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INVITED EDITORIAL
Regression-Based Quantitative-Trait–Locus Mapping in the 21st Century
Eleanor Feingold
Department of Human Genetics, University of Pittsburgh, Pittsburgh

In the beginning, there was Haseman-Elston regression.
This tool for human QTL mapping, developed in 1972,
was simple and inspired. The idea was to take pairs of
siblings and regress the squared differences in their trait
values on their identity-by-descent (IBD) sharing at a
marker. If the marker is linked to the trait, high levels
of IBD sharing should be associated with a small dif-
ference in trait values, and the regression slope should
be negative. Thus, linkage can be tested with a regression
t test. This method (with some extensions) was predom-
inant in human studies for 120 years, which was pri-
marily a reflection of the fact that too little human QTL
mapping was being performed to prompt the develop-
ment of more sophisticated methods.

In the mid-1990s, we saw the first important alter-
native to Haseman-Elston regression, maximum-likeli-
hood–based variance-components estimation (see, e.g.,
Amos 1994; Almasy and Blangero 1998). Variance com-
ponents is seamlessly applicable to any type of pedigree,
whereas Haseman-Elston regression is not, and it has
substantially higher power than Haseman-Elston when
trait distributions are approximately Gaussian. It has
superseded Haseman-Elston as the method of choice for
most studies, particularly when large pedigrees are used.
However, variance components relies heavily on nor-
mality assumptions and can fail dramatically when those
assumptions are violated either by nonnormality of the
trait distribution or by selected sampling. Attempts to
“robustify” variance components have had mixed suc-
cess (see Feingold [2001] for a more complete discus-
sion), so there is still a role for regression-based methods,
which are intrinsically more robust.

In the past 5 years, there has been an avalanche of
attempts to improve the power of Haseman-Elston re-
gression and to bring regression-based QTL mapping up
to date. This was set off by Wright’s (1997) Letter to
the Editor suggesting that it is beneficial to use the trait
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values of both members of a sib pair rather than just
the squared difference (although this was, in fact,
pointed out by Gaines and Elston [1969]). Since then,
there have been six articles suggesting “revised Hase-
man-Elston” (regression-based) methods that use the bi-
variate data—by Drigalenko (1998), Elston et al. (2000),
Xu et al. (2000), Forrest (2001), Sham and Purcell
(2001), and Visscher and Hopper (2001). I believe that
this is a complete list, but I offer profound apologies to
anyone I may have omitted. There have also been three
new articles discussing score statistics that have prop-
erties similar to the regression-based methods, by Tang
and Siegmund (2001), Putter et al. (2002), and Wang
and Huang (2002). The best of these new methods have
succeeded in matching the power of variance compo-
nents while retaining the robustness of the regression
framework. However, they are all limited to sibships, or,
in some cases, to sib pairs. In this issue of the Journal,
Sham et al. (2002) take the logical next step, by devel-
oping a regression-based method that can be applied to
extended pedigrees.

Those of us trying to map human QTLs have a much
richer set of tools available to us than we did 5 years
ago. However, the abundance of new methods has made
it difficult to make choices. Only true aficionados can
keep up with the literature. In this editorial, I briefly
review the newest options. I will describe the new re-
gression-based methods and score statistics, compare
their strengths and weaknesses, and conclude by de-
scribing how the current offering from Sham et al. (2002
[in this issue]) fits in. I will start, however, with a dis-
claimer. Because all of these methods are very new, they
have not been tested extensively. Most of my observa-
tions below are based on statistical theory, and I’m sure
that further study of the statistics will prove at least some
of my guesses wrong. A related caveat is that all of the
theory I rely on is large-sample theory, and even among
statistics that are asymptotically identical there may be
important differences in small-sample behavior.

Description of the New Methods

Original Haseman-Elston Regression

The method proposed by Haseman and Elston (1972)
is as follows. Let the ith sibling pair have trait values
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(Xi,1, Xi,2), and define the squared trait difference as
. Summarize the estimated mean IBDD 2Y p (X � X )i i,1 i,2

sharing at the locus for the pair as pi. Perform a simple
linear regression of on pi. Under the null hypothesisDYi

of no linkage, the regression slope is zero. Under the
alternative hypothesis that the locus is linked to the trait,
the regression slope is negative. Linkage can be tested
with a one-sided t test of the regression slope estimate.

New Regression-Based Methods

Wright (1997) pointed out that Haseman and Elston’s
choice of discards some useful infor-D 2Y p (X � X )i i,1 i,2

mation. He showed, in a simple likelihood context, that
a nontrivial amount of linkage power can be gained if
information from the trait sum is also included. This
observation led to the six articles mentioned above (i.e.,
Drigalenko 1998; Elston et al. 2000; Xu et al. 2000;
Forrest 2001; Sham and Purcell 2001; Visscher and Hop-
per 2001), as well as to a number of other articles that
studied the issue without proposing new methods. All
of the new regression-based methods combine the
squared trait sum and the squared trait difference in
some way, in an attempt to find the function of the trait
values that is most highly correlated with the IBD
sharing.

Define the mean-corrected squared trait sum SY pi

. Drigalenko (1998) showed that2[(X � m) � (X � m)]i,1 i,2

regressions of YD on p and YS on p produce separate
estimates of the same slope (at least for population sam-
ples). Thus, a naive approach to combining the sum and
the difference is to perform separate regressions for each
and to average the resulting slope estimates. Drigalenko
(1998) also showed that such an approach is equivalent
to performing a single regression using the mean-cor-
rected trait product, , as the de-PY p [(X � m)(X � m)]i i,1 i,2

pendent variable. The trait-product regression idea was
developed further by Elston et al. (2000), who expand-
ed it to consider larger sibships, covariates, and other
complexities.

Xu et al. (2000) and Forrest (2001) pointed out that
weighting the two slope estimates equally is not optimal.
On the basis of standard statistical theory, they should
be weighted by the inverses of their variances. That is,
the overall slope estimate should be something like

2 2j jD Sˆ ˆ ˆb p b � b ,S D( ) ( )2 2 2 2j � j j � jD S D S

where and are the slope estimates from the separateˆ ˆb bD S

squared difference and squared sum regressions, and 2jD

and are the corresponding variances. Forrest (2001)2jS

calculated an estimate like this, by using least-squares it-
eratively to simultaneously estimate the two intercepts,

the single slope, and the two variances. Visscher and Hop-
per (2001) used a very similar method, performing the
two regressions separately and then weighting the slope
estimates by the separate empirical variance estimates. Xu
et al. (2000) used essentially the same approach as
Visscher and Hopper (2001), but they modified the
weights to allow for a covariance between the two slope
estimates. Sham and Purcell (2001) pointed out that 2jD

and can be written as functions of the sib correlation2jS

and proposed a version of the estimate above with weights
calculated from the correlation rather than estimated em-
pirically. Their method is equivalent to performing a single
regression of the variable

S DY Y 4ri iA p � �i 22 2( ) ( )1 � r 1 � r 1 � r

on pi, where r is the sib correlation. The regression is
performed with the intercept fixed at zero. They also
assume that the trait values have been standardized to
have mean zero and variance one before calculation of
YD and YS.

Score Statistics

The three score statistics (Tang and Siegmund 2001;
Putter et al. 2002; Wang and Huang 2002) are very
similar to each other and very similar to the regression-
based method of Sham and Purcell (2001), and they have
the important advantage of having natural extensions to
larger sibships. The score statistics are based on more
or less the same likelihood used for variance compo-
nents, but they are “robustified” through use of an em-
pirical variance estimate in the denominator of the sta-
tistic. (It is also possible to use the score statistics without
the empirical variance estimate, in which case they are
essentially equivalent to variance components but are
computationally simpler.) Tang and Siegmund’s (2001)
version of the score statistic is

1� 2 p � A( )i i2

,
1 2�� A�2 i

where Ai is the same function defined above for Sham
and Purcell’s (2001) method. (Note that there are minor
errors in the formulas for this score statistic in both the
article by Feingold [2001] and the one by Tang and
Siegmund [2001].) The other score statistics are similar,
but there are minor differences among them. One dif-
ference that might be important is whether the factor

is used in the denominator, as shown above, or�1/ 2
whether the empirical standard deviation of ( )p � 1/2i

is used, instead. It is also possible to make the statistic
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even more empirical, by using instead of 1/2 to nor-p̄

malize pI in both numerator and denominator.

Comparison of the New Methods

I have three primary criteria for evaluating the QTL
mapping statistics (and, indeed, just about any statistic).
The first is the power of the statistic under ideal con-
ditions, which, for the QTL-mapping problem, means a
population sample from a trait that is approximately
normally distributed. The second criterion is robustness
of the type I error—that is, is the type I error level of
the test correct regardless of the characteristics of the
data? The third criterion is the robustness of the
power—that is, when the trait is not normally distrib-
uted and/or we do not have a population sample, is the
statistic still powerful?

For the first criterion, variance components sets the
standard. It is probably possible to eke out a little more
power than variance components does, but not much
more. Therefore, all of the methods are judged by
whether their power equals that of variance components
for population samples from normally distributed traits.
On the second and third criteria (robustness of the type
I error and of the power), variance components per-
forms very poorly. When assumptions are violated, the
type I error can be very wrong and the power can be
very low. The regression t test, on the other hand, has
type I error that is quite robust to deviations from nor-
mality for reasonably sized samples. Miller (1986) pres-
ents a general statistical discussion of this property, and
Tang and Siegmund (2001) make remarks specific to
the QTL-mapping setting. The robustness of the power
of the t test in the presence of nonnormality is not as
well-guaranteed as the robustness of the type I error
(Miller 1986), though it theoretically should be better
than variance components.

To be precise, I should point out that the normality
assumption in regression is actually that the residuals
of the regression equation are normally distributed. In
fact, the Haseman-Elston method departs substantially
from the regression normality assumption, because if
the environmental variance in the trait model is nor-
mally distributed, then the squared trait difference (and,
thus, the residuals of the regression) will have a fairly
skewed distribution. Similarly, the normality assump-
tion in the variance components model is that the trait
distribution within families is multivariate normal,
given the IBD configuration; however, in fact, we depart
from this in standard applications, because we are really
hoping that the conditional distribution given the ge-
notype at the major locus is Gaussian. In practice, this
does not seem to have an adverse effect on the power.

Criterion #1: Power for a Population Sample from a
Gaussian Trait Distribution

The regression-based methods of Xu et al. (2000),
Forrest (2001), Sham and Purcell (2001), and Visscher
and Hopper (2001), as well as the three score statistics,
are all essentially equivalent to variance components for
large population samples from approximately Gaussian
distributions. The original Haseman-Elston (1972) and
the trait-product regression proposed by Drigalenko
(1998) and Elston et al. (2000) both have lower power
for certain trait distributions, because of the suboptimal
weighting of the information from the squared trait sum
and the squared trait difference. This is the cause of the
now fairly well-known fact that the “revised Haseman-
Elston” regression is more powerful than the original
Haseman-Elston when the sib correlation is small but is
less powerful when the correlation is large (e.g., see Pal-
mer et al. 2000; Forrest 2001).

Criterion #2: Robustness of the Type I Error

All of the regression-based methods have type I error
that is robust to departures from assumptions, at least
for large sample sizes. As I discussed above, this is an
intrinsic property of the regression procedure. The
method proposed by Forrest (2001) departs slightly from
standard regression methods, but limited studies of my
own have shown it to have robust type I error. The score
statistics should also have robust type I error, although
they should be used with an empirical variance of the
IBD estimate (as discussed above) to protect the type I
error when markers are not fully informative.

Criterion #3: Power for Selected Samples and/or Non-
Gaussian Trait Distributions

There are several factors that affect the robustness of
the power. Probably the most important issue is the fact
that Xu et al. (2000), Forrest (2001), and Visscher and
Hopper (2001) weight the two slope estimates through
use of empirical variance estimates, whereas Sham and
Purcell (2001) and all of the score statistics use weights
based on the sibling trait correlation. I would expect the
latter approach (i.e., that of Sham and Purcell [2001]
and the score statistics) to be more powerful when one
has a population sample phenotyped (if not genotyped),
so that it is possible to get a good estimate of the sib
correlation. If one is not in a position to estimate the
sib correlation from one’s own sample or from previous
studies, the methods of Xu et al. (2000), Forrest (2001),
and Visscher and Hopper (2001) should do better. This
certainly deserves empirical study to verify my guesses,
however.

A second factor affecting the robustness of the power
is whether the method allows for a covariance between
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the two slope estimates. Xu et al.’s (2000) method is the
only one that does so. This issue has been the source of
a great deal of confusion, even among those developing
the methods, so I will briefly clarify the theory here. First,
under any statistical model whatsoever, the (unsquared)
trait sum and (unsquared) trait difference are uncorre-
lated. If the sib-pair trait values are a random sample
from a bivariate normal distribution, then the unsquared
sum and unsquared difference are also bivariate normal.
If two bivariate normal variables are uncorrelated, they
are independent. If they are independent, then any func-
tions of them are independent. The slope estimates from
the two regressions are such functions. Thus, if the trait
values are bivariate normal, the two slope estimates are
independent. However, if the trait values are not bivar-
iate normal (because of either their basic distribution or
selected sampling), we do not have independence of the
sum and difference and, thus, do not have independence
of the slope estimates.

Yet a third factor is that all of the new methods require
that one specify the overall trait mean, m. It appears that,
for highest power, this should always be the population
trait mean, even when one is not using a population
sample. Again, this issue deserves further study. I note
that in some selected sampling situations, an appropriate
population estimate might not be available, which raises
the interesting question of whether the original Hase-
man-Elston (the only method that does not require an
estimate of m) might actually have an advantage in such
situations. Wang et al. (2001) suggest the use of a family-
wise mean rather than an overall population mean. They
show that this is powerful when there is etiological het-
erogeneity—for example, when there are family-wise co-
variates. They apply this idea to trait-product regression,
but it would be interesting to study its behavior when
it is incorporated into the other methods.

Some of the methods additionally require that one
specify the trait variance. Again, this should probably
be the population value.

How Do the Methods Handle More Than Two
Siblings?

A final item that should be mentioned is how the sta-
tistics are extended to larger sibships. Forrest (2001),
Sham and Purcell (2001), and Visscher and Hopper
(2001) developed their methods only for sibling pairs.
Xu et al. (2000) extended their method to larger sibships
through use of generalized estimating equations with an
independent working model. Elston et al. (2000) pro-
posed to handle larger sibships by directly calculating
covariances between pairs. In addition, the score tests
are very similar to Sham and Purcell’s (2001) method,
but they extend to larger sibships. In general, the dif-
ferent methods for handling larger sibships are not

equivalent and not well studied. This is a very important
area for future work, since it is well established that
large sibships are more powerful than small ones for
QTL mapping.

The Bottom Line

There is no reason to use the original Haseman-Elston
or trait-product (Drigalenko 1998; Elston et al. 2000)
regression. If you have a perfect population sample from
a normally distributed trait, all of the other methods
(including variance components) should be about equiv-
alent. If you are in a situation where substantial de-
partures from normality are likely, don’t use variance
components, Forrest’s (2001) method, or Visscher and
Hopper’s (2001) method. The best choice for such data
should be Sham and Purcell’s (2001) method or a score
statistic, if you can get a population estimate of the sib
correlation; otherwise, Xu et al.’s (2000) method is prob-
ably the best option. This is the best advice I have to
offer right now, but, as I said above, many details remain
to be studied.

The Current Contribution by Sham et al.

Since all of the new methods discussed above are only
applicable to sibships, we are still left with the need to
develop robust methods for extended pedigrees. Sham
et al. (2002 [in this issue]) offer us such a method. The
basic idea is to reverse the original Haseman-Elston par-
adigm and regress the IBD sharing on an appropriate
function of the trait values. The actual regression that
is performed is a multivariate (not multiple) regression,
within each family, of the pairwise IBD sharing scores
on the pairwise squared sums and squared differences.
This yields an estimate of the additive genetic variance,
and those estimates can be combined across families in
a natural way. This method is computationally man-
ageable (that is, it should be much faster than variance
components) and is implemented in the software pack-
age Merlin (Abecasis et al. 2002). However, it is math-
ematically complex enough that not all of its properties
are readily apparent. Sham et al. (2002 [in this issue])
provide extensive simulation results, which suggest that
the method does indeed have many of the properties we
would like.

Their first simulation (their table 2) is of the type I
error for population samples from an approximately
normal distribution, and it shows, as would be ex-
pected, that their test has correct type I error. The second
simulation (their table 3) examines the power of the test
for population samples from an approximately normal
distribution. For sib pairs, the power is very similar to
that of variance components. For larger sibships, they
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actually see higher power than variance components.
The third simulation (their table 4) looks at selected
sampling. The type I error is correct in this case, and
the power appears to be reasonable, although there is
no comparison with any other method. The fourth sim-
ulation (their tables 5 and 6) looks at nonnormally dis-
tributed traits. The type I error rate is inflated in some
cases. It appears that it is correct asymptotically but
that fairly large sample sizes are needed for the asymp-
totics to hold (see the article for more detail). Some
power is definitely lost when dealing with a nonnor-
mally distributed trait, although, again, it is a little hard
to judge this without comparison to other methods. The
fifth simulation (their fig. 2) looks at the effect of mis-
specification of the population trait parameters. The
type I error appears to be robust to this. Misspecification
of the mean has a large effect on power, whereas mis-
specification of the variance or heritability does not.
(Perhaps this is also true for the methods I discussed
above?) The final simulation (their table 7) looks at
cousin pedigrees instead of sibships, and it verifies that
the type I error is mostly correct (see below for further
discussion) and that the power is equal to that of var-
iance components.

This method is an important step toward what I think
will be the next generation of human QTL-mapping
methods. It solves many of the major problems that
have been outstanding. Of course, it still needs further
study, and there are some situations in which there may
be problems. In particular, as Sham et al. (2002 [in this
issue]) note in their discussion, there is some hint of
inflated type I error when there are small sample sizes,
nonnormal trait distributions, or highly skewed contri-
butions from some pedigrees. This leads me to wonder
whether this method will indeed turn out to be appro-
priate for a study that consists of, say, a few very large
pedigrees. However, the method is computationally easy
enough that P values for such a study could be com-
puted quickly by simulation, which means it may still
be an improvement over variance components. An ad-
ditional minor concern about applying this method to
very large pedigrees is that one must specify the cor-
relation between each type of relative pair. The results
of Sham et al.’s (2002 [in this issue]) simulations suggest
that it will be good enough if these correlations can be
specified fairly approximately, but this issue probably
deserves further scrutiny.

A final obvious question is whether this method
makes the sibship methods discussed above obsolete.
That is, for sibship data, should one use this method
or one of the previous ones? The power results in table
3 of Sham et al. (2002 [in this issue]) certainly suggest
that this method might be a significant improvement
over all the previous methods. However, we have not
actually seen power comparisons between this method

and the others for selected samples and/or nonnormally
distributed traits. It is also not clear whether the type
I error is as robust as that of the previous methods.
Therefore, I don’t think we can answer this question
yet.
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