
Bayesian community-wide culture-independent microbial source
tracking

Dan Knights1, Justin Kuczynski2, Emily S. Charlson3,4, Jesse Zaneveld2, Michael C.
Mozer1, Ronald G. Collman3, Frederic D. Bushman3, Rob Knight5,6, and Scott T. Kelley7

1Department of Computer Science, University of Colorado, Boulder, Colorado, USA
2Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder,
Colorado, USA
3Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia,
Pennsylvania, USA
4Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia,
Pennsylvania, USA
5Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
6Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
7Department of Biology, San Diego State University, San Diego, California, USA

Abstract
Contamination is a critical issue in high-throughput metagenomic studies, yet progress towards a
comprehensive solution has been limited. We present SourceTracker, a Bayesian approach to
estimating the proportion of a novel community that comes from a set of source environments. We
apply SourceTracker to new microbial surveys from neonatal intensive care units (NICUs),
offices, and molecular biology laboratories, and provide a database of known contaminants for
future testing.

Advances in sequencing technology and informatics, including the MIxS (Minimum
Information about any (x) Sequence) metadata standards, are producing an exponential
increase in data acquisition and integration. These advances are revolutionizing our
understanding of the roles microbes play in health and disease, biogeochemical cycling, etc.
Although considerable attention has been paid to reducing sources of error from PCR1 and
sequencing2, sample contamination has been relatively unstudied. Preparing contaminant-
free DNA is challenging, and the sensitivity of PCR and whole-genome amplification
methods means that even trace contamination can become a serious issue3. Ideally,
computational methods could identify both the source and quantity of contamination, and
could help prevent future instances. Furthermore, accurately estimating the proportion of
contamination from a given source environment would have far-reaching applications in
source tracking for forensics, pollution, public health, etc.
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We have developed SourceTracker, a Bayesian approach to identifying sources and
proportions of contamination in marker-gene and functional metagenomics studies. Our
approach models contamination as the mixture of entire source communities into a sink
community, where the mixing proportions are unknown. Previous approaches to microbial
source tracking (MST) have focused on detection of fecal contamination in water4–6, limited
to detection of predetermined indicator species and custom-tailored biomarkers from source
communities. One notable exception7 uses community structure to measure similarity
between sink samples and potential source environments. Other prior work uses data-driven
identification of indicator species, but lacks a probabilistic framework8. SourceTracker’s
distinguishing features are its direct estimation of source proportions, and its Bayesian
modeling of uncertainty about known and unknown source environments.

We also present barcoded pyrosequencing datasets of bacterial 16S ribosomal RNA gene
sequences covering surface contamination in office buildings, hospitals, and research labs,
and reagents used for metagenomics studies (Supplementary Table 1; data collection
described in Online Methods). Using SourceTracker, we compared these data to published
datasets from environments likely to be sources of indoor contaminants, namely human skin,
oral cavities, and feces9, and temperate soils10 (Supplementary Table 2). We treated these
natural environments as sources contributing organisms to the indoor sink environments
through natural migration (as with office samples) or inadvertent contamination (as with no-
template PCR controls) (schematic in Supplementary Fig. 1).

Although qualitative assessment of source and sink similarities can be performed by
visualizing UniFrac distances11 (Supplementary Fig. 2), or taxon relative abundance
(Supplementary Fig. 3), they cannot tell us the proportion of each sink sample (e.g., a cotton
swab) comprising taxa from a known source environment (e.g., soil). The problem would be
trivial if source and sink environments shared no taxa, but usually some taxa are shared.
Source tracking methods must therefore leverage potentially useful information contained in
the abundance of species with low or moderate source environment endemicity.

Previous work uses probabilistic indicator species for naïve Bayes estimation6. Although
naïve Bayes actually estimates the probability that each source generated the entire sink
sample, these probabilities can sometimes act as proxies for the proportions of the sink
contributed by each source. We compared the accuracies of naïve Bayes and SourceTracker
as we varied the distributions of taxa in two simulated source environments from perfectly
identical to perfectly non-overlapping (Fig. 1). Naïve Bayes was accurate when
disambiguation is easy, but inaccurate elsewhere. SourceTracker performed well even when
disambiguation is difficult (R2 ≥ .8, Jensen-Shannon divergence ≥ 0.05; Fig. 1). We also
evaluated the accuracy of the random forests (RF) classifier used in previous source-tracking
work7. Like naïve Bayes, RF estimates the probability that the entire test sample came from
a single source, but these probabilities are often reasonable estimates of the mixing
proportions for source tracking purposes. RF generally performed better than naïve Bayes,
but worse than SourceTracker. SourceTracker outperforms these methods because it allows
uncertainty in the source and sink distributions, and because it explicitly models a sink
sample as a mixture of sources.

The Bayesian approach requires consideration of all possible assignments of the test sample
sequences to the different source environments, but direct exploration is intractable.
Fortunately, we can explore this joint distribution using Gibbs sampling, a technique widely
used in the exploration of complex posterior distributions in applications like topic
modeling12. Community-wide source tracking is analogous to inferring the mixing
proportions of conversation topics in a test document, except that the source environment
distributions over taxa (topic distributions over words) are known from the training data, and
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each test sample may contain taxa from an unknown, uncharacterized source. The
application of Gibbs sampling to topic modeling has been discussed in detail previously13.

SourceTracker considers each sink sample x as a set of n sequences mapped to taxa, where
each sequence can be assigned to any one of the source environments v ∈ {1..V}, including
an Unknown source. These assignments are treated as hidden variables, denoted zi=1..n ∈
{1..V}. To perform Gibbs sampling, we initialize z with random source environment
assignments, and then iteratively re-assign each sequence based on the conditional
distribution:

where mtv is the number of training sequences from taxon t in environment v, nv is the
number of test sequences currently assigned to environment v, and ¬i excludes the ith

sequence. The first fraction gives the posterior distribution over taxa in the source
environment; the second gives the posterior distribution over source environments in the test
sample. Both are Dirichlet distributions, and Gibbs sampling allows us to integrate over their
uncertainty. The Dirichlet parameters, α and β, act as imaginary prior counts that smooth the
distributions for low-coverage source and sink samples, respectively. They also allow
Unknown source assignments to accumulate when part of a sink sample is unlike any of the
known sources. By inferring source proportions for multiple sink samples simultaneously,
we can allow them to share an Unknown source. We could also include several Unknown
sources. Full details and an overview of Gibbs sampling are provided in our Online
Methods.

For each of our indoor sink environments, we used SourceTracker to estimate the proportion
of bacteria from Gut, Oral, Skin, Soil, and Unknown (i.e., one or more sources absent from
the training data) (Fig. 2 and Supplementary Figs. 4 and 5). In general, wet-lab surface
communities tended to be composed mainly of bacteria from Skin and Unknown, with the
exception of PCR water, which was generally more similar to Gut. NICU and office
communities were dominated by Skin bacteria, except for two Arizona samples dominated
by Soil bacteria and several telephone samples dominated by Oral bacteria. From these
results we can also determine the most common contaminating taxa (Fig. 3).

For low-coverage sink samples, or when source environments lack a “core” set of taxa,
SourceTracker will report high variability in the proportion estimates (Fig. 2). In some data
sets, variation within each source environment (the “non-core” taxa) might be accounted for
by using phylogenetic information, by automatically identifying distinct niches within the
broader source environment, by modeling postmixture population dynamics, or by modeling
potential biases inherent in the DNA extraction procedures used; these are important
directions for future work. SourceTracker also assumes that an environment cannot be both
a source and a sink, and we recommend research into bi-directional models.

SourceTracker can also be used to detect low-level contamination, with sensitivity adjusted
by the prior parameter β. For simulations with 1% and 5% contamination, SourceTracker
achieved nearly perfect specificity for a wide range of sensitivities, demonstrating that it is
not restricted to low-biomass sink environments where contamination rates are likely to be
higher (area under the receiver operating characteristic curve = .971 for 1%, .989 for 5%;
Supplementary Fig. 6).
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Based on our results, simple analytical steps can be suggested for tracking sources and
assessing contamination in newly acquired data sets. Although source-tracking estimates are
limited by the comprehensiveness of the source environments used for training, large-scale
projects such as the Earth Microbiome Project will dramatically expand the availability of
such resources. SourceTracker is applicable not only to source tracking and forensic analysis
in a wide variety of microbial community surveys (e.g., “where did this biofilm come
from?”), but also to shotgun metagenomics and other population genetics data. We have
made our implementation of SourceTracker available as an R package (http://
sourcetracker.sf.net), and we advocate automated tests of deposited data to screen samples
that may be contaminated prior to deposition.

ONLINE METHODS
Data collection

We collected the Office samples from surfaces in 54 offices in three different office
buildings (18 per building) located in New York, NY; San Francisco, CA; and Tucson, AZ,
respectively (Hewitt, K.M., Gerba, C.P., Maxwell, S.L. & S.T.K., unpub. data). In each
office, we sampled the same two surfaces, phone and chair, by swabbing approximately 13
cm2 with dual tip sterile cotton swabs (BBL CultureSwab™, catalog # 220135). Phone and
chairs had already been determined by culture-based methods to be the most contaminated
surfaces in these offices (unpub. data). We also collected samples from surfaces in two
different large Level three Neonatal Intensive Care Units (NICUs) in San Diego, CA using
the same methods. After sampling, we stored swabs in sterile-labeled tubes, placed them on
ice and shipped them overnight, or drove them directly to the lab for DNA extraction.

For the Lab 1 and Lab 2 data sets, we cut sterile nylon-flocked swabs (Copan) and swabs of
sterile scissors into MoBio 0.7 mm garnet bead tubes (Mo Bio Laboratories) using
autoclaved and flamed scissors in a biosafety cabinet, placed them at −80°C within 1 hour,
and stored them for <1 week prior to DNA extraction.

For the Lab 3 data set, we used sterile nylon-flocked swabs (Copan) to sample indoor
surfaces including desktops, lab benches, windowsills, a keyboard, and a door handle over a
three-month period from January-March 2010 in Philadelphia, PA. We cut swabs into
MoBio 0.7 mm garnet bead tubes (Mo Bio Laboratories) using autoclaved and flamed
scissors in a biosafety cabinet, placed them at −80°C within 1 hour, and stored them for <1
week prior to DNA extraction.

DNA extraction, PCR, and pyrosequencing
For the Office and NICU samples, we removed the cotton from the swab using a flame-
sterilized razor blade and deposited the cotton threads into a lysozyme reaction mixture. The
reaction mixture had a total volume of 200 µl and included the following final concentration:
20 M Tris, 2 mM EDTA (pH 8.0), 1.2% P40 detergent, 20 mg ml-1 lysozyme, and 0.2 µm
filtered sterile water (Sigma Chemical Co.). We incubated the samples in a 37°C water bath
for thirty minutes. Next, we added Proteinase K (DNeasy Tissue Kit, Qiagen Corporation)
and AL Buffer (DNeasy Tissue Kit, Qiagen Corporation) to the tubes and gently mixed
them. We incubated the samples in a 70°C water bath for 10 min. We subjected all samples
to purification using the DNeasy Tissue Kit. Following extraction, we quantified the DNA
using a NanoDrop ND-1000 Spectrophotometer (NanoDropTechnologies). PCR barcoded
primers and conditions were previously described14. PCR purification, dilutions and
pyrosequencing (FLX) were all conducted by the core facility at the University of South
Carolina (Environmental Genomics Core Facility).
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For the Lab 1 and Lab 2 data sets, we extracted genomic DNA from swabs using the
QIAamp DNA Stool Minikit (Qiagen) with the following modifications. We added 1500 ul
of ASL buffer and 5mM DTT to the nylon tips of frozen swabs. We beadbeat tubes with
BioSpec Products Inc. Minibeadbeater-16 for 1 min. and incubated at 95 °C for 10 min. We
performed the remaining steps as per manufacturer protocol. We performed PCR
amplification of 16S rRNA genes using the V1V2 primers and conditions described in Wu
et al.15 in duplicate. We quantified purified amplicons using Quant-iT PicoGreen kit
(Invitrogen) and pooled them in equimolar ratios. We also performed PCR on molecular
biology grade water (Sigma) and included it in the pool. We carried out pyrosequencing
using primer A and the Titanium amplicon kit on a 454 Life Sciences Genome Sequencer
FLX instrument (Roche).

For the Lab 3 data set, we extracted genomic DNA from swabs using the same extraction kit
and technique as Lab 1 and 2 above. We performed PCR amplification of 16S rRNA genes
using the V1V2 primers and conditions described in Wu et al., 2010. We quantified purified
amplicons using Quant-iT PicoGreen kit (Invitrogen) and pooled them in equimolar ratios.
We also performed PCR on molecular biology grade water (Sigma) and included it in the
pool. We carried out pyrosequencing using primer A and the Titanium amplicon kit on a 454
Life Sciences Genome Sequencer FLX instrument (Roche).

We provide the DNA barcodes and primers for all samples collected in a supplementary
table (Supplementary Table 1).

Combined preprocessing of contamination data sets
We processed the DNA sequence data for all source and sink samples in combination using
the QIIME pipeline16. In order to avoid bias, we selected subsets of the same size (45
samples) from each of the four source environments (Supplementary Table 2). We
sequenced samples in multiplex using error-correcting nucleotide barcodes, and we used
QIIME to demultiplex the samples and perform quality filtering. We then used flowgram
clustering17 to remove sequencing noise. We clustered similar sequences (≥ 97% similarity)
into OTUs with uclust18, and assigned taxonomic identity to each OTU using the Ribosomal
Database Project’s taxonomy assignment tool19. We aligned representative sequences from
each OTU against the greengenes reference ‘core set’ of 16S rRNA gene sequences (http://
greengenes.lbl.gov). We then removed likely chimeric PCR products using Chimera
Slayer20. We used the remaining aligned sequences to construct a phylogeny relating the
sequences, via FastTree21.

Identification and removal of Chimeras
As noted above, we removed likely chimeric PCR products using Chimera Slayer20. Note
that we first aligned representative sequences from each OTU to the greengenes core set.
Any OTU not aligning to the greengenes core set at > 75% identity to the nearest BLAST hit
in the core set was discarded. These discarded sequences may contain chimeras, as well as
other artifacts. However, once completed we also used Chimera Slayer to screen the
resulting sequences for chimeras. The number of chimeras removed were: 58 sequences
from Lab 1 samples (4%), 105 from Lab 2 (4%), 4208 from Lab 3 (5%), 422 from Office
(0.3%), and 1365 from NICU (0.6%).

Principal Coordinates Plots
After randomly selecting 500 sequence reads per sample and dropping low-coverage
samples to control for sequencing effort, we used UniFrac11 to measure the phylogenetic
dissimilarity of all samples and performed Principal Coordinates Analysis (PCoA) on the
matrix of unweighted UniFrac distances using QIIME16.
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Gibbs sampling overview
To begin the Gibbs sampling procedure we assign each sequence to a random source
environment. We assume that these assignments are correct (even though they are random),
and tally the current proportions of the source environments in the test sample. We then
remove one sequence from the tallies and re-select its source environment assignment,
where the probability of selecting each source is proportional to the probability of observing
that sequence’s taxon in that source, multiplied by the current estimate of the probability of
observing that source in the test sample. After the re-assignment, we update the tally for the
selected source environment, and repeat the process on another randomly selected sequence.
After we have re-assigned all of the sequences many times in this manner, each set of
assignments we observe is a representative draw from the distribution over all possible
sequence-source assignments. To estimate the variability of this distribution, we can repeat
the procedure as many times as we like, and we can report summary statistics for the mixing
proportions or even visualize their distributions directly (Fig. 2c).

Dirichlet prior parameters
A larger value of β causes a smoother posterior distribution over environments in the sink
sample. This is valuable when we want to avoid overfitting in sink samples with few
sequences. By assigning different relative values of β to each environment, we can also
incorporate prior knowledge about the expected distribution of source environments in our
sink samples. α represents a prior count of each taxon in each source environment. This
allows taxa that are unlikely under the known source environment distributions to
accumulate in an Unknown environment during the sampling procedure. In order to simplify
the choice of values for α and β, we treat them as prior counts relative to the number of
sequences in the test sample, rather than absolute prior counts. For all inferences performed
in this paper, we set both α and β to 0.0001. We use a separate and larger value of α (0.1) for
the prior counts of each taxon in the Unknown environment, in order to prevent that
environment from overfitting each individual test sample. If we had a prior belief that some
of the test samples shared the same Unknown environment, we could perform inference on
them jointly, and reduce this separate α value accordingly.

As is typical in Gibbs sampling, we first performed a set of “burn-in” passes (25 passes)
through the entire set of sequences in a data sample before drawing a mixture sample from
the joint posterior. We also re-started the entire sampling process with new random hidden
variable values 100 times, thereby collecting a total of 100 samples from the posterior
distribution for each sample. Each iteration on a sink sample with V source environments
requires O(V2n) operations. Before running Gibbs sampling, we rarefied all samples to an
artificial sequence depth of 1,000. We kept any samples whose original sequence depth was
less than 1,000 at that lower depth.

Simulations
For the comparison of SourceTracker to naïve Bayes and Random Forests22 (Fig. 1), we
simulated two source environments with varying degrees of overlap in their distribution over
taxa by defining a single uniform Dirichlet prior over 100 taxa with varying concentration
levels, and drawing two multinomial distributions from it. By varying the concentration
parameter, we were able to control the degree of overlap between the two multinomials. The
simulation procedure (Supplementary Fig. 7) was repeated three times.

For the application of SourceTracker with Gibbs sampling to the detection task, we used all
of the Gut and Skin training samples to estimate the multinomial distribution over taxa in
each environment. To generate “contaminated” samples, we drew 100 simulated samples
from each environment at sequencing depth 1,000 and mixed them together with 1% (or 5%)
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Skin and 99% (or 95%) Gut. We also generated 100 pure Gut samples at depth 1,000. We
then ran SourceTracker as described above to estimate the proportion of Skin taxa in the
simulated Gut samples. We used a contamination threshold of one-half of the contamination
rate, and varied the Dirichlet parameter β to adjust the sensitivity of the model (higher β
means higher sensitivity). For each value of β, with its corresponding level of sensitivity, we
measured the specificity of the contamination predictions made by SourceTracker, and
plotted the series of values as receiver operating characteristic curves (Supplementary Fig.
6a—b).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of SourceTracker and alternative models
Three models were used to estimate the proportions of two source environments in a set of
simulated samples, as the degree of overlap between the environments was varied from a
Jensen-Shannon divergence (JSD) of 0 (completely identical, and thus impossible to
disambiguate), to a JSD of 1 (completely non-overlapping, and thus trivial to disambiguate).
The coefficients of determination (R2) of the estimated proportions are plotted. Each point
represents the mean R2 for three trials of 100 samples each; error bars show s.e.m. (n = 3).
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Figure 2. SourceTracker proportion estimates for a subset of sink samples
Source environment proportions were estimated using SourceTracker and 45 training
samples from each source environment. (a) Pie charts of the mean proportions for 100 draws
from Gibbs sampling. (b) Bar charts for three samples including standard deviations of the
proportion estimates. (c) Direct visualization of 100 Gibbs draws for the samples in (b);
each column shows the mixture from one draw, with columns sorted by the most prevalent
source. The first sample, Lab 1: PCR water 1, shows several possible mixtures: all
Unknown; Gut and Skin (most common); and Gut and Soil. The second sample shows poor
disambiguation between Gut, Skin, and Unknown. Most mixtures were stable like the third
sample; the first two were chosen for demonstrative purposes.
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Figure 3. Relative abundance of common contaminating operational taxonomic units (OTUs)
For all sink sequences assigned to a known source environment (Gut, Oral, Skin, or Soil) by
SourceTracker, these ten OTUs had the highest average relative abundance across sink
environments. Note that the OTU classified as Enterobacter, a lineage commonly seen in the
gut, was more prevalent in the Skin training samples than the Gut training samples.
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