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New and Notable
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Local and global conformational tran-
sitions underlie protein function. Local
changes include induced-fit effects
such as the reorientation of residues.
Global motions may involve interdo-
main motion, allosteric switches, and
the dynamics of secondary structure
elements several nanometers distant
from each other (1). Global conforma-
tional changes are activated processes,
thus particularly challenging for tradi-
tional atomistic simulation, because
sampling can be prohibitively slow or
activated by rare events. The easiest
simulation scenario arises when at
least knowledge of two states of inter-
est, A and B, is available; these states
can be assumed the most relevant and
the problem is reduced to two key
questions: what are the most con-
venient pathways connecting A to B,
and vice versa? Does one unique,
most favorable pathway exist?

These questions are long-standing,
intriguing problems of general rele-
vance in science. Four-hundred years
ago, Galileo Galilei noted during his
studies on the brachistochrone curve (2):

‘‘From the preceding it is possible to

infer that the fastest path of all, from

one point to another, is not the short-

est path, namely, a straight line, but

the arc of a circle.’’

Derivations of the brachistochrone
curve problem are still challenging
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nowadays when the two points to be
connected are locations on macro-
molecular phase spaces, with the
complication that numerous pathways
with similar minimal free energies—
not only a unique solution—are gener-
ally available at standard conditions.
The typical case is that the shortest
A-B path is the least likely, thus
various methods were recently pro-
posed to allow the initial reaction
coordinate guesses to relax during the
search for convenient sampling paths.
A remarkable example is the string
method proposed by Maragliano et al.
(3). Because a reaction coordinate
guess is adapted to the landscape
before or while walking over a free
energy surface, pathways that are
more favorable can be accurately iden-
tified. However, robust approaches of
this type can still be prohibitively
expensive when applied to large
conformational transitions in biomole-
cular systems of large size. To address
these issues, a multitude of more
approximate, yet faster approaches
have also been proposed, relying
on diverse fundamental assumptions,
and generally on smoother simplified
potentials. These faster methods do
not attempt to reproduce physical
time and/or spatial scales, neither to
determine the details of the free
energy pathway. Instead, they aim to
rapidly explore the most dominant
global motions involved, such as
interdomain conformational changes.
Fast approaches can be generally
distinguished considering whether 1),
they involve topological simplification
of the model, e.g., coarse-grained
approaches; 2), they simplify mole-
cular dynamics (MD) sampling by
considering only the most dominant,
low-frequency motions in the system,
as obtained by analysis of the system
atomistic fluctuations; or 3), they
combine points 1) and 2).

Principal component analysis (4) or
normal mode analysis (5,6) are typical
choices to find the lowest frequency,
largest amplitude motions in proteins.
To some extent, these principal com-
ponents can also be used as input to
run efficient simulations of protein
dynamics, such as in the essential
dynamics approach (7). However, it
remains a general issue to choose
which pool of the mode spectrum to
actually pick for sampling, as the
lowest frequency modes have to be
fed as input from an initial simulation
guess (point 2 above). Gur et al. (8)
presented in Biophysical Journal a
new and notable method named collec-
tive MD (coMD) belonging to the class
depicted in point 3 above. The coMD
method uses two important ingredients
for the initial guess. First, the collec-
tive motions are rapidly estimated
using an anisotropic network model
(ANM) (9), an elastic network ap-
proach that resolves the low-resolution
collective modes based on a coarse-
grained mapping to the structure (10).
These low-resolution ANM modes
are conveniently selected using a
Monte Carlo Metropolis scheme that
allows the system to diverge from the
shortest path strictly identified by the
chosen mode, thus circumventing
free energy barriers by following the
gradient of this low-resolution free
energy surface (8). In details, the algo-
rithm uses the probability of square
displacement along a given mode for
this selection, and is independently
applied starting from two endpoints
A and B of choice. Explicit solvent
atomistic MD runs are used after each
step of ANM dynamic propagation to
obtain relaxed atomic level structures
along the path.

Validation of the coMD was pre-
sented on the test case system adeny-
late kinase (see Fig. 1), which is a
well-characterized prototype for inves-
tigating protein global transitions
because it coverts between closed
and open states that are remarkably
different. coMD generates ensembles
of transition pathways that closely
map atomistic simulations (8) and it
is well suited for distributed computing
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FIGURE 1 Models of the open and closed

states of adenylate kinase. Angles qNMP and

qLID are used to compare fast coMD path sam-

pling by Gur et al. (8) with the two-dimensional

potential of mean force by Beckstein et al. (11)

obtained through more dynamic importance

sampling. Conformers from independent coMD

simulations starting from closed (magenta) or

open (black) substates lead to a well-defined

pathway of the landscape. The free energy is co-

lor-coded with reference to the lowest energy

points on the surface. See Gur et al. (8) for

computational details. To see this figure in color,

go online.
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(~3 ns MD runs and 30 short Monte
Carlo simulations).

Fig. 1 summarizes a validation
example, in which coMD sampling of
two alternative pathways over the free
energy surface closely maps the free
energy surface independently gener-
ated at the atomistic level by Beckstein
et al. (11) using efficient dynamic
importance sampling. This is a particu-
larly relevant validation case, because
Biophysical Journal 105(7) 1545–1546
dynamic importance sampling allowed
thus far the most effective sampling
of adenylate kinase in explicit solvent
(a statistically relevant number of
transitions are sampled within the 85–
135-ps simulation timescales). coMD
also captures the three-step mechanism
interconverting close-to-open states
proposed by Matsunaga et al. (12) by
means of a rigorous, yet computation-
ally more expensive simulation using
the string method (3). The latter
allows accurate free energy estimation,
as shown by a committor test. The
robustness of coMD for the system
investigated was also tested by running
simulations initiated from both the
closed and the open states. In both
cases, the least-work-expensive path
was consistently predicted.

Future applications of coMD will
explore global transitions in larger
systems. Validation of this approach
will likely be extended against a
broader spectrum of macromolecules,
including systems that might display
more complex, multistate transition
pathways. The work by Gur et al. (8)
also opens new endeavors on the meth-
odological viewpoint. This implemen-
tation of coMD makes use of ANM
typically performed in terms of Carte-
sian coordinates that rely on evaluating
and diagonalizing the mass-weighted
Hessian matrix associated with a single
structure (usually corresponding to
a stationary point on the potential-
energy surface). Like normal-mode
analysis, ANM probes the vibrational
modes associated with this single
structure, i.e., a local region of the con-
figurational space along the guessed
pathway. On the contrary, quasi-har-
monic and principal component ana-
lyses aim at characterizing the global
extent of the configurational space
accessible to the system at a given
temperature (13). Could more efficient
mapping be obtained using quasihar-
monic or principal component,
low-resolution modes? Alternative
network models may be explored to
produce input anisotropic modes, by
using optimal networking partitioning
methods such as the one proposed in
2008 by Li and Vanden-Ejinden (14).
coMD will surely prompt new exciting
routes to rapidly connect A to B, and
vice versa.
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