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Power Calculations for Genetic Association Studies Using Estimated
Probability Distributions
Nicholas J. Schork
Department of Psychiatry, University of California at San Diego, La Jolla

The determination of the power of—or of an appropriate sample size for—genetic association studies that exploit
linkage disequilibrium requires many assumptions. Some of the more important assumptions include the linkage-
disequilibrium strength among alleles at the observed marker-locus sites and a potential trait-influencing locus, the
frequencies of the marker locus and trait-influencing alleles, and the ultimate density of the marker locus “map”
(i.e., the number of bases between marker loci) necessary in order to identify, with some confidence, trait-influencing
alleles. I consider an approach to assessment of the power and sample-size requirements of genetic case-control
association study designs that makes use of empirically derived estimates of the distributions of important parameters
often assumed to take on arbitrary values. My proposed methodology is extremely general and flexible and ultimately
can provide realistic answers to questions such as “How many markers and/or how many individuals might it take
to identify, with confidence, a disease gene, via linkage-disequilibrium and association methods from a candidate
region or whole genome perspective?” I showcase aspects of the proposed methodology, using information abstracted
from the literature.

Introduction

One crucially important issue that faces—and virtually
plagues—all researchers interested in identifying or char-
acterizing the effect that some factor (e.g., an exposure,
a gene, etc.) has on some outcome (e.g., disease suscep-
tibility, treatment response, etc.) is whether their study is
designed in such a way as to maximize success while min-
imizing use of resources. Power and sample-size calcu-
lations are meant to address this question, but they rely
on assumptions often so open to doubt that the resulting
calculations are unrealistic. This issue is especially prob-
lematic for the design of genetic association studies, since
they typically involve a number of parameters whose val-
ues need to be specified in advance, in order to perform
the relevant calculations. These parameters include the
frequency of the hypothesized trait-influencing allele, the
linkage-disequilibrium strength between the trait-influ-
encing allele and neighboring marker-locus alleles, the ef-
fect (i.e., penetrance) of the trait-influencing allele, and
the frequencies of alleles at neighboring marker loci.

Although there are situations in which the values of
many of these parameters are known with some confi-
dence (e.g., when one is testing a candidate polymor-
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phism of known frequency in a well-characterized region
of the genome), they are often extremely difficult to know
a priori: consider a mapping study involving many ge-
nomic regions with many marker loci and in which there
is complete ignorance of the location of the trait-influ-
encing locus relative to those marker loci—here, there is
little understanding of at least the trait-influencing locus
and its properties.

To avoid making unrealistic assumptions about pa-
rameters required in power calculations, one could con-
sider the probabilities associated with the values that
these parameters could take on and then, when per-
forming the relevant calculations, consider only those
parameter values that have a high probability of oc-
curring. This intuition can be taken one step further, in
that one could consider all possible values that a pa-
rameter could take on in a power or sample-size cal-
culation and then could weight the results by the prob-
abilities with which those values occur. This strategy is
very similar to standard Bayesian statistical procedures,
in which the probability distributions of unknown pa-
rameters are used to compute quantities that depend on
those parameters. This is done mathematically, in Bay-
esian analyses, by integrating over the unknown values
by using the relevant probability distributions.

The primary problem with Bayesian and related strat-
egies is characterization or specification of the distri-
bution of the unknown parameter values or quantities:
it may be just as hard, if not more so, to specify a
probability distribution for a parameter whose value is
unknown a priori as it is to specify (with confidence) a
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Table 1

Contingency-Table Format for Assessing the Relationship between a Biallelic Locus and a
Disease

Allelic Status Cases Controls Total Sample

� n Pr (�Fd)d
¯n Pr (�Fd)d̄ n�

� n Pr (�Fd) p n [1 � Pr (�Fd)]d d
¯ ¯n Pr (�Fd) p n [1 � Pr(�Fd)]¯ ¯d d n�

Total nd nd̄ N

NOTE.—For definitions, see text and Appendix.

particular value for that parameter. However, there are
ways around this. If one has amassed data on a param-
eter (i.e., has measured its values repeatedly), then it is
possible to derive an empirical estimate of the distri-
bution of that parameter; that is, one could merely tally
how often the parameter takes on certain values when
it is measured and then use these counts or frequencies
as estimates of the probabilities that the parameter takes
on certain values.

As I describe in this article, this procedure can be
pursued for assumption-laden parameter values used in
power calculations for genetic association studies in-
volving case-control samples and single-nucleotide poly-
morphisms (SNPs). I show how data collected on, for
example, the frequencies of SNPs and linkage-disequi-
librium strength, can be used to compute empirical es-
timates of their probability distributions, as well as how
these distributions can be used to compute more-com-
pelling and more-realistic power and sample-size re-
quirements for genetic association studies. In this sense,
it could be said that, concerning a parameter in genetic
power calculations, one should pay heed to the adage
“When in doubt, integrate it out.” For convenience, I
provide an Appendix offering a description of some of
the mathematical symbols.

My results are very general, and I showcase the pro-
posed calculations, using recently published data, on
SNPs and their properties, from the population at large.
In addition, the proposed strategy is not limited to ge-
netic applications: any calculation involving an un-
known parameter can benefit from consideration of that
parameter’s empirically derived probability distribu-
tion. Of course, the proposed strategy for genetic as-
sociation studies does need some qualification, so I also
will comment on a few issues and potential complica-
tions of the proposed strategy.

Material and Methods

Genetic Case-Control Study Designs

Consider a biallelic trait-influencing locus with alleles
� and �. These alleles have frequencies, in the population
at large, of p and , respectively, and are as-q p 1 � p
sumed to be in Hardy-Weinberg equilibrium such that the
frequencies of the three possible genotypes at this locus

are , , and . The � al-2 2f p p f p f p 2pq f p q�� �� �� ��

lele increases susceptibility to a disease. Let be thePr (�Fd)
probability that an individual carries the � allele, given
that he or she has the disease; similarly, let denote¯Pr (�Fd)
the probability that an individual carries the � allele,
given that he or she does not have the disease. Assume
that one has ascertained nd individuals with the disease
(i.e., “cases”) and individuals without the dis-n p cnd̄ d

ease (i.e., “controls”). The total sample size is thus
. The relationship between the � and � al-N p n � n ¯d d

leles and disease status, for the cases and the controls, can
be examined through the use of a simple contingency
table, which, in expectation, will have the entries pre-
sented in table 1. A standard measure of the strength of
the association between the trait-influencing locus alleles
and disease status is the odds ratio (OR), defined as

¯n Pr (�Fd) # n Pr (�Fd)¯d dOR p .¯n Pr (�Fd) # n Pr (�Fd)d̄ d

Linkage Disequilibrium (LD)

Assume that, concerning the sample of cases and con-
trols, one does not have allelic or genotypic information
regarding the trait-influencing locus but, rather, infor-
mation regarding a biallelic marker locus near enough
(i.e., linked to) the trait-influencing locus and that its
alleles, denoted “M” and “m,” are in LD with the trait-
influencing locus alleles, � and �. In the population at
large, the alleles M and m have frequencies of s and

, respectively. The alleles are also assumed tot p 1 � s
be in Hardy-Weinberg equilibrium. The strength of the
LD between the � and M alleles can be expressed as the
deviation that the frequency of the haplotype implicating
� and M has from its expected value of ps. If this de-
viation is denoted by “ ,” then the four possible hap-d

lotype frequencies become

f p ps � d ,�M

f p pt � d ,�m

f p qs � d ,�M

f p qt � d . (1)�m
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It can be shown that the conditional probability,
, that an individual sampled as a case carries thePr (MFd)

M allele at the marker locus is (e.g., see Schork et al.
2000)

d(Pr (�Fd) � p)
Pr (MFd) p s � . (2)

p(1 � p)

Similar equations can be derived for the probability that
an individual sampled as a control will carry the M allele.
These conditional probabilities can be used to investigate
the strength of the association between the M and m
alleles and disease status among the cases and controls,
by substituting them, in table 1, for the conditional prob-
abilities involving the � and � alleles. It should be un-
derstood that the marker alleles, when examined for
association with the disease, are only “surrogate” alleles
for the actual trait-influencing allele. These marker al-
leles will be good surrogates only to the degree that they
are in strong LD with the trait-influencing alleles.

Computing Power

Schlesselman (1982) and others have considered the
power of a contingency table–based association study
of the type described in table 1. Define

¯( )( )Pr MFd �c Pr MFd
p̄ p

1 � c

and , where, again, c is the ratio of controls¯q̄ p 1 � p
to cases. Further, let za be the quantile associated with
a standard normal distribution for the assumed type I
error probability, a , for the study. Define

1
2¯ 2( )[ ]( )n Pr MFd �Pr �Fdd

z p � z .b a{ }1 ¯ ¯1 � pq( )[ ]c

Let Q be the set of all parameter values assumed in a
power calculation for a genetic association study inves-
tigating an observed marker locus and a disease outcome
as discussed; that is, . The power of theQ p {p,s,OR,d,a}
proposed sample size can be then be computed as

zb

g(Q; n ,n ) p Pr (Z � z FQ; n ,n ) p f(xF0,1)dx ,¯ ¯d d b d d �
��

(4)

where f(xF0,1) is the standard normal density function
(i.e., with mean 0.0 and SD 1.0) evaluated at x. Thus,
given assumptions about (1) a number of parameters—

that is, the trait-locus allele frequencies, p and ;q p 1 � p
(2) the effect that the � allele has on disease susceptibility
as quantified by the OR; (3) the marker-locus allele fre-
quencies, s and ; (4) the strength of the LD be-t p 1 � s
tween the � and M alleles, ; and (5) the type I–errord

rate, a, one can compute the power of detecting the as-
sociation between the M and m alleles and disease status
for cases and controls.n n p cn¯d d d

Parameter-Value Distributions

The values that certain parameters (e.g., allele frequen-
cies, LD strength, locus effect size, etc.) take on must be
specified in advance of performance of the power calcu-
lations. Assumptions about these parameter values are
likely to be very arbitrary. For example, it would be dif-
ficult to know a priori the frequencies of the marker-locus
alleles that are in LD with the trait-influencing alleles in,
for example, a whole-genome association study, as well
as the LD strength between marker and trait-influenc-
ing–locus alleles. If one knew, however, the probability
distributions of these parameters, then one could consider
how probable certain values that these parameters could
take on might be. For example, one could assume that
allele frequencies, given that they vary between 0 and 1,
follow a beta distribution with a specified mean and var-
iance. However, specifying the mean and variance for this
beta distribution could be as arbitrary as specifying a
particular allele-frequency value.

One could overcome this difficulty by estimating the
distribution of allele frequencies and LD-strength pa-
rameters from actual data measuring these quantities.
These “empirical” distributions can then be used to as-
sess the probability that certain parameters will take on
assumed values. Estimation of allele-frequency distri-
butions is straightforward: one can sample a number of
individuals from a relevant population and genotype
them at a number of loci similar to (if not the same as)
those loci to be used in an association study. Probabilities
of certain marker-allele frequencies can then be tallied
by simple counting methods. Estimation of LD-strength
distributions, however, is not as straightforward, since
there are a few theoretical and data-collection caveats
that need to be considered, as discussed below.

Accommodating LD Strength

Consider the LD-strength parameter, d, used in equa-
tions (1) and (2). This term can be written, in terms of
haplotype and allele frequencies, as . In fact,d p f � ps�M

an often-used parameter for expressing LD strength is
(Lewontin 1988; Zapata 2000) . TheD p d p f � ps�M

range of D varies according to the allele frequencies p
and s. This makes modeling its distribution difficult.
However, one can consider the distribution of a simple
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transformation of D whose range is between �1 and 1
and is virtually independent (in a theoretical sense) of
allele frequencies at the loci involved (Lewontin 1988;
Zapata 2000):

D
D 1 0

min (sq,pt)′D p . (5)
D{ D ! 0

min (sp,tq)

The range of D′ invites the following interpretations: val-
ues of D′ close to �1 suggest that the � allele is not
frequently on a chromosome (or does not form a frequent
haplotype) with the M allele, whereas values of D′ that
are closer to 1 suggest that the � allele is frequently on
a chromosome with the M allele. Values of D′ close to 0
suggest that the � and M alleles are not in LD and there-
fore that, given their frequencies, they are not associated.
It is straightforward to recover D or d from D′—that is,

or . Thus, models of′ ′d p D min (sq,pt) d p D min (sp,tq)
the distribution of D′ can be easily used to assess the
distribution of D or d.

Empirically Estimating the Distributions of s and D′

Because of the phenomenon of recombination, the
strength of LD between alleles at two loci that is induced
by the proximity (i.e., “linkage”) of these loci on a chro-
mosome (in contrast to LD that is induced by, say, ad-
mixture) is dictated, to a large degree, by the distance,
in base pairs, between those loci. This is the fundamental
phenomenon exploited in many gene-mapping studies.
Therefore, in determining or estimating the distribution
of LD-strength values, one should consider a specified
distance between loci. To accomplish this, one could, in
a relevant sample of individuals, genotype a number of
loci whose interlocus distances are known, compute the
LD strength, D′, between alleles at those loci, and record
and tally the D′ values in bins reflecting interlocus dis-
tances (i.e., loci separated by 0–5,000 bases, 5,000–
10,000 bases, 0–25,000 bases, etc.). A recent article by
Reich et al. (2001) discusses empirical allele frequency
and LD data of the type envisioned that were gathered
from a sample obtained in a U.S. population. Note that
this characterization or estimation of the distribution of
D′ is conditional on the distance between loci.

Once one has recorded a number of allele-frequency
and LD values, then empirical estimation of the distri-
butions of these quantities can proceed in a variety of
ways. Consider the use of Kernel-based density-function
estimators (Silverman 1986). Assume that L total allele
frequencies, s, or LD values, D′, have been measured.
Assume that these values form a data matrix X p

. These empirical values can be used to es-[x , … ,x ]1 L

timate the probability of any allele-frequency or LD
value, denoted “x,” via the function

L1 1 x � xlf̂(x) p K , (6)� ( )L h hlp1

where K(x) is a kernel function (such as the standard
normal density function) that integrates to 1 and h is a
“window width” parameter that will dictate the amount
of smoothing to be used in the density estimate. The
value of h can be chosen via various means, such as
cross-validation (Taylor 1989).

Exploiting the Distributions of s and D′

Once one has derived or estimated distributions for
relevant parameters, these distributions can be used in the
evaluation of the power of a study. First, one can assume
that, for a given marker locus, the trait-influencing locus
can be virtually anywhere in relation to it on a chro-
mosome. Thus, one can assume that the distance between
the marker locus and the trait-influencing locus is uni-
formly distributed over the chromosome. If a candidate
region is studied, then one can assume that the location
of the trait-influencing locus, here treated as a variable,
follows a uniform distribution within the interval defined
by that region. Now, let W be a set of parameters whose
values are not set to specific values in a power calculation
but whose distributions will be exploited. For example,
consider the situation in which the marker allele and LD-
strength parameters will not be set in advance and have
had their distributions estimated empirically. Then, fol-
lowing equations (4) and (5), and′W p {s,D } Q p

. Further, let B be the maximal distance between{p,OR,a}
the marker and trait-influencing loci. The power of a sam-
ple of cases and controls can then be computed byn n ¯d d

integrating over the possible values for the parameters in
W and the possible distances between the loci, by using
the empirical estimates of their distributions:

∗g (Q,W; n ,n ) p¯d d

1 B 1

′{ }g(Q,W p s p y,D p x ;L p b,n ,n )¯��� d d

0 0 �1

# f (x)f (b)f (yFb)dxdbdy , (7)′s L D

where fs(x) and are, respectively, the empiricallyf (yFb)′D

derived estimate of the probability density for the
marker-allele–frequency parameter s evaluated at x and
the empirically derived estimate of the density for the
LD-strength parameter D′ evaluated at y (which, as em-
phasized earlier, is conditional on the distance between
the loci). fL(b) is the distribution of the number of bases
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Figure 1 Estimated probability density for the frequency of
SNPs, when the data reported by Reich et al. (2001) are used.

(or distance in some other unit) separating the marker
and trait-influencing loci, assumed to be uniform, eval-
uated at a distance of b bases. Since one is not likely to
know the position of a trait-influencing locus relative to
a set marker loci, it is important to consider the possi-
bility that the trait-influencing locus is near any of the
marker loci. If one knows the positions and allele fre-
quencies of a set of marker loci (e.g., if one is using a
preestablished set of markers in a specific population),
then one could simply consider the possibility that the
trait-influencing locus is near any of them, by summing
over the loci, accommodating the allele frequencies at
each marker locus in the power calculation, and weight-
ing the outcome by 1 over the number of marker loci
(i.e., assigning uniform weight to each locus).

The integrals in equation (7) can be approximated by
sums, by using discretized forms (i.e., probability mass
functions) of the relevant probability densities. This may
actually facilitate assumptions about the distance between
the marker and trait-influencing loci. For example, one
could assume that two marker loci available for study are
separated by a distance of 10 kb and that the trait-influ-
encing locus is between these loci. Then the maximal dis-
tance between the trait-influencing locus and either one
of the marker loci is 5 kb. One could then assume that
the trait-influencing locus is either 0–1, 1–2, 2–3, 3–4, or
4–5 kb away from a marker locus, with a probability of
1/5 for each possibility. Probability distributions for LD
strength could also be computed from actual data, for
loci separated at distances of 0–1, 1–2, 2–3, 3–4, and 4–5
kb. These distributions can be approximated by tallying
the frequency of D′ values falling into bins of, for example,
{�1.0,�0.8}, {�0.8,�0.6}, {�0.6,�0.4}, {�0.4,�0.2},
{�0.2,0.0}, {0.0,0.2}, {0.2,0.4}, {0.4,0.6}, {0.6,0.8}, and
{0.8,1.0}. These frequencies can then provide approxi-
mate probabilities for LD-strength values. If one further
tallies allele frequencies into similar bins, of {0.0,0.2},
{0.2,0.4}, {0.4,0.6}, {0.6,0.8}, and {0.8,1.0}, then power
calculations can be made by using the sums

∗g (Q,W; n ,n ) p¯d d

5 5 10

′g Q,W p {s[x],D [y]}; L[b],n ,n ¯��� ( )d d
xp1 bp1 yp1

#p(x)p(b)p(yFb) ,

where the sums are over the different bins for the allele
frequency s, interlocus distance L, and LD strength D′

parameters; s[x] , L[b], and D′[y] denote translation of
a bin into a parameter value (e.g., when , the allele-s p 1
frequency value is in the interval {0.0–0.2}; when L p
, the interlocus-distance parameter is in the interval5

{4–5}, etc.); and p(x) and p(yFb) are the empirically de-
rived probabilities that the allele frequency and LD

strength take on the specified values (or range of values)
and that is a uniform discrete distribution (i.e.,p(L)

in this example).p(L) p 1/5

Simple Extensions

The use of theoretical or empirically derived estimates
of densities and probability functions as a way to con-
sider the possible values that parameters could take on
for power calculations can be extended to accommodate
any (or even all) of the parameters required for such
calculations. Consider that one might have intuitions
about the distribution of the frequency of trait-influ-
encing alleles or even about the effect of a trait-influ-
encing locus. For example, Orr (1998) has recently con-
sidered the distribution of trait-influencing–allele effects
from an evolutionary perspective. Alternatively, Mackay
et al. (1995, 1996) have identified a number of genes
and loci that influence bristle number in drosophila and
whose effect sizes can be used to estimate the distribution
of locus-effect sizes. Of course, just how generalizable
such distributions are to cases involving human diseases
is an open question.

Results

Simple Single-Locus Power Calculations

Figures 1 and 2 depict standard normal density-ker-
nel–based estimates (i.e., see eq. [6]) of the distribution
of marker-allele frequencies and LD-strength values ob-
tained from the data discussed by Reich et al. (2001). The
window-width parameter h used in this estimation pro-
cedure was chosen via cross-validation (Taylor 1989). Fig-
ure 1 makes it clear that Reich et al. (2001) studied only
common SNP alleles, as they mention in their article. Fig-
ure 2 clearly shows that, for loci closely spaced (e.g., 0–5
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Figure 2 Estimated probability densities for LD strength be-
tween SNPs with different interlocus distances, when the data reported
by Reich et al. (2001) are used. The different curves reflect different
interlocus-distance bins.

Figure 3 Power curves for association studies involving a single
marker locus. A type I error of 0.05 was assumed. “Sample Size”
indicates the number of chromosomes needed. The curves, from top
to bottom, assume that the distance between the marker locus and the
trait-influencing locus is 5, 10, 20, 40, and 80 kb, respectively. The
trait-influencing allele, �, was assumed to have a frequency of 0.25
and penetrances of , , and .p(��) p 0.5 p(��) p 0.25 p(��) p 0.0

kb), there is a high probability that the alleles will show
near-perfect negative or positive LD. This is in stark con-
trast to loci separated by large distances (e.g., 40–80 kb),
in which case there is a greater probability that the alleles
will show weak or no LD.

For an assumed value of the locus-effect size (i.e., OR),
the frequencies of the trait-influencing alleles (i.e., p and
q), and the number of bases separating the marker and
trait-influencing alleles, I evaluated equation (7), using
the estimated distributions of marker-allele frequencies
and LD values offered in figures 1 and 2, for various
numbers of cases and controls assumed to be equal (i.e.,

). Figures 1 and 2 reflect the number of chromo-c p 1
somes to be studied (i.e., twice the number of individ-
uals). I assumed that the trait-influencing allele, �, had
a frequency of 0.25 and penetrances of ,p(��) p 0.5

, and . This resulted in an ORp(��) p 0.25 p(��) p 0.0
for the disease, given that an individual carries the �
allele, of 6.82. The results are described in figure 3. I
offer this graph as an example of relevant calculations.
A program available from the author can be used to
compute power for different situations. It is clear from
figure 3 that a marker closer to a trait-influencing locus
will result in greater power, as expected.

Genomewide Association Studies

Now consider the use of equation (7) to evaluate the
power of genomewide association studies that make use
of different map densities (i.e., uniform intermarker dis-
tances, in bases). Again, make use of the data reported
by Reich et al. (2001) and of the estimated distributions
for marker-allele frequencies and LD values given in fig-
ures 1 and 2. One important issue in the consideration

of genomewide studies of this type is the assumed type
I–error rate: since the marker loci are likely to produce
correlated association-test statistics, given that they
might have alleles in LD, the test statistics that they
produce cannot be considered independent. However, to
be conservative, assume independence and invoke a sim-
ple Bonferroni correction strategy for multiple compar-
isons. Thus, for a map density assuming both a marker
every 10 kb and an autosomal genome length of 3 billion
bases, a total of 300,000 association tests would be per-
formed. A nominal genomewide type I–error rate of 0.05
thus would require individual association-test statistic P
values !0.05/300,000, or 0.000000167, in order to be
considered statistically significant. Table 2 offers type
I–error rates for different map intermarker locus dis-
tances. It should be understood that the maximal dis-
tance between the trait-influencing locus and a flanking
marker locus would be half the distance between the
marker loci.

I considered two scenarios for a hypothetical trait-in-
fluencing locus. The first scenario assumed that the trait-
influencing allele, �, had a frequency of 0.25 and pene-
trances of , , andp(��) p 0.5 p(��) p 0.25 p(��) p

, for an OR of 6.82, as in the single-locus calcu-0.0
lations discussed above. The second scenario assumed
that the trait-influencing allele, �, had a frequency of 0.25
and penetrances of , , andp(��) p 0.20 p(��) p 0.15

, for an OR of 1.53. Figures 4 and 5 offerp(��) p 0.10
power curves for these two different scenarios. It is clear
that either (1) a very large sample size will be necessary,
for studies involving a sparse map or (2) one must use a
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Table 2

Type I–Error Rates for Genomewide
Association Studies Involving Different Map
Interlocus Distances, When a 3 Billion–bp
Genome Is Assumed

Intervala
No. of

Markers P
Critical
Value

10 300,000 .000000167 5.103
20 150,000 .000000333 4.971
40 75,000 .000000667 4.835
80 37,500 .000001333 4.695
160 18,750 .000002667 4.551

NOTE.—Calculations are based on the use of
a simple Bonferroni correction with nominal
type I–error rate of 0.05.

a Interlocus distance (in kb).

Figure 4 Power curves for a genomewide association study. Type
I–error rates for the different maps are given in table 2. “Sample Size”
is the number of chromosomes needed. The curves, from top to bot-
tom, assume that interlocus map distances are 10, 20, 40, 80, and 160
kb, respectively. The trait-influencing allele, �, was assumed to have
a frequency of 0.25 and penetrances of ,p(��) p 0.5 p(��) p

, and .0.25 p(��) p 0.0

reasonably dense map, if a moderate sample size is used.
This is especially the case for the detection of a locus with
weak to moderate effect (compare figs. 4 and 5). I consider
some caveats of these calculations in the “Discussion”
section, below.

Discussion

The consideration and calculation of sample-size requi-
rements and/or power calculations for genetic studies
plays an extremely important role in putting such studies
into perspective. It can often be the case that studies are
pursued for which both the statistical-analysis methods
and the assumed sample size are woefully underpow-
ered. In determining requisite sample sizes and power,
however, a researcher must make a number of assump-
tions about factors and parameters, such as allele fre-
quencies, LD strength, marker density, etc., as the pre-
sent article has tried to make clear. Lack of insight into
the appropriate values that these parameters should take
on undoubtedly contributes to the lack of success and
irreconcilability of many studies. I have adopted an ap-
proach to assessing the power of a proposed genetic case-
control association study that builds off the adage that
is well known among Bayesians: “when in doubt, in-
tegrate it out” (where “it” is a parameter that must take
on assumed or unknown values).

In the estimation of the distributions of unknown
parameters from actual data, however, there are some
things that need to be considered. I have listed and men-
tioned many of these below and encourage more inquiry
into their impact and consequences.

Nature of the Data Used to Assess Parameter
Distributions

I have used the data generated by Reich et al. (2001),
which needs some qualification. Reich et al. clearly set
out to study common alleles, as evidenced by the graph

in figure 1. In addition, they studied LD, using prespe-
cified (i.e., nonrandom) intermarker distances. These
facts are likely to create some biases in my examples of
power calculations (which really should be seen only as
examples). The effect of the presence of common marker
alleles in a map will likely reduce power for the detection
of rare trait-influencing alleles, since matching of allele
frequencies between marker and trait-influencing alleles
leads to the greatest power (Schork et al. 2000). The
effect that prespecified distances have on LD calculations
will also result in downward biases in my power cal-
culations, since, for example, it is highly conservative to
use LD-strength values for markers separated by 80 kb
as being indicative of LD-strength values for markers
separated by 40–80 kb.

Population Dependence of Data

It is widely known that allele frequencies and LD
strengths vary considerably from population to popula-
tion (Goddard et al. 2000). Thus, the empirically derived
probability distributions for certain parameters from data
collected from these populations—and, hence, any power
calculations based on them—may not be generalizable to
other populations. One could conceivably use population-
specific parameter distributions to assess the mapping
power between and within those populations.

Genome Specificity of Loci Studied

Just as there is population specificity of allele-frequency
and LD-strength data, there is genome specificity. Thus,
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Figure 5 Power curves for a genomewide association study. Type
I–error rates for the different maps are given in table 2. The curves,
from top to bottom, assume that interlocus map distances are 10, 20,
40, 80, and 160 kb, respectively. The trait-influencing allele, �, was
assumed to have a frequency of 0.25 and penetrances of p(��) p

, , and .0.20 p(��) p 0.15 p(��) p 0.10

there are regions of the genome that show much greater
recombination, mutation, and gene conversion than oth-
ers (Abecasis et al. 2001). Thus, the loci studied to em-
pirically assess probability distributions may not be ge-
neralizable to the genome as whole. Obviously, the more
data that are used to derive empirical distributions, the
better. In addition, the calculations presented in this article
have assumed that the LD strength between marker alleles
used to derive the LD strength distribution is the same as
that between marker alleles and trait-influencing alleles.
This needs empirical verification. As more associations
are found, investigators will be in a position to estimate
a marker/trait-influencing–locus LD-strengthdistribution.

Variable Intermarker Distances

The use of uniform intermarker distances is highly
suspect and unrealistic. One could assess, however,
the distribution of interlocus distances across the ge-
nome and incorporate this information into the power
calculations.

Stratification in Case-Control Studies

I have focused on case-control association study de-
signs. These designs are known to be negatively impacted
by phenomena such as stratification (Schork et al. 2001),
which I have not considered. Fortunately, there are meth-
ods for overcoming the problems created by these phe-
nomena, especially if one has used a number of genetic
markers to type the sample of individuals (see Devlin
and Roeder 1999; Bacanu et al. 2000; Pritchard et al.
2000; Schork et al. 2001).

Other Designs

It would be of great value to consider how power
calculations of the type proposed in this article could be
used for settings involving, for example, quantitative
traits, transmission/disequilibrium test (TDT) analysis
settings, and family-based samples.

Multipoint and Haplotype Analysis

One of the biggest issues regarding the calculations
pursued in this article is that they are based on single-
locus analyses. Obviously, multipoint procedures and
haplotype analyses need to be considered and undoubt-
edly will result in increased power to detect genetic ef-
fects (Akey et al. 2001; Fallin et al. 2001; Schork et al.
2001; author’s unpublished data).

Type I–Error Rates and Corrections

My example calculations have made use of a Bonfer-
roni correction for multiple comparisons. This correc-
tion assumes independence of the tests, which is not
likely to be the case for dense-marker-map studies, since
alleles at neighboring loci will be associated via LD. The
problem in using an appropriate correction is not unique
to the proposed methodology but, rather, plagues all
studies involving multiple comparisons and correlated
outcomes. More work in this area is clearly needed. One
possible approach is to pursue randomization or per-
mutation tests for evaluation of significance. Essentially,
one could randomize disease status or phenotypic in-
formation (i.e., case/control status) across the subjects
while preserving marker information for those subjects.
Association statistics across the loci could be computed
by use of the permuted data. This could be repeated a
number of times, with counts of observed test statistics
tallied throughout. The information that this exercise
provides regarding the probability of achieving specific
test-statistic values could be used to gauge the signifi-
cance of the original, nonpermuted-data test statistics.

Ultimately, the proposed methodology for power cal-
culations is very flexible and should provide more-
realistic answers to questions about mapping power, es-
pecially with respect to either genomewide or large-
genomic-region mapping studies. The most important
caveat, however, with regard to any sample-size or
power calculation is that they are only probabilistic.
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Thus, there are no guarantees (a) that a marker, no mat-
ter how close to a trait-influencing locus, will have alleles
in LD with a trait influencing allele or (b) that the effect
size of the trait-influencing allele(s) will be large enough
to be detected by use of the sample size chosen.
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Appendix

Symbol Definitions

N Total sample size
nd Number of diseased individuals (i.e., cases) in a sample

¯nd Number of normal individuals (i.e., controls) in the sample
c Ratio of controls to cases in the sample
� Influential genetic variant (i.e., variant that contributes to disease susceptibility)
� Noninfluential genetic variant
n � Number of individuals in the sample who carry the influential allele
n� Number of individuals in the sample who carry the noninfluential allele
p Frequency of the influential variant in the population at large
q Frequency of the noninfluential variant in the population at large
p �Fd Probability that a diseased individual (i.e., case) carries the influential variant
p ¯�Fd Probability that a normal individual (i.e., control) carries the influential variant
p�Fd Probability that a diseased individual (i.e., case) carries the noninfluential variant
p ¯�Fd Probability that a normal individual (i.e., control) carries the noninfluential variant
p(MFd) Probability that a diseased individual (i.e., case) carries the marker allele M
d LD between the marker allele M and the trait-influencing allele �
D′ Standardized LD
Q Parameters assumed in a genetic association–study power or sample-size calculation
W′ Set of parameters to be “integrated out” in power calculations
B Maximal distance between marker and trait-influencing loci
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