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Identification of Small Exonic CNV
from Whole-Exome Sequence Data
and Application to Autism Spectrum Disorder

Christopher S. Poultney,!.2 Arthur P. Goldberg,!.23 Elodie Drapeau,’2 Yan Kou,!4

Hala Harony-Nicolas,'-? Yuji Kajiwara,!? Silvia De Rubeis,-? Simon Durand,!? Christine Stevens,>
Karola Rehnstrom,®” Aarno Palotie,>¢ Mark J. Daly,>® Avi Ma’ayan,* Menachem Fromer,2°

and Joseph D. Buxbaum!2.3,9,10,*

Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease.
Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about
30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare
exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both
transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can
be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read
depth = 161) and observed a significant increase in the burden of rare (MAF <1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb dele-
tions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and
pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary,
our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare
1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in develop-
mental delay syndromes.

Introduction

Copy number variation (CNV) has been identified as a
major determinant of genetic diversity and disease and
has been implicated in many neuropsychiatric disorders
including developmental delay syndromes.'”” Most
studies examining CNV in human disease have used
chromosome microarray and have an effective lower reso-
lution of ca. 30 kilobases (kb); however, there is reason to
believe that CNV in the 1-30 kb range are important in
both human diversity and disease because CNV in this
range have been detected in whole-genome studies.”
There is evidence for a role for CNV in autism spectrum
disorder (ASD [MIM 209850]).>%” ASD is characterized
by impairments in reciprocal social interaction and
communication and by the presence of restricted interests
and/or repetitive and stereotyped behaviors.”'" ASD
affects ~1% of the population and is highly heritable,
and estimates from multiple studies have indicated that
there might be 1,000 genes or loci that contribute to
ASD.”'?7'5 Rare, deleterious genetic variation at all scales
can contribute to ASD, from de novo, recessive, or X-linked
single nucleotide variation (SNV) to aneuploidy.'® Rare

CNV, both inherited and de novo, has been repeatedly
implicated in ASD, but for practical reasons the primary
focus has been on CNV larger than 30 kb.>”*7/'8
Whole-exome sequencing (WES) has emerged as a cost-
effective and efficient means to identify rare genic SNV
contributing to risk for multiple disorders including
ASD.'*"> With the widespread use of WES, methods
have been developed to call CNV from WES data. XHMM
(exome-hidden Markov model) is a recent approach that
uses principal-component analysis to normalize exome
read depth and a hidden Markov model (HMM) to identify
exonic CNV from WES data.'” In the first report of
this method, XHMM calls were validated with two
approaches. First, transmission of CNV from parent to
child was used to show that median per-family transmis-
sion rates were at about 50% for all CNV with estimated
size >100 kb, with similar results for all CNV <100 kb.
Second, XHMM calls of CNV >100 kb in length were
compared with calls from chromosome microarray run
on the same samples. These results provided strong sup-
port for XHMM as a method for calling larger exonic
CNV and indicated that smaller CNV (encompassing as
few as three exons) could also be reliably called by
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XHMM. Although validation of smaller CNV calling by
XHMM was not carried out to the same extent as for larger
CNV, smaller exonic CNV were quite common, with 82%
of CNV identified being <100 kb and the median size of
CNV being 18 kb in length. This indicates that effective
identification of exonic CNV in the 1-30 kb range could
be an important means to understand genetic risk in hu-
man disease.

In the current study, we further evaluated XHMM for the
reliable identification of rare exonic CNV from WES,
focusing exclusively on CNV with an estimated size of
1-30 kb in length. We used transmission data to set the
calling quality threshold and employed molecular valida-
tion in an independent data set to confirm that XHMM
can reliably call CNV in this size range. We applied
XHMM to an ancestry-matched sample of ASD cases and
controls and observed an increase in small CNV in ASD
cases. The CNV in cases disrupted genes coding for pro-
teins in the actin cytoskeleton network and genes involved
in autophagy, highlighting potential new pathways in ASD
risk. Our results indicated that XHMM is useful for identi-
fying small exonic CNV from whole-exome data and
implicated a previously unidentified pathway in ASD.

Material and Methods

Processing and Validation Pipeline Overview

Our processing pipeline (see Figure S1 available online) started
with WES. We then called CNV with XHMM, filtered the CNV,
and obtained burden statistics with PLINK. We subsequently per-
formed computational and molecular validation. We describe
these stages in detail below.

CNV Calling with XHMM

The study was approved by the appropriate institutional review
board of all participating institutions, and written informed con-
sent from all subjects was obtained. We analyzed two data sets.
The first data set was a set of 261 trios that we used solely for assess-
ing transmission of parental CNV. Our second data set, sequenced
on the same platform and at the same site as the trio samples, con-
sisted of 432 ASD cases of European ancestry and 379 ancestry-
matched controls, totaling 811 individuals.”® Exonic DNA was
captured with Agilent SureSelect Human All Exon v.2. Mean per-
target depth of coverage across all targets was 161, with 90% of
targets sequenced to an average of 17x or greater. Further details
on sample collection, ancestry, control matching, and lab proce-
dures can be found in Lim et al.? After whole-exome sequencing,
the data were mapped to the hg19 human reference genome with
BWA?! and processed with Picard to mark duplicate reads, realign
around indels, and recalibrate quality scores.

We calculated read depth per target in the WES by using GATK
for each of the 189,979 targets in our exome capture. To call CNV,
we ran XHMM,'? which infers CNV from read depth calculated
from WES, by using the steps summarized in the online tutorial.
Additional GATK arguments were as follows: -dt BY_SAMPLE
-dcov 5000 --minBaseQuality O --minMappingQuality 20 --start
1 --stop 5000 --nBins 200 --includeRefNSites.

As described in detail previously,'” XHMM consists of two main
steps. In the first step, systematic noise is removed by transform-

ing the data into PCA space and removing the highest-variance
dimensions. Many of these dimensions show high correlation
with quantities such as GC content, mean sample read depth,
mean target read depth, platform, and batch, which are not related
to CNV; other dimensions do not correlate clearly with these sys-
tematic effects but are also not indicative of CNV. In the second
step, average read depths at each target are converted to Z scores
based on the distribution across samples. These Z scores are used
as input to a hidden Markov model that calculates, for each sam-
ple, the most likely series of states (diploid, deletion, duplication)
across all targets, which is finally output as a set of regions of dele-
tion or duplication (composed of contiguous targets) for each sam-
ple. As a result, XHMM is not dependent on a minimum-read
depth threshold, but only on sufficient dynamic range in read
depth signal to reflect changes in copy number (see the Fromer
et al."? for a full discussion of XHMM'’s handling of read depth).

XHMM accepts threshold arguments to remove outlier samples
and targets based on properties of the read depth distribution. The
values we used are shown in Table S1. Values were chosen to
include as many samples and targets as possible, excluding only
the extreme outliers, with the intention of finding as many
instances of potential CNV as possible and then applying more
stringent filters to the results. For the ASD data set, these parameter
settings removed 25 individuals from the data set, and removed
16,528 targets from the set of targets considered in step two of
the XHMM algorithm. With the values given, XHMM called
4,608 CNV in 770 individuals.

The genotyping stage of XHMM (scoring CNV called in one or
more samples across all samples) uses values from a parameter
file, and we used the default values (Table S2). CNV and samples
were then filtered on six attributes: XHMM quality score (SQ)
>65, exons spanned >3, estimated CNV length >1 kb, minor
allele frequency (MAF) <1%, per sample CNV count >0 CNV
and <55 CNV, and per sample total CNV <18 Mb. The SQ
threshold was set on the basis of a transmission analysis of CNV
called by XHMM on the set of 261 trios, which, like the ASD
case-control data set, were sequenced at the Broad Institute with
identical approaches. These analyses showed a stable median
transmission rate per trio of 50% for CNV in 1-30 kb at SQ thresh-
olds from 55-85 (Figure 1). Given this, as well as the prior work of
Fromer et al. '° (which used a threshold of 60), and similar studies
in additional data sets (M.E, unpublished data), we set a conserva-
tive threshold of 65; note that evidence for excess small CNV in
ASD was robust to various thresholds, as described below. All
filtering was performed with PLINK.*” After applying the above
filters, we retained 1,386 CNV (803 case, 583 control) in 559
samples (299 cases, 260 controls) in the ASD data set. This set of
CNV constitutes our set of high-confidence CNV calls and is the
base set on which all later stratification was performed. These
CNV calls are publicly available as dbVar nstd86.

Because a goal was to probe the lower range (<30 kb) of CNV in
ASD and to also do some comparisons across ranges of these small
CNV, we stratified our high-confidence set by size (1-10 kb and
10-30 kb). This yielded subsets by type and by size for further anal-
ysis. Size and type stratification was performed with PLINK.

Burden Analysis

For the ASD sample, we used burden analysis as implemented in
PLINK** to evaluate sets for increased burden in cases. PLINK
burden analysis was performed by permutation, generating p
values for a one-sided comparison of case versus controls. Our
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Figure 1. Transmission Analysis
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Transmission rate of CNV from parents to child is shown as a function of XHMM quality score threshold (SQ) for CNV of size 1-30 kb
(left), 1-10 kb (center), and 10-30 kb (right). At each SQ threshold, transmission was calculated and aggregated per family. The red
line indicates the median per-family transmission rate at each threshold, with gray bars indicating the interquartile range at each
threshold. A minor allele frequency (MAF) filter of 5% was applied to the entire set of CNV before size stratification and

transmission analysis.

analyses were confined to the three PLINK tests that have been
used previously in ASD:*” RATE, which reflects the number of
CNV per sample; PROP, reflecting the proportion of samples
with one or more CNV; and GRATE, reflecting the average number
of genes spanned by CNV per sample.

We computed burden analysis by using the --cnv-indiv-perm
and --mperm 10000 options, with the --cnv-count option and a
list of genes with corresponding hg19 coordinates to enable per-
gene tests. The hgl9 gene coordinate list was produced by down-
loading the RefSeq genes track from the UCSC Table Browser” and
then removing most duplicate entries by (1) collapsing multiple
entries with identical gene names and transcription start and
end positions and (2) merging entries with identical gene names
and overlapping transcription start and end positions. This pro-
duced a list of 24,527 genes (23,642 unique). Per-segment enrich-
ment was calculated with the --mperm 50000 option; per-gene
enrichment was calculated with the --cnv-intersect, --cnv-test-
region, and --mperm 10000 options.

Computational Validation

We performed several types of computational validation of our
results in ASD to confirm XHMM quality score cutoffs, assess the
stability of our findings, and reduce the effect of potential covari-
ates such as mean sample read depth.

We chose to further validate our SQ cutoff and investigate our
choice of MAF by assessing the sensitivity of our findings to SQ
and MAF cutoffs across a range of values. For each combination
of SQ and MAF value, we performed PLINK burden analysis on
the 1-30 kb deletion set and plotted the results of the three tests
(Figure S2). If our results were due to a particular combination of
cutoff values, we would expect to see a sharp change from one cut-
off value to another. Instead, values are reasonably stable, particu-
larly in the SQ range 55-70 for MAF from 0.5% to 2.0%.

It was important to ensure that our finding of burden in small
CNV in ASD was not an artifact of differences in mean read depth
caused by different sequencing platform and batch. In detailed

exploratory analyses, we saw some borderline evidence that
mean sample read depth differed between cases and controls. In
order to minimize the influence of mean read depth, we created
three subsets of samples, each of similar read depth, based on
the distribution of read depth by batch. These sets were then
used as “clusters” by PLINK to specify that permutation should
only be performed within clusters while calculating empirical
p values. This was done by adding the --within argument when
assessing burden with --cnv-indiv-perm and the other arguments
specified in PLINK. The results (Figure S3) showed the same
enrichment pattern as burden tests performed without within-
cluster permutation (Figure 2). Hence, variation in read depth
captured in the clusters that we defined based on sequencing
batch did not seem to have appreciable effect on the burden in
1-10 or 1-30 kb deletions.

We chose a set of 66 1-30 kb deletions for molecular validation
by using real-time quantitative PCR (qPCR). All but 3 of the 66
examples of CNV were chosen from the set of singleton CNV in
the 1-30 kb range: Singleton CNV were a subset of the base 1%
MAF set that were chosen because events observed only once are
more likely to be false-positive events although at the same time,
if real, are more likely to be contributing to risk. Samples with
CNV were chosen to span a range of CNV length (1-30 kb), num-
ber of exons (3-19), and XHMM quality score (65-99). Universal
Probe Library (Roche) probe and primers sets were designed for
all target regions with ProbeFinder software (Roche), and qPCR
was performed on an ABI 7500 Real Time PCR instrument. Each
sample was analyzed in duplicate in a 10 ul volume (100 nM
UPL probe, 200 nM of each primer, 1 x KAPA PROBE FAST Univer-
sal QPCR Master Mix with ROX from KAPA Biosystem, and 25 ng of
genomic DNA). Results were analyzed with the qBase™ software
package (Biogazelle) with normalization of all assays to two con-
trol genes (COBL [MIM 610317] and SNCA [MIM 163890]). Each
sample was further compared to DNA from a control subject
without any known CNV. Finally, for each primer set, data were
normalized to give a value of 1 for the control subject, and the rela-
tive levels of DNA for the case DNA were determined at each probe.
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For the purposes of this study, we consider a CNV to be validated
with a CNV-directed probe showing 75% or less of control levels.

We also attempted to further validate seven CNV and determine
precise start and end points by using PCR followed by Sanger
sequencing. In two of the seven cases, we could not localize the
deletion breakpoints. This is not surprising given the nature of
CNV called from WES: breakpoints will be located in intronic or
intragenic regions upstream and downstream of the called CNV
extent and might be located as far away as the next upstream or
downstream target evaluated by XHMM. In addition, XHMM
only makes use of reliably called exons, which is dependent on
the existence of appropriate target capture probes, read depth,
and additional parameters. Breakpoint localization is therefore
difficult given this large possible range for breakpoint location,
combined with the limitation of amplicon size to 6 kb for optimal
speed and accuracy. For the other five deletions, genomic frag-
ments harboring expected deletions were amplified with Phusion
Hot Start High-Fidelity polymerase. Sanger sequencing of PCR-

Figure 2. Enrichment of Small Deletions

in Autism

(A) Case/control comparisons for 1-30 kb
CNV (deletions and duplications) in the

p=0.19

top row, and 1-30 kb deletions in the bot-
tom row.

(B) Case/control comparisons for 1-10 kb
CNV (deletions and duplications) in the
top row, and 1-10 kb deletions in the bot-
tom row. Error bars represent SEM.

Controls Cases

p=0.017* amplified fragments was carried out at
Genewiz (South Plainfield). For MRPS15

(MIM 611979), amplification was carried

out with primers 5-accacagaggatgaga
gttgg-3’ and 5'-aggggtgggctatttaagga-3’;
for RPGRIP1 (MIM 605446), with primers
S'-agacgggaggccttgtctat-3'  and  5'-tttgge

Controls Cases tctgggaaatt-3'; for DNAHS (MIM 603335),
with  primers 5'-tcatggactactctaacaaaa
ctggt-3' and 5'-ggaaaacattatggcagtctgaa-3;

for ATP8B3 (MIM 605866), 5'-ggtggcacg

caactgtaat-3’ and 5’-gcctgcttgacggtttctta-
3'; and for SULT1A2 (MIM 601292), 5'-gag
cagccectectgtet-3' and  5'-ctgggaaagtcgect
cact-3'.

p=0.076

Pathway and Network Analyses
We derived case and control gene lists

from genes overlapped by 1-30 kb dele-
tions. By using the filtering described
above, including the 1% MATF filter, this

Controls Cases

produced case and control lists of 142
and 96 genes, respectively, with 21 genes
appearing in both lists. We also derived
gene lists from singleton CNV (by using

p=0.013*

the same filtering steps as before, but re-
placing the 1% MAF filter with a filter to
retain only singleton CNV). This produced

case and control lists of 86 and 60 genes
respectively, with two genes in both lists
(nonoverlapping CNV can still hit the
same gene).

The case and control gene lists with MAF <1% were analyzed
with DAPPLE** to build separate networks for each list and
compare connectivity within each list of encoded proteins. The
number of genes submitted, gene symbols recognized, genes in
the source protein-protein interaction (PPI) network InWeb,>®
and genes sharing a common interactor (CI) in InWeb were 142,
123, 75, and 59 for case genes and 96, 83, 55, and 38 for control
genes. In terms of percents, 42% of case genes and 40% of control
genes were among the genes with ClIs in InWeb. (A Cl is an inter-
mediate gene with direct connections to two genes in the input
gene list; input genes that are in InWeb but that do not share com-
mon interactors cannot be connected to any other input gene via
only one intermediate gene.)

In addition to the DAPPLE network, a larger PPI network,
created from HPRD,?° MINT,?” BioGRID,”® IntAct,”’ and
KEGG,*” was also made use of, allowing for a more detailed look
at intermediate proteins that connect the case genes and 115
gene products previously identified from genes showing de novo

Controls Cases
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Figure 3. Molecular Validation of XHMM
Calls

Each panel shows ten examples of qPCR-

RPGRIP1 validated deletions in differing size ranges,
ZNF44 as indicated in the panel. Each deletion is
FCARKIRSDL2 represented by a pair of bars representing
PLOD1 .

MRPS15 the dosage of DNA relative to control as
AMPD1 assayed by using qPCR for a probe placed
CRISPLD2 within the called deletion. The left bar
f"; 2,;’5; shows the result, normalized to 1.0, for

SPINT4,WFDC13

the control probe; the right bar shows the
normalized dosage for the probe in the
sample with the called deletion. Error
bars represent SEM. Note that the right-
most sample in the wupper panel
(04C38268A, gene ATP8B3) is likely a ho-
mozygous deletion.

BDP1 Finally, we used the gene-set enrichment
2‘35372 tool Enrichr®” to separately analyze case
RARS and control gene lists for overlap with
PTCHD3 pathway gene-set libraries (specifically,
oS with the Enrichr database PPI Hub Pro-
IFI35,RPL27 teins, which uses PPI from Genes2Net-
CEACAM6

works**) and gene-set libraries created
from Gene Ontology.** We considered a
pathway or ontology term enriched for a
gene list if the Benjamini-Hochberg cor-

S oS ©8 B3 7S B °E TS TS TS rected p value was significant at p < 0.01
5% 62 69 58 S8 5B 5% 58 62 61 and if there were more than two overlap-
O0F 02 OF Oy 0¥ 02 oz 02 oY 0Of .
Q ping genes.
o
- 20-30 kb, deletions Results
3 C210rf90, TSPEAR
[ C30rf62, MIR4271,USP4 Reliable Calling of Rare Small
3 mMCcMDC2
g == mios CNV from Whole-Exome
g 1o ]I.*% ] ’*%*%* i {*%*’ T | == crocc Sequencing Data
3 1 GPSM2 .
° — perFB134.DEFB1350EFB136  We called rare, small (1-30 kb) exonic
s T TRAPPCY CNV in two data sets for which DNA
= [ SLC28A1
2 ostH—8— - H—[H-11— e = ZNF589 had been subjected to whole-exome
= sequencing (WES). Depth of read
coverage was calculated with the
00 genome analysis toolkit (GATK>®),
P2 5% 3% 8% B% 8% B X B8 3% and the average per-exon coverage
£ €3 28 EN £ EY 2R Ex Eg E£9 .
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I 8 & £ I 887z 33 ; 19
¥ ¥ ®B 8 T ® S ¥ ®B % Hidden Markov Model (XHMM ")
o o o o o

loss-of-function (LoF) mutations in ASD'27'°. It is estimated
that about half of these genes will be true ASD genes.'* The case
(MAF < 1%) and de novo LoF genes were seeded into the PPI
network previously described.’’ An ASD network was then ge-
nerated including direct interactions between seed genes and
interaction through adjacent intermediates that connect two
seed genes. Each intermediate node was given a p value from a
proportion test, which indicates the specificity of the intermediate
protein to the seed genes compared with all other interacting
partners in the background network. The network clustering was
implemented with the organic clustering method in yEd.

program. CNV called by XHMM
were then filtered with PLINK?? to

retain only CNV meeting quality, length, and MAF thresh-
olds, as well as per-sample CNV number and length thresh-
olds. The CNV quality threshold was determined on a
separate set of exomes obtained from trios, where we
observed a median 50% transmission per trio of CNV
from parents to the child (indicative of random Mendelian
transmission and hence reliable CNV calling) in both the
smaller (1-10 kb) and larger (10-30 kb) CNV bins. A con-
servative quality score of 65 was used in further analyses,
similar to the value of 60 used previously.'” Molecular
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Table 1. Validation Rate of Deletions as a Function of CNV Size

Size Range (kb) Tested # Validated % Validated
1-10 31 25 80.7
10-20 22 20 90.9
20-30 13 11 84.6
Total 66 56 84.9

Example CNV (n = 66) were chosen from among all CNV to include CNV in
different size bins and quality scores. Sixty-three of the chosen CNV were
singleton. gPCR probes were designed within the predicted deleted region.
A CNV was considered validated if one internal probe showed a >25%
decrease in dosage as compared to a control sample without the CNV. Exam-
ples are shown in Figure 3.

validation (see below) in an independent sample provided
further evidence that XHMM was reliable for calling small
CNV from WES data.

Excess of Small Deletions in ASD

We called CNV in a sample consisting of 811 subjects,
including 432 individuals with ASD and 379 controls, all
matched for FEuropean ancestry by wusing available
genome-wide SNP data.?” After filtering, we retained 559
samples (299 cases, 260 controls) with 1,386 CNV events
(803 in cases and 583 in controls). When we compared
rare 1-30 kb exonic CNV in ASD cases as compared to
the ancestry matched controls, we observed enrichment
in cases for 1-30 kb and for the subset of 1-10 kb CNV,
as measured by CNV per sample and the correlated metric
of genes hit by CNV per sample (Figure 2). Permutation p
values correcting for mean sample read depth, sex,
sequencing batch, and sequencing platform confirmed
these significant findings (Figure S3).

The increased numbers of CNV in individuals with ASD
appeared to be primarily driven by enrichment for dele-
tions (Figure 2) because deletions, whether considering
the entire size range (1-30 kb) or just the bin of smallest
(1-10 kb) CNV, were enriched in individuals with ASD
when examining CNV per subject, genes hit by CNV per
subject, or fraction of subjects with CNV. The findings of
increased small deletions in ASD were observed across an
SQ range from 55 from 70 and a MAF range from 0.5%
to 2.0% (Figure S2). In fact, even singleton deletions
showed some enrichment for deletions in ASD even in
this significantly smaller subsample (Figure S4). In contrast
to the robust findings with deletions, we observed only
nonsignificant enrichment of duplications in cases versus
controls (Figure S5).

Subjects with ASD also demonstrated a greater likelihood
of having multiple small events (Figure S6). For example,
22 subjects with ASD (5.65%) had two or three small
exonic deletions in the 1-30 kb range, whereas only eight
controls (2.4%) did. Similarly, nine subjects with ASD
(2.3%) had two or three small exonic deletions in the
1-10 kb range, whereas only two controls (0.6%) did.

To further confirm the accuracy of XHMM for deletions
in the <30 kb range, we chose a set of 66 1-30 kb deletions

for molecular validation by using PCR. All but three of the
66 CNV were chosen from singleton CNV in the 1-30 kb
range, a subset of CNV that should be most likely to be
false positive. In addition, we chose the CNV to span a
range of CNV length (1-30 kb), number of exons (3-19),
and XHMM quality score (65-99). For qPCR, for each pre-
dicted deletion, we chose two target segments predicted to
lie within the deletion extent. Validation rates averaged
85% (Figure 3; Table 1), with no evidence for better or
worse performance of XHMM in any of three size bins.
For five CNV that encompassed just 3 exons, we were
able to amplify the disrupted allele by PCR and sequence
the product. We observed agreement of XHMM calls
with the deletions identified by Sanger sequencing
(Figure 4).

For completeness, we also examined larger CNV size bins
of 30-100 kb and 100+ kb. There was no significant
increased burden in deletions or duplications in CNV in
these size bins.

Small CNV Implicates Dysregulation of Autophagy in
ASD

Given the small size of CNV studied here, most (68%) hit
only one gene, which, in contrast to larger CNV, makes
them easily suited for gene discovery. We carried out three
analyses of the genes disrupted by rare small CNV. First, we
constructed separate networks from genes hit by case and
control CNV by using DAPPLE.?* The case gene network
(Figure 5, left) showed significant enrichment for direct
connections between input genes (p = 0.006) and mean
number of direct connections per input gene (p = 0.002),
while the control gene network (Figure 5, right) was not
enriched for either (p = 0.106, p = 0.855, respectively).
This indicates that the genes disrupted by small CNV in
cases tend to cluster into pathways.

We next used Enrichr’” to look at enrichment with prior
gene sets, focusing on gene ontology (GO) categories. The
genes disrupted by deletions in cases were enriched for the
GO Molecular Function (MF) categories of structural mole-
cule activity (GO:0005198; Padj = 4.32E-04) and structural
constituent of cytoskeleton (GO:0005200; Padj = 4.32E-
04). The disrupted genes overlapped for these two enriched
categories (ACTG1 [MIM 102560], MYH4 [MIM 160742],
VILL, MYOM2 [MIM 603509], RPL27 [MIM 607526],
RPL8 [MIM 604177], KRT6A [MIM 148041], KRT6B [MIM
148042], KRT5 [MIM 148040], KRT3 [MIM 148043], and
ACTB [MIM 102630] for GO:0005198, and VILL, ACTG]I,
KRT6A, KRT6B, KRTS, and ACTB for GO:0005200). For
genes disrupted by deletions in controls, there were no
similarly significant enrichments, with the two most sig-
nificant findings observed in chloride channel activity
(GO:0005254 with genes CLCNKA [MIM 602024],
CLCNKB [MIM 602023], and BEST1 [MIM 607854]) and
the overlapping anion transmembrane transporter activity
category (GO:0008509, with genes CLCNKA, CLCNKB,
BEST1, and SLCO1B3 [MIM 605495]) (Padj = 0.027 for
both).
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Figure 4. Breakpoint Determination via Sanger Sequencing

Each panel shows the results from Sanger sequencing of one of five validated deletions. In each panel, exons and transcripts are shown
on the top, followed by the extent of the called and validated deletions, and finally the sequence surrounding deletion start and end
points. Regions of surrounding sequence that differ from control are shown in red.
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We also used Enrichr to determine whether there could
be enrichment for networks associated with specific PPI
Hub Proteins®® (Table 2; Figure 6). We observed very signif-
icant enrichment with five related PPI Hub Proteins. These
five proteins are mammalian orthologs to the yeast auto-
phagy gene Atg8 and include GABARAPL2 (MIM 607452;
Padj = 4.88E-10), GABARAPL1 (MIM 607420; Padj =
1.19E-8), MAP1LC3A (MIM 601242; Padj = 3.98E-5), GA-
BARAP (MIM 605125; Padj = 3.98E-5), and MAP1LC3B
(MIM 609604; Padj = 3.31E-3). Two actin related PPI
Hub Proteins, ACTB and ACTG1, also showed significant
finding in case genes with p values of 8.87E-05 and
0.00510, respectively. There were no significant findings
in the control gene lists (Padj > 0.5).

We also examined singleton CNV for enrichment in
these PPI Hub Proteins. There were two Hub Proteins
that showed significant findings with case singleton
CNV: GABARAPL2 (Padj = 0.02, with genes RPL27, ATG7
[MIM 608760], RPL8, HBG1 [MIM 142200], CALCOCOZ2
[MIM 604587], and EPRS [MIM 138295]) and MAP3K14
(MIM 604655; Padj = 0.02, with genes ACTGI1, RPLS,
EPRS, and RPL27). There were no significant findings
with control singleton CNV. These results provide further

Control

Figure 5. DAPPLE Network Derived from
Genes Hit by 1-30 kb Deletions
The subnetwork of direct connections is
shown for genes disrupted in ASD cases
(left) or controls (right). For case genes,
there were 21 connections between 17
w-0r  g€nes and the network was significantly
ooz enriched for direct connections between
zzzs input genes (p = 0.006) and mean number
o of direct connections per input gene (p =
- 0.002). For control genes, there were four
04 connections between eight genes and the
ALPP ! network showed no enrichment for direct
connections between input genes (p =
0.106) or mean number of direct connec-
tions per input gene (p = 0.855).
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support for both autophagy and actin dynamics as poten-
tial ASD pathways.

Finally, to determine whether the current findings from
small CNV show relationship to recent whole-exome find-
ings of de novo loss-of-function (LoF) mutations,'?'*2°
we examined the relationship of the CNV with these LoF
mutations by using the larger PPI network we assembled
(Figure 7). We observed many modules that included genes
identified both in the current study and in the WES studies
on de novo LoF genes in ASD. Of the genes hit by CNV in
Figure 7, 65% were the only gene hit by that CNV. Interest-
ingly, GABARAPL2 is a central node in a module (circled)
that includes CNV findings as identified here, as well as
de novo LoF findings from the prior WES studies in ASD
trios.

Discussion

There is now abundant evidence for a major role of CNV in
human disease.'”” To date, such studies most commonly
focused on CNV that were >30 kb because of the presumed
limits of reliable calling of CNV from chromosome

Table 2. Top PPI Hub Protein Enrichments for ASD CNV

PPI1 Hub Protein Overlap Adjusted p Value Genes

GABARAPL2 17/539 4.88E-10 RPS18, RPL27, ATG7, HNRNPA2B1, RPL8, HBG1, CALCOCO2, PLOD1, EPRS, TRAPI,
KRT6C, KRT6A, KRT6B, KRTS, KRT3, GAPDH, ACTB

GABARAPL1 15/499 1.19E-08 RPS18, RPL27, ATG7, HNRNPA2B1, RPL8, CALCOCO2, PLOD1, TRAP1, KRT6C, KRT6A,
KRT6B, KRTS5, KRT3, GAPDH, ACTB

MAP3K14 7/166 8.35E-05 ACTGI1, RPS18, RPLS, EPRS, GAPDH, ACTB, RPL27

MAPILC3A 10/383 3.98E-05 PLODI1, EPRS, TRAP1, ATG7, HNRNPA2B1, RPL8, CALCOCO2, KRT5, GAPDH, ACTB

GABARAP 11/479 3.98E-05 RPS18,RPL27, ATG7, HNRNPA2B1, RPL8, PLOD1, TRAP1, KRT6C, KRTS5, GAPDH, ACTB

ACTB 9/339 8.87E-05 ACTG1, TANC1, MYH4, RPS18, PARVB, HNRNPA2B1, DNASE1, GAPDH, ACTB

PRKCE 6/193 0.00180 ACTG1, RPS18, HNRNPA2B1, GAPDH, ACTB, AKR1B1

ACTG1 6/246 0.00510 ACTG1, MYH4, PARVB, DNASE1, GAPDH, ACTB

MAP1LC3B 7/322 0.00331 TRAP1, ATG7, HNRNPA2B1, RPL8, KRTS, GAPDH, ACTB

For each PPl Hub Protein,

the number of genes disrupted by CNV is shown as a fraction of the total number of gene products known to associate with the hub

protein. Adjusted p values and gene names are shown as well. All enrichment with Padj < 0.05 are shown for case CNV. There was no equivalent enrichment with
control genes (all p > 0.5).
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Figure 6. Interaction of Genes Hit by 1-30 kb Deletions in Cases

with Autophagy Genes

We made use of a carefully curated PPI network'” to explore the
autophagy pathway and its relation with genes hit by small dele-
tions in ASD subjects. Circular nodes represent genes hit by
CNV in ASD subjects. Green nodes participate in the autophagy
pathway according to the NCBI Gene Database and green rectan-
gular nodes are categorized as hub proteins in the pathway.*?

microarray studies. With the widespread adoption of WES
in genetic studies, we asked whether exonic CNV smaller
than 30 kb could be reliably called. We made use of
XHMM, which had been developed and validated for a
broad range of CNV, and assessed how reliably it performed
for smaller CNV, focusing on rare CNV.

XHMM takes per-target read depth data, uses principle
component analysis to remove systematic batch effects
unrelated to underlying changes in copy number, and
then uses a hidden Markov model to remove noise and
identify regions of deletion or duplication. As previously
shown,'” XHMM converges to the expected rate of 50%
transmission of CNV from parents to children as the
quality cutoff is raised. We reproduced this result on an
independent data set for CNV in the 1-30 kb range.
This indicates that XHMM exhibits high specificity and
sensitivity at sufficiently high threshold, because inaccu-
rate or missed calls would manifest as Mendelian errors.
We have added evidence of specificity by demonstrating
a validation rate of 85% for 1-30 kb deletions by using
independent molecular methods. XHMM also exhibits
high sensitivity for calls of three or more exons when
compared to Birdsuite’® calls on Affymetrix arrays for
the same samples.'’

We identified breakpoints for five small deletions called
by XHMM. In four cases, there were stretches of homolo-
gous sequences of 25 bp to 1.8 kb flanking the deletion,
which could have mediated nonallelic homologous recom-
bination.

We observed an average of 0.49 small rare duplications
and 0.35 small rare deletions in affected individuals,
with 0.38 small rare duplications and 0.24 small rare
deletions in controls. Such CNV is genic and is
hence potentially associated with functional changes
in many cases. In addition, such CNV often disrupts
just one or two genes, such that the disruption that
contributes to a given phenotype can be more readily
interpreted.

There is extensive evidence for rare CNV in risk for
ASD,”“” particularly for CNV >30 kb. Consistent with pre-
vious studies looking at larger CNV, we observed an
increased number of CNV in ASD cases as compared to
ancestry-matched controls. This was associated with an
increased number of genes disrupted by small rare CNV
in ASD. Looking at deletions and duplications separately,
rare, small, genic deletions were specifically associated
with ASD. The difference in proportion of individuals
with one or more 1-30 kb deletions (28% versus 21%, p
= 0.017) indicated that potentially disease-associated
1-30 kb exonic deletions could be present in up to 7% of
individuals with ASD.

While previous studies showed burden in larger
CNV (>100 kb or >500 kb), we did not reproduce those
results here. Given the low false-positive and false-negative
rates for XHMM discussed above, this likely reflects
an issue of sample size rather than caller reliability.
This is not unexpected given the premise that large
CNV have larger effect sizes, but are far less frequent due
to strong selective pressure. Previous studies showing
burden in larger CNV*” used samples of several thousand
individuals.

Previous studies have also shown that de novo CNV
show increased association with disease. Because this study
was carried out on case-control data, we could do no large-
scale assessment of de novo CNV on those data. When we
reanalyzed the independent trio data set by using the stan-
dard XHMM rules for determining transmission'® and
considering only CNV for which transmission could be
reliably determined, we observed that 6% of 1-30 kb dele-
tions and 5% of 1-30 kb duplications were de novo accord-
ing to PLINK/SEQ. In addition, for a small proportion of
the cases in our study, we had parental DNA available
and assessed de novo status by attempting to validate
case (child) CNV in the parents by using qPCR as described
earlier. Out of 27 CNV in trios where we had complete
DNA, 2 out of the 27 validated small exonic deletions
were de novo (7.4%). While these numbers are small, the
proportion that are de novo is consistent with the
in silico analyses.

The genes disrupted by deletions in ASD cases showed
significant connectivity and were enriched for the GO
Molecular Function categories of structural molecule activ-
ity (GO:0005198; Padj = 4.32E-04) and structural constitu-
ent of cytoskeleton (GO:0005200; Padj = 4.32E-04). The
actin cytoskeleton plays a critical role in synaptic develop-
ment and plasticity.’” Dysregulation of this process in ASD
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Figure 7.

Networks of ASD Genes Disrupted by Small CNV or De Novo Loss-of-Function Mutations

We made use of a carefully curated PPI network”' to explore the relationship of genes disrupted by small CNV (this study) or de novo
loss-of-function mutations'>"'*. All nodes were sized based on connectivity degree. Green nodes denote small CNV case genes, blue no-
des represent LoF genes, and the orange- to brown-color nodes are intermediate proteins where the shade is based on p value computed

by using a proportion test, with darker color indicating smaller p value.

is implicated by mutations in genes that directly or indi-
rectly modulate the synaptic cytoskeleton (e.g., SHANK3
[MIM 606230]*%) and by alterations in gene expression of
actin-associated genes in postmortem ASD brain sam-
ples.*’ Our finding of disruption of networks involving
the actin cytoskeleton by small CNV in ASD is consistent
with these prior findings.

Looking at PPI Hub Proteins to understand the pathways
that might be implicated by genes disrupted by deletions
in cases, we observed very significant enrichment with
five related PPI Hub Proteins (GABARAP, GABARAPLI,

GABARAPL2, MAP1LC3A, and MAP1LC3B), which are all
mammalian orthologs to the yeast autophagy gene Afg8.
Autophagy is a process responsible for the lysosomal turn-
over of organelles and proteins.

The sample size for this study was too small to have com-
plete confidence in the pathways implicated by the ASD-
associated CNV; however, the findings are consistent
with some prior publications. In a very recent study of in-
dividuals with a deletion at 16q24.2, 14 individuals with
ASD and/or intellectual disability (ID) showed deletions
that overlap the coding region of MAPILC3B.*° In
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addition, a recent study of CNV in ASD identified a CNV
disrupting GABARAPL1 in an individual with ASD.*!' A
boy presenting with moderate ID, intractable epilepsy,
and dysmorphic features had a 2.3 Mb microdeletion of
17p13.2p13.1, which involved 17 genes, including
GABARAP.** Knockdown of the zebrafish gabarap gene re-
sulted in a small head and micrognathism, indicating a
role for GABARAP in the phenotype of the individual.
Overlapping deletions disrupting GABARAP were observed
in additional individuals with ID.*’ Finally, overexpression
of the Fragile X (MIM 300624)-associated gene FMRI
(MIM 309550) in mice appears to regulate levels of
GABARAPL2.** These results, when taken together with
our findings, provide evidence for a role for the pathways
involving the related proteins GABARAP, GABARAPLI,
GABARAPL2, MAP1LC3A, and MAP1LC3B in some forms
of ASD.

Alterations in autophagy have been implicated in neuro-
degenerative disorders, including Huntington disease
(MIM 143100), Alzheimer disease (MIM 104300), Parkin-
son disease (MIM 168600), and Lewy body disease (MIM
127750);*° however, there are emerging data showing
important roles for autophagy in synaptic develop-
ment.*® Consistent with an important role in develop-
ment, it has recently been shown that GABARAPL1 (the
only member of the group studied) is robustly expressed
throughout brain and neuronal development.*’

The protein products of ATG7 and CALCOCOZ2, both
autophagy genes and two of the genes disrupted by CNV
in ASD subjects, bind PPI hub proteins involved in auto-
phagy as do many of the genes disrupted by CNV in ASD
(Figure 5). More broadly, the PI3K/AKT/mTOR pathway
regulates autophagy, and many genes in this pathway
have been implicated in ASD and ID, including PTEN
MIM 601728), TSC1 (MIM 605284), and TSC2 (MIM
191092).'° Although still speculative at this point, it might
be that one impact of dysregulation of the PI3K/AKT/
mTOR pathway is a deleterious change in neural develop-
ment due to defects in autophagy.

In summary, we found that XHMM'? can reliably call
rare (MAF < 1%) and small (1-30 kb, and three or more
exons) exonic CNV from WES data. This provides an
important tool in dissecting the genomic architecture of
disease. In addition, we found an enrichment of rare small
deletions in subjects with ASD (p = 0.0037). Deletions
(1-30 kb) were found in 28% of cases but only 21% of
controls (p = 0.017) indicating that small CNV could
contribute to risk in as much as 7% of individuals with
ASD. Because small CNV hit few genes (68% of the 208
small deletions hit only one gene) we were able to easily
perform network analysis on the genes hit. We found sig-
nificant enrichment of five related PPI hub proteins that
are mammalian orthologs to the yeast autophagy gene
Atg8: GABARAPL2, GABARAPL1, MAP1LC3A, GABARAP,
and MAP1LC3B. These findings indicate that small CNV
contribute to ASD risk and that disruption of autophagy
may be an important pathway in ASD.
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Supplemental Data includes six figures and four tables and can be
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shtml

yEd, http://www.yworks.com/en/products_yed_about.html

Accession Numbers

The accession number for the copy number variants in the dbVar
database is nstd86.
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