study of in-

dividuals with a deletion at 16q24.2, 14 individuals with

ASD and/or intellectual disability (ID) showed deletions

that overlap the coding region of MAP1LC3B.40 In
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addition, a recent study of CNV in ASD identified a CNV

disrupting GABARAPL1 in an individual with ASD.41 A

boy presenting with moderate ID, intractable epilepsy,

and dysmorphic features had a 2.3 Mb microdeletion of

17p13.2p13.1, which involved 17 genes, including

GABARAP.42 Knockdown of the zebrafish gabarap gene re-

sulted in a small head and micrognathism, indicating a

role for GABARAP in the phenotype of the individual.

Overlapping deletions disrupting GABARAP were observed

in additional individuals with ID.43 Finally, overexpression

of the Fragile X (MIM 300624)-associated gene FMR1

(MIM 309550) in mice appears to regulate levels of

GABARAPL2.44 These results, when taken together with

our findings, provide evidence for a role for the pathways

involving the related proteins GABARAP, GABARAPL1,

GABARAPL2, MAP1LC3A, and MAP1LC3B in some forms

of ASD.

Alterations in autophagy have been implicated in neuro-

degenerative disorders, including Huntington disease

(MIM 143100), Alzheimer disease (MIM 104300), Parkin-

son disease (MIM 168600), and Lewy body disease (MIM

127750);45 however, there are emerging data showing

important roles for autophagy in synaptic develop-

ment.46 Consistent with an important role in develop-

ment, it has recently been shown that GABARAPL1 (the

only member of the group studied) is robustly expressed

throughout brain and neuronal development.47

The protein products of ATG7 and CALCOCO2, both

autophagy genes and two of the genes disrupted by CNV

in ASD subjects, bind PPI hub proteins involved in auto-

phagy as do many of the genes disrupted by CNV in ASD

(Figure 5). More broadly, the PI3K/AKT/mTOR pathway

regulates autophagy, and many genes in this pathway

have been implicated in ASD and ID, including PTEN

(MIM 601728), TSC1 (MIM 605284), and TSC2 (MIM

191092).16 Although still speculative at this point, it might

be that one impact of dysregulation of the PI3K/AKT/

mTOR pathway is a deleterious change in neural develop-

ment due to defects in autophagy.

In summary, we found that XHMM19 can reliably call

rare (MAF % 1%) and small (1–30 kb, and three or more

exons) exonic CNV from WES data. This provides an

important tool in dissecting the genomic architecture of

disease. In addition, we found an enrichment of rare small

deletions in subjects with ASD (p ¼ 0.0037). Deletions

(1–30 kb) were found in 28% of cases but only 21% of

controls (p ¼ 0.017) indicating that small CNV could

contribute to risk in as much as 7% of individuals with

ASD. Because small CNV hit few genes (68% of the 208

small deletions hit only one gene) we were able to easily

perform network analysis on the genes hit. We found sig-

nificant enrichment of five related PPI hub proteins that

are mammalian orthologs to the yeast autophagy gene

Atg8: GABARAPL2, GABARAPL1, MAP1LC3A, GABARAP,

and MAP1LC3B. These findings indicate that small CNV

contribute to ASD risk and that disruption of autophagy

may be an important pathway in ASD.
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