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Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods
had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or
abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component
analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel,
using particle swarm optimization (PSO) to optimize the parameters C and 𝜎. Fivefold cross-validation was utilized to avoid
overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded fromHarvardMedical School website.
The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic
carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer
plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and
cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification
accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of
random selection method. The results showed that the PSO is more effective to build optimal KSVM.

1. Introduction

Magnetic resonance imaging (MRI) is an imaging technique
that produces high quality images of the anatomical struc-
tures of the human body, especially in the brain, and pro-
vides rich information for clinical diagnosis and biomedical
research. The diagnostic values of MRI are greatly magnified
by the automated and accurate classification of the MRI
images.

Wavelet transform is an effective tool for feature extrac-
tion from MR brain images, because they allow analysis of
images at various levels of resolution due to its multires-
olution analytic property. However, this technique requires
large storage and is computationally expensive [1]. In order
to reduce the feature vector dimensions and increase the dis-
criminative power, the principal component analysis (PCA)
has been used. PCA is appealing since it effectively reduces

the dimensionality of the data and therefore reduces the
computational cost of analyzing new data [2]. Then, the
problem of how to classify on the input data comes.

In recent years, researchers have proposed a lot of
approaches for this goal, which fall into two categories. One
category is supervised classification, including support vector
machine (SVM) [3] and 𝑘-nearest neighbors (𝑘-NN) [4].The
other category is unsupervised classification, including self-
organization feature map (SOFM) [3] and fuzzy 𝑐-means [5].
While all these methods achieved good results, yet the super-
vised classifier performs better than unsupervised classifier
in terms of classification accuracy (success classification rate)
[6].

Among supervised classification methods, the SVMs are
state-of-the-art classification methods based on machine
learning theory [7]. Compared with other methods such
as artificial neural network, decision tree, and Bayesian
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network, SVMs have significant advantages of high accuracy,
elegant mathematical tractability, and direct geometric inter-
pretation. Besides, it does not need a large number of training
samples to avoid overfitting [8].

Original SVMs are linear classifiers. In this paper, we
introduced in the kernel SVMs (KSVMs), which extends
original linear SVMs to nonlinear SVM classifiers by apply-
ing the kernel function to replace the dot product form
in the original SVMs [9]. The KSVMs is allowed to fit
the maximum-margin hyperplane in a transformed feature
space. The transformation may be nonlinear, and the trans-
formed space may be high dimensional; thus though the
classifier is a hyperplane in the high-dimensional feature
space, it may be nonlinear in the original input space [10].

The structure of the rest of this paperwas organized as fol-
lows. Section 2 gave the detailed procedures of preprocessing,
including the discrete wavelet transform (DWT) and princi-
pal component analysis (PCA). Section 3 first introduced the
motivation and principles of linear SVM and then extended
it to softmargin, dual from. Section 4 introduced themethod
of PSO-KSVM. It first gave the principles of KSVM and then
used the particle swarm optimization algorithm to optimize
the values of parameters 𝐶 and 𝜎; finally it used 𝐾-fold
cross-validation to protect the classifier from overfitting.
The pseudocodes and flowchart were listed. Experiments in
Section 5 created a dataset brain of 90 brain MR images and
showed the results of each step. We compared our proposed
PSO-KSVM method with traditional BP-NN and RBF-NN
methods. Final Section 6 was devoted to conclusions and
discussions.

2. Preprocessing

2.1. Feature Extraction. The most conventional tool of signal
analysis is Fourier transform (FT), which breaks down a
time domain signal into constituent sinusoids of different
frequencies, thus transforming the signal from time domain
to frequency domain. However, FT has a serious drawback as
discarding the time information of the signal. For example,
analyst cannot tell when a particular event took place from a
Fourier spectrum.Thus, the classification will decrease as the
time information is lost.

Gabor adapted the FT to analyze only a small section of
the signal at a time. The technique is called windowing or
short-time Fourier transform (STFT) [11]. It adds a window
of particular shape to the signal. STFT can be regarded as
a compromise between the time information and frequency
information. It provides some information about both time
and frequency domain. However, the precision of the infor-
mation is limited by the size of the window.

Wavelet transform (WT) represents the next logical step:
a windowing technique with variable size. Thus, it preserves
both time and frequency information of the signal. The
development of signal analysis is shown in Figure 1.

Another advantage of WT is that it adopts “scale” instead
of traditional “frequency,” namely, it does not produce a time-
frequency view but a time-scale view of the signal. The time-
scale view is a different way to view data, but it is a more
natural and powerful way.
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Figure 1: The development of signal analysis.

2.2. Discrete Wavelet Transform. The discrete wavelet trans-
form (DWT) is a powerful implementation of the WT using
the dyadic scales and positions. The basic fundamental of
DWT is introduced as follows. Suppose that 𝑥(𝑡) is a square-
integrable function, then the continuous WT of 𝑥(𝑡) relative
to a given wavelet 𝜓(𝑡) is defined as

𝑊𝜓 (𝑎, 𝑏) = ∫

∞

−∞

𝑥 (𝑡) 𝜓𝑎,𝑏 (𝑡) 𝑑𝑡, (1)

where

𝜓𝑎,𝑏 (𝑡) =

1

√𝑎

𝜓(

𝑡 − 𝑎

𝑏

) . (2)

Here, the wavelet 𝜓𝑎,𝑏(𝑡) is calculated from the mother
wavelet 𝜓(𝑡) by translation and dilation: 𝑎 is the dilation
factor, and 𝑏 is the translation parameter (both real positive
numbers). There are several different kinds of wavelets
which have gained popularity throughout the development
of wavelet analysis. The most important wavelet is the Harr
wavelet, which is the simplest one and often the preferred
wavelet in a lot of applications.

Equation (1) can be discretized by restraining 𝑎 and 𝑏 to a
discrete lattice (𝑎 = 2

𝑏 & 𝑎 > 0) to give the DWT, which can
be expressed as follows:

ca𝑗,𝑘 (𝑛) = DS[∑

𝑛

𝑥 (𝑛) 𝑔
∗

𝑗
(𝑛 − 2

𝑗
𝑘)] ,

cd𝑗,𝑘 (𝑛) = DS [∑

𝑛

𝑥 (𝑛) ℎ
∗

𝑗
(𝑛 − 2

𝑗
𝑘)] .

(3)

Here ca𝑗,𝑘 and cd𝑗,𝑘 refer to the coefficients of the approx-
imation components and the detail components, respec-
tively. 𝑔(𝑛) and ℎ(𝑛) denote the low-pass filter and high-
pass filter, respectively. 𝑗 and 𝑘 represent the wavelet scale
and translation factors, respectively. DS operator means the
downsampling.

The above decomposition process can be iterated with
successive approximations being decomposed in turn, so that
one signal is broken down into various levels of resolution.
The whole process is called wavelet decomposition tree,
shown in Figure 2.

2.3. 2D DWT. In case of 2D images, the DWT is applied to
each dimension separately. Figure 3 illustrates the schematic
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Figure 2: A 3-level wavelet decomposition tree.
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Figure 3: Schematic diagram of 2D DWT.

diagram of 2DDWT.As a result, there are 4 subband (LL, LH,
HH, and HL) images at each scale. The sub-band LL is used
for the next 2D DWT.

The LL subband can be regarded as the approximation
component of the image, while the LH,HL, andHHsubbands
can be regarded as the detailed components of the image. As
the level of decomposition increased, compacter but coarser
approximation component was obtained.Thus, wavelets pro-
vide a simple hierarchical framework for interpreting the
image information. In our algorithm, level 3 decomposition
via Harr wavelet was utilized to extract features.

2.4. Feature Reduction. Excessive features increase compu-
tation times and storage memory. Furthermore, they some-
times make classification more complicated, which is called
the curse of dimensionality. It is required to reduce the
number of features [12].

PCA is an efficient tool to reduce the dimension of a
data set consisting of a large number of interrelated variables
while retaining most of the variations. It is achieved by
transforming the data set to a new set of ordered variables
according to their variances or importance. This technique
has three effects: it orthogonalizes the components of the
input vectors, so that it uncorrelated with each other, it
orders the resulting orthogonal components, so that those
with the largest variation come first, and it eliminates those
components contributing the least to the variation in the data
set.

It should be noted that the input vectors should be
normalized to have zero mean and unity variance before

performing PCA.The normalization is a standard procedure.
Details about PCA could be seen in [13].

3. SVM Classifier

The introduction of support vector machine (SVM) is a
landmark of the field of machine learning [14]. The advan-
tages of SVMs include high accuracy, elegant mathematical
tractability and direct geometric interpretation [15]. Recently,
multiple improved SVMs have grown rapidly, among which
the kernel SVMs are the most popular and effective. Kernel
SVMs have the following advantages [16]: (1) work very well
in practice and have been remarkably successful in such
diverse fields as natural language categorization, bioinformat-
ics, and computer vision; (2) have few tunable parameters;
and (3) training often employs convex quadratic optimization
[17]. Hence, solutions are global and usually unique, thus
avoiding the convergence to local minima exhibited by other
statistical learning systems, such as neural networks.

3.1. Principles of Linear SVMs. Given a 𝑝-dimensional train-
ing dataset of size 𝑁in the form

{(𝑥𝑛, 𝑦𝑛) | 𝑥𝑛 ∈ 𝑅
𝑝
, 𝑦𝑛 ∈ {−1, +1}} , 𝑛 = 1, . . . , 𝑁, (4)

where 𝑦𝑛 is either −1 or 1 corresponding to the class 1 or 2.
Each 𝑥𝑛 is a 𝑝-dimensional vector. The maximum-margin
hyperplane which divides class 1 from class 2 is the support
vector machine we want. Considering that any hyperplane
can be written in the form of

wx − 𝑏 = 0, (5)

where ⋅ denotes the dot product and w denotes the normal
vector to the hyperplane. We want to choose the w and
𝑏 to maximize the margin between the two parallel (as
shown in Figure 4) hyperplanes as large as possible while still
separating the data. So we define the two parallel hyperplanes
by the equations as

wx − 𝑏 = ±1. (6)

Therefore, the task can be transformed to an optimization
problem. That is, we want to maximize the distance between
the two parallel hyperplanes, subject to prevent data falling
into the margin. Using simple mathematical knowledge, the
problem can be finalized as

min
w,𝑏

‖w‖

s.t. 𝑦𝑛 (w𝑥𝑛 − 𝑏) ≥ 1, 𝑛 = 1, . . . , 𝑁.

(7)

In practical situations the ‖w‖ is usually replaced by

min
w,𝑏

1

2

‖w‖
2

s.t. 𝑦𝑛 (w𝑥𝑛 − 𝑏) ≥ 1, 𝑛 = 1, . . . , 𝑁.

(8)

The reason leans upon the fact that ‖w‖ is involved in a
square root calculation. After it is superseded with formula
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Figure 4: The concept of parallel hyperplanes.

(8), the solution will not change, but the problem is altered
into a quadratic programming optimization that is easy to
solve by using Lagrange multipliers and standard quadratic
programming techniques and programs.

3.2. Soft Margin. However, in practical applications, there
may exist no hyperplane that can split the samples per-
fectly. In such case, the “soft margin” method will choose a
hyperplane that splits the given samples as clean as possible,
while still maximizing the distance to the nearest cleanly split
samples.

Positive slack variables 𝜉𝑛 are introduced to measure the
misclassification degree of sample 𝑥𝑛 (the distance between
the margin and the vectors 𝑥𝑛 that lying on the wrong side
of the margin). Then, the optimal hyperplane separating the
data can be obtained by the following optimization problem:

min
w,𝜉,𝑏

1

2

‖w‖
2
+ 𝐶

𝑁

∑

𝑛=1

𝜉𝑛

s.t. { 𝑦𝑛 (w𝑥𝑛 − 𝑏) ≥ 1 − 𝜉𝑛

𝜉𝑛 ≥ 0,

𝑛 = 1, . . . , 𝑁,

(9)

where 𝐶 is the error penalty. Therefore, the optimization
becomes a tradeoff between a large margin and a small error
penalty. The constraint optimization problem can be solved
using “Lagrange multiplier” as

min
w,𝜉,𝑏

max
𝛼,𝛽

{

1

2

‖w‖
2
+ 𝐶

𝑁

∑

𝑛=1

𝜉𝑛

−

𝑁

∑

𝑛=1

𝛼𝑛 [𝑦𝑛 (w𝑥𝑛 − 𝑏) − 1 + 𝜉𝑛] −

𝑁

∑

𝑛=1

𝛽𝑛𝜉𝑛} .

(10)

The min-max problem is not easy to solve, so Cortes and
Vapnik proposed a dual form technique to solve it.

3.3. Dual Form. Thedual formof formula (9) can be designed
as

max
𝛼

𝑁

∑

𝑛=1

𝛼𝑛 −
1

2

𝑁

∑

𝑛=1

𝑁

∑

𝑚=1

𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛𝑘 (𝑥𝑚, 𝑥𝑛) ,

s.t.
{
{
{
{

{
{
{
{

{

0 ≤ 𝛼𝑛 ≤ 𝐶,

𝑁

∑

𝑛=1

𝛼𝑛𝑦𝑛 = 0,

𝑛 = 1, . . . , 𝑁.

(11)

The key advantage of the dual form function is that the
slack variables 𝜉𝑛 vanish from the dual problem, with the
constant 𝐶 appearing only as an additional constraint on
the Lagrange multipliers. Now, the optimization problem (11)
becomes a quadratic programming (QP) problem, which is
defined as the optimization of a quadratic function of several
variables subject to linear constraints on these variables.
Therefore, numerous methods can solve formula (9) within
milliseconds, like interior point method, active set method,
augmented Lagrangian method, conjugate gradient method,
simplex algorithm, and so forth.

4. PSO-KSVM

4.1. Kernel SVMs. Linear SVMs have the downside to linear
hyperplane, which cannot separate complicated distributed
practical data. In order to generalize it to nonlinear hyper-
plane, the kernel trick is applied to SVMs [18]. The resulting
algorithm is formally similar, except that every dot product is
replaced by a nonlinear kernel function. In another point of
view, the KSVMs allow to fit the maximum-margin hyper-
plane in a transformed feature space. The transformation
may be nonlinear, and the transformed space may be higher
dimensional; thus though the classifier is a hyperplane in the
higher-dimensional feature space, it may be nonlinear in the
original input space. For each kernel, there should be at least
one adjusting parameter so as to make the kernel flexible
and tailor itself to practical data. In this paper, RBF kernel is
chosen due to its excellent performance.The kernel is written
as

𝑘 (𝑥𝑚, 𝑥𝑛) = exp(−

󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2𝜎
2

) . (12)

Put formula (12) into formula (11), and we got the final SVM
training function as

max
𝛼

𝑁

∑

𝑛=1

𝛼𝑛 −
1

2

𝑁

∑

𝑛=1

𝑁

∑

𝑚=1

𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛 exp(−

󵄩
󵄩
󵄩
󵄩
𝑥𝑚 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩

2𝜎
2

) ,

s.t.
{
{

{
{

{

0 ≤ 𝛼𝑛 ≤ 𝐶,

𝑁

∑

𝑛=1

𝛼𝑛𝑦𝑛 = 0,

𝑛 = 1, . . . , 𝑁.

(13)

It is still a quadratic programming problem, and we chose
interior point method to solve the problem. However, there
is still an outstanding issue, that is, the value of parameters 𝐶
and 𝜎 in (13).
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4.2. PSO. To determine the best parameter of 𝐶 and 𝜎,
traditionalmethod uses trial-and-errormethods. It will cause
heavy computation burden and cannot guarantee to find
the optimal or even near-optimal solutions. Fei, W. [19] and
Chenglin et al. [20] proposed to use PSO to optimize the
parameters, respectively, and independently. The PSO is a
populated global optimization method, deriving from the
research of the movement of bird flocking or fish schooling.
It is easy and fast to implement. Besides, we introduced in
the cross-validation to construct the fitness function used for
PSO.

PSO performs search via a swarm of particles which is
updated from iteration to iteration. To seek for the optimal
solution, each particle moves in the direction of its previously
best position (𝑝best) and the best global position in the swarm
(𝑔best) as follows:

𝑝best𝑖 = 𝑝𝑖 (𝑘
∗
)

s.t. fitness (𝑝𝑖 (𝑘
∗
)) = min
𝑘=1,...,𝑡

[fitness (𝑝𝑖 (𝑘))] ,

𝑔best = 𝑝𝑖∗ (𝑘
∗
)

s.t. fitness (𝑝𝑖∗ (𝑘
∗
)) = min
𝑖=1,...,𝑃

𝑘=1,...,𝑡

[fitness (𝑝𝑖 (𝑘))] ,

(14)

where 𝑖 denotes the particle index,𝑃 denotes the total number
of particles, 𝑘 denotes the iteration index, and 𝑡 denotes
the current iteration number, and 𝑝 denotes the position.
The velocity and position of particles can be updated by the
following equations:

V𝑖 (𝑡 + 1) = 𝑤V𝑖 (𝑡) + 𝑐1𝑟1 (𝑝best𝑖 (𝑡) − 𝑝𝑖 (𝑡))

+ 𝑐2𝑟2 (𝑔best (𝑡) − 𝑝𝑖 (𝑡)) ,

𝑝𝑖 (𝑡 + 1) = 𝑝𝑖 (𝑡) + V𝑖 (𝑡 + 1) ,

(15)

where V denotes the velocity. The inertia weight 𝑤 is used
to balance the global exploration and local exploitation. The
𝑟1 and 𝑟2 are uniformly distributed random variables within
range (0, 1). The 𝑐1 and 𝑐2 are positive constant parameters
called “acceleration coefficients.” Here, the particle encoding
is composed of the parameters 𝐶 and 𝜎 in (13).

4.3. Cross-Validation. In this paper we choose 5-fold con-
sidering the best compromise between computational cost
and reliable estimates. The dataset is randomly divided into
5 mutually exclusively subsets of approximately equal size, in
which 4 subsets are used as training set, and the last subset
is used as validation set. The abovementioned procedure
repeated 5 times, so each subset is used once for validation.
The fitness function of PSO chose the classification accuracy
of the 5-fold cross-validation:

fitness =

1

5

5

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦𝑠

𝑦𝑠 + 𝑦𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (16)

Here 𝑦𝑠 and 𝑦𝑚 denote the number of successful classification
and misclassification, respectively. PSO is performed to
maximize the fitness function (classification accuracy).

4.4. Pseudocodes of Our Method. In total, our method can be
described as the following three stages, and the flowchart is
depicted in Figure 5.

Step 1 : Collecting MR brain images dataset.
Step 2 : Preprocessing (including feature extraction and fea-

ture reduction).
Step 3 : Fivefolded cross-validation.
Step 4 : Determining the best parameter.

Step 4.1 : Initializing PSO. The particles correspond to 𝐶

and 𝜎.
Step 4.2 : For each particle 𝑖, computer the fitness values.

Step 4.2.1 : Decoding the particle to parameters 𝐶 and
𝜎.

Step 4.2.2 : Using interior method to train KSVM
according to (13).

Step 4.2.3 : Calculating classification error according
to (16) as the fitness values.

Step 4.3 : Updating the 𝑔best and 𝑝best according to (14).
Step 4.4 : Updating the velocity and position of each

particle according to (15).
Step 4.5 : If stopping criteria is met, then jump to Step 4.6;

otherwise return to Step 4.2.
Step 4.6 : Decoding the optimal particle to corresponding

parameter 𝐶∗ and 𝜎
∗.

Step 5 : Constructing KSVM via the optimal 𝐶
∗ and 𝜎

∗

according to (13).
Step 6 : Submitting newMRI brains to the trained KSVM and

outputting the prediction.

5. Experiments and Discussions

The experiments were carried out on the platform of P4
IBM with 3.3GHz processor and 2GB RAM, running under
Windows XP operating system. The algorithm was in-house
developed via the wavelet toolbox, the biostatistical toolbox
of 32 bitMATLAB 2012a (theMathWorks).The programs can
be run or tested on any computer platforms where MATLAB
is available.

5.1. Database. The datasets brain consists of 90 T2-weighted
MR brain images in axial plane and 256 × 256 in-plane
resolution, which were downloaded from the website of
Harvard Medical School (URL: http://www.med.harvard
.edu/aanlib/home.html). The abnormal brain MR images
of the dataset consist of the following diseases: glioma,
metastatic adenocarcinoma, metastatic bronchogenic carci-
noma,meningioma, sarcoma, Alzheimer, Huntington, motor
neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer
plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme
encephalopathy, herpes encephalitis, Creutzfeld-Jakob dis-
ease, and cerebral toxoplasmosis.The samples of each disease
are illustrated in Figure 6.

http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
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Figure 5: Methodology of our proposed PSO-KSVM algorithm.
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Figure 6: Sample of brain MRIs: (a) normal brain; (b) glioma, (c) metastatic adenocarcinoma; (d) metastatic bronchogenic carcinoma; (e)
meningioma; (f) sarcoma; (g)Alzheimer; (h)Huntington; (i)motor neurondisease; (j) cerebral calcinosis; (k) Pick’s disease; (l) Alzheimer plus
visual agnosia; (m) multiple sclerosis; (n) AIDS dementia; (o) Lyme encephalopathy; (p) herpes encephalitis; (q) Creutzfeld-Jakob disease;
and (r) cerebral toxoplasmosis.
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Table 1: Detailed data of PCA.

Number of prin. comp. 1 2 3 4 5 6 7 8 9 10
variance (%) 32.81 44.53 52.35 57.71 61.97 65.02 67.78 70.18 72.46 74.56
Number of prin. comp. 11 12 13 14 15 16 17 18 19 20
variance (%) 76.41 78.2 79.7 81.12 82.27 83.38 84.35 85.29 86.05 86.8
Number of prin. comp. 21 22 23 24 25 26 27 28 29 30
variance (%) 87.53 88.2 88.8 89.35 89.86 90.35 90.84 91.3 91.73 92.15
Number of prin. comp. 31 32 33 34 35 36 37 38 39 40
variance (%) 92.54 92.9 93.24 93.58 93.9 94.21 94.5 94.76 95.02 95.27

Table 2: Methods of comparison between BP-NN, RBF-NN, and PSO-KSVM.

Method Confusion matrix Success Cases Sensitivity Specificity Classification accuracy

BP-NN 374 11

51 14

388 88.0% 56% 86.22%

RBF-NN 393 7

32 18

411 92.47% 72% 91.33%

PSO-KSVM 417 2

8 23

440 98.12% 92% 97.78%
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Figure 7: Illustration of 5-fold cross-validation of brain dataset
(we divided the dataset into 5 groups, and for each experiment, 4
groups were used for training, and the rest one group was used for
validation. Each group was used once for validation).

We randomly selected 5 images for each type of brain.
Since there are 1 type of normal brain and 17 types of
abnormal brain in the dataset, 5∗(1 + 17) = 90 images were
selected to construct the brain dataset, consisting of 5 normal
and 85 abnormal brain images in total.

The setting of the training images and validation images
was shown in Figure 7. We divided the dataset into 5 equally
distributed groups; each groups contain one normal brain

(a) (b)

Figure 8:Theprocedures of 3-level 2DDWT: (a) normal brainMRI;
(b) level 3 wavelet coefficients.

and 17 abnormal brains. Since 5-fold cross-validation was
used, we would perform 5 experiments. In each experiment,
4 groups were used for training, and the left 1 group was
used for validation. Each group was used once for validation.
In total, in this cross validation way, 360 images were for
training, and 90 images were for validation.

5.2. Feature Extraction. The three levels of wavelet decom-
position greatly reduce the input image size as shown in
Figure 8. The top left corner of the wavelet coefficients image
denotes for the approximation coefficients at level 3, of which
the size is only 32× 32 = 1024.The border distortion should be
avoided. In our algorithm, symmetric padding method [21]
was utilized to calculate the boundary value.

5.3. Feature Reduction. As stated above, the extracted features
were reduced from 65536 to 1024 by the DWT procedure.
However, 1024 was still too large for calculation. Thus, PCA
was used to further reduce the dimensions of features. The
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Table 3: Parameters of comparison by random selection method (the final row corresponds to our proposed method).

𝜎 𝐶 Success case Classification accuracy
Random 1 0.625 124.71 410 91.11%
Random 2 1.439 185.13 412 91.56%
Random 3 1.491 136.20 423 94.00%
Random 4 1.595 176.78 409 90.89%
Random 5 1.836 160.80 401 89.11%
Random 6 1.973 137.90 401 89.11%
Random 7 1.654 87.01 396 88.00%
Random 8 1.372 149.96 427 94.89%
Optimized 1.132 143.3 440 97.78%
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Figure 9: The curve of variances against number of principle
components (here we found that 39 features can achieve 95.02%
variances).

curve of cumulative sum of variance versus the number of
principle components was shown in Figure 9.

The variances versus the number of principle components
from 1 to 40 were listed in Table 1. It showed that only
39 principle components (bold font in table), which were
only 39/1024 = 3.81% of the original features, could preserve
95.02% of total variance.

5.4. Classification Accuracy. The KSVM used the RBF as
the kernel function. We compared our PSO-KVSM method
with one hidden-layer Back Propagation-Neural Network
(BP-NN) and RBF-Neural Network (RBF-NN). The results
were shown in Table 2. It showed that BP-NN correctly
matched 388 cases with 86.22% classification accuracy. RBF-
NN correctly matched 411 cases with 91.33% classification
accuracy. Our PSO-KSVM correctly matched 440 brain
images with 97.78% classification accuracy. Therefore, our
method had the most excellent classification performance.

5.5. Parameter Selection. The final parameters obtained by
PSO were 𝐶 = 143.3 and 𝜎 = 1.132. We compared this case
with random selection method, which randomly generated
the values of 𝐶 in the range of (50, 200) and 𝜎 in the range
of [0.5, 2], and then we compared them with the optimized
values by PSO (𝐶 = 143.3 and 𝜎 = 1.132). The results
achieved by random selectionmethodwere shown in Table 3.
We saw that the classification accuracy variedwith the change
of parameters 𝜎 and 𝐶, so it was important to determine the

optimal values before constructing the classifier.The random
selection method was difficult to come across the best values,
so PSO was an effective method for this problem compared
to random selection method.

6. Conclusions and Discussions

In this study we had developed a novel DWT + PCA + PSO-
KSVM hybrid classification system to distinguish between
normal and abnormalMRIs of the brain.Wepicked upRBF as
the kernel function of SVM. The experiments demonstrated
that the PSO-KSVM method obtained 97.78% classification
accuracy on the 5-folded 90-image dataset, higher than
86.22% of BP-NN and 91.33% of RBF-NN.

Future work should focus on the following four aspects.
First, the proposed SVM based method could be employed
for MR images with other contrast mechanisms such as T1-
weighted, proton density weighted, and diffusion weighted
images. Second, the computation time could be accelerated
by using advanced wavelet transforms such as the lift-up
wavelet. Third, Multiclassification, which focuses on brain
MRIs of specific disorders, can also be explored. Forth, novel
kernels will be tested to increase the classification accuracy
and accelerate the algorithm.

The DWT can efficiently extract the information from
original MR images with litter loss. The advantage of DWT
over Fourier transforms is the spatial resolution; namely,
DWT captures both frequency and location information. In
this study we choose the Harr wavelet, although there are
other outstandingwavelets such asDaubechies series.Wewill
compare the performance of different families of wavelet in
future work. Another research direction lies in the stationary
wavelet transform and the wavelet packet transform.

The importance of PCA was demonstrated in the Dis-
cussion. If we omitted the PCA procedures, we meet a
huge feature space (1024 dimensions) which will cause heavy
computation burden and lowered the classification accuracy.
There are some other excellent feature reduction methods
such as ICA, manifold learning. In the future, we will focus
on investigating the performance of those algorithms.

The reason we choose RBF kernel is that RBF takes
the form of exponential function, which enlarge the sample
distances to the uttermost extent. In the future, we will try to
test other kernel functions.
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The importance of introducing PSO is to determine the
optimal values of parameters𝐶 and𝜎. From random selection
method, we found it is hard to get the optimal values at the
parameter space.Therefore, the PSO is an effectiveway to find
the optimal values. Integrating PSO to KSVM enhance the
classification capability of KSVM.

The most important contribution of this paper is the
propose of a hybrid system, integrating DWT, PCA, PSO,
KSVM, and CV, used for identifying normal MR brains from
abnormal MR brains. It would be useful to help clinicians to
diagnose the patients.

References

[1] M. Emin Tagluk, M. Akin, and N. Sezgin, “Classification of
sleep apnea by using wavelet transform and artificial neural
networks,” Expert Systems with Applications, vol. 37, no. 2, pp.
1600–1607, 2010.
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