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Twist1 promotes epithelialemesenchymal transition, invasion, metastasis, stemness, and chemotherapy
resistance in cancer cells and thus is a potential target for cancer therapy. However, Twist1-null mice are
embryonic lethal, and people with one Twist1 germline mutant allele develop SaethreeChotzen
syndrome; it is questionable whether Twist1 can be targeted in patients without severe adverse effects.
We found that Twist1 is expressed in several tissues, including fibroblasts of the mammary glands and
dermal papilla cells of the hair follicles. We developed a tamoxifen-inducible Twist1 knockout mouse
model; Twist1 knockout in 6-week-old female mice did not affect mammary gland morphogenesis and
function during pregnancy and lactation. In both males and females, the knockout did not influence
body weight gain, heart rate, or total lean and fat components. The knockout also did not alter blood
pressure in males, although it slightly reduced blood pressure in females. Although Twist1 is not
cyclically expressed in dermal papilla cells, knockout of Twist1 at postnatal day 13 (when hair
follicles have developed) drastically extended the anagen phase and accelerated hair growth. These
results indicate that Twist1 is not essential for maintaining an overall healthy condition in young
and adult mice and that loss of function facilitates hair growth in adulthood, supporting Twist1 as
a preferential target for cancer therapy. (Am J Pathol 2013, 183: 1281e1292; http://dx.doi.org/
10.1016/j.ajpath.2013.06.021)
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Twist1 is a class B member of the basic helix-loop-helix
(bHLH) transcription factor superfamily. Twist1 forms
heterodimers with class A members of the same super-
family, such as E12 and E47, to bind NdeI E-box DNA
elements to regulate the expression of genes essential for
mesodermal induction and organogenesis.1e3 Human and
mouse Twist1 proteins are highly homologous and share
96% amino acid sequence identity,2,4 suggesting conserved
functions across these species. Duringmouse embryogenesis,
Twist1 mRNA is expressed primarily in mesoderm-derived
tissues, including the somites, the neural crest-derived head
mesenchyme, the first aortic arches, the lateral mesoderm, the
stigative Pathology.

.

second, third, and fourth branchial arches, and both the
anterior and posterior limb buds.4e7 After birth, Twist1
mRNA is expressed in the adult stem cells of the mesen-
chyme.8,9 Twist1 mRNA has also been detected in primary
osteoblastic cells derived from newborn mouse calvariae10

and in both brown and white adipocytes.11,12 However, the
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expression pattern of Twist1 protein in adult mice has not
been well defined.

The critical roles of Twist1 in mesodermal development
have been well illustrated by genetic studies. In humans,
heterozygous TWIST1 gene mutations cause Saethree
Chotzen syndrome (SCS), which is an autosomal dominant
inheritance disease characterized by a broad spectrum of
malformations, including short stature, craniosynostoses,
high forehead, ptosis, small ears with prominent crus, and
maxillary hypoplasia with a narrow and high palate.13e18

Mice with genetic ablation of one of the two Twist1
alleles manifest craniofacial and limb abnormalities resem-
bling those in SCS patients; genetic ablation of both Twist1
alleles results in embryonic lethality.19e22 Although Twist1
is essential for embryonic survival and development, it is not
knownwhether all postnatal SCS symptoms are consequences
of developmental defects, nor whether Twist1 is required
for maintaining normal physiological function in adulthood
after accomplishment of all developmental processes.

Importantly, expression of Twist1 expression is induced in
and associated with many types of aggressive cancers,
including breast,23 prostate,24,25 gastric,26,27 liver,28,29 blad-
der,30,31 esophageal,32,33 and pancreatic cancers.34 Twist1
plays multiple roles in cancer initiation, progression, and
metastasis. Specifically, Twist1 can override the failsafe cell
senescence and apoptotic responses triggered by onco-
genes,35e37 increase cancer cell resistance to endocrine
therapy and chemotherapy,38,39 enhance cancer stem cell
populations,40e42 and facilitate cancer cells to invade and
metastasize.23,43e48 Expression of hypoxia-inducible factor
1a up-regulates Twist1 to promote metastasis.49 Twist1
promotes the epithelialemesenchymal transition (EMT)
process in part by directly repressing E-cadherin and estrogen
receptor-a expression through recruiting the nucleosome
remodeling and deacetylase (NuRD) complex for gene
repression and by up-regulating proteins such as Bmi1,
AKT2, and YB-1.39,46,50e52 Twist1 also promotes Bmi1
expression to enhance self-renewal of cancer stem cells and
promotes PDGFR-a expression to induce invadopodia
formation and promote tumor cell local invasion, intra-
vasation, and extravasation.51,53,54 These studies suggest that
Twist1 may be an important and useful target for controlling
cancer metastasis and enhancing the efficacy of cancer
therapy. However, given the lethal phenotype of Twist1-null
mice, it remains to be evaluated whether inhibition of Twist1
in cancer patients causes any severe health problems.

The process of carcinogenesis from normal epithelial
cells can essentially be considered as a dedifferentiation
process that is commonly associated with the expression of
many genes that are only or predominantly expressed during
early embryonic development. We hypothesize that,
although Twist1 is required for embryonic development and
for cancer cell EMT and metastasis, Twist1 is not essential
for maintaining a generally healthy physiological condition
in the adult organism. To test this hypothesis, we first
examined Twist1 protein distribution in adult mice, then
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developed an inducible knockout model to delete Twist1 in
adult mice at different stages as needed, and finally defined
the effect of Twist1 knockout on physiological functions
after embryonic morphogenesis was fully accomplished.

Materials and Methods

Histological Examination, IHC, IHF, and TUNEL Assay

Mouse tissues were dissected and fixed in a 4% para-
formaldehyde solution at 4�C overnight. After a PBS wash,
the fixed tissues were dehydrated and embedded in paraffin
blocks as described previously.55 Tissue sections (5 mm
thick) were prepared, deparaffinized in xylene, and hydrated
using an ethanol gradient. H&E staining, antigen retrieval,
IHC, and immunohistofluorescence (IHF) were performed
as described previously.55 For immunostaining, sections
were blocked with either 10% normal serum or a M.O.M
mouse-on-mouse immunodetection kit (Vector Laborato-
ries, Burlingame, CA) for 1 hour at room temperature and
incubated with primary antibodies overnight at 4�C. The
primary antibodies were against Twist1 (ab50887; Abcam,
Cambridge, MA), a-smooth muscle actin (a-SMA) (Dako
M0851; Agilent Technologies, Santa Clara, CA), lymphoid
enhancer-binding factor 1 (Lef-1) (C12A5; Cell Signaling
Technology, Danvers, MA), vimentin (ab8978; Abcam), and
Ki-67 (550609; BD Biosciences, San Jose, CA). Secondary
antibodies (Vector Laboratories) were diluted 1:400. The
IHC signal was enhanced using a Vectastain ABC system and
was visualizedwith a peroxidase substrate kit containing 3,30-
diaminobenzidine (Vector Laboratories). Slides were coun-
terstained with Harris modified hematoxylin and mounted
with Permount mounting medium (Thermo Fisher Scientific,
Waltham, MA) for microscopy. For IHF, a tyramide signal
amplification kit (Life Technologies, Carlsbad, CA) was used
according to the manufacturer’s instructions. TUNEL assay
was performed on hydrated mouse skin sections using an
apoptosis detection kit (Upstate; EMD Millipore, Billerica,
MA) according to the manufacturer’s instructions.

Mouse Lines, Mouse Breeding, and Genotype Analysis

The mouse line with floxed Twist1 alleles (Twist1f/f) for
conditional knockout has been described previously56 and
was obtained from Mutant Mouse Regional Resource
Centers (016842-UNC). In this line, two loxP sites were
placed flanking the entire coding region of the Twist1
gene.56 The Rosa26-CreERT2 mouse line has been described
previously57 and was provided by T.L. In this mouse line,
the Rosa26 locus drives the expression of the Cre-ERT2

fusion protein consisting of the Cre recombinase and the
mutant ligand-binding domain of the estrogen receptor
a (ER-a). This mutant ligand-binding domain binds only 4-
hydroxytamoxifen (the active metabolite of tamoxifen), but
not endogenous estrogen. On tamoxifen binding, the Cre-
ERT2 fusion protein translocates into the nucleus from the
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cytoplasm, allowing its Cre recombinase to excise any
floxed DNA fragment in the genome.57 Rosa-CreERT2 and
Twist1f/f mice were crossbred for two generations to gen-
erate Rosa-CreERT2þ/�;Twist1f/f (hereafter referred to as
CreERT2;Twist1f/f or, after tamoxifen treatment, as Twist1D/D)
and Rosa-CreERT2�/�;Twist1f/f (hereafter referred to as
Twist1f/f or control) mice with the same genetic background
for experiments. For analyzing the genotypes of these mice,
genomic DNA samples were extracted from a small piece of
mouse ear tissue to serve as PCR template as described
previously.58 Allele-specific PCR primers were synthesized
and allele-specific PCR reactions were performed as de-
scribed previously.57

Animal protocols were approved by the Animal Care and
Use Committee of Baylor College of Medicine.

Tamoxifen Treatment

Tamoxifen (Sigma-Aldrich, St. Louis, MO) was dissolved in
corn oil (Sigma-Aldrich) at a concentration of 20 mg/mL. For
inducible knockout of thefloxedTwist1 alleles in adultmice, 6-
week-old CreERT2;Twist1f/f and Twist1f/f mice were injected
with 1 mg tamoxifen/day intraperitoneally for five consecutive
days. At 7 days after the last injection, various mouse organs
were collected for examining histology, for assessing Twist1
knockout efficiency by PCR-based genotype analysis after
organ-specific genomic DNA samples were prepared, and
for analyzing Twist1 protein by IHC. The maintenance of
tamoxifen-induced Twist1 knockout efficiency was also
examined by IHC at different time points after tamoxifen
treatment. The body weights of the tamoxifen-treated mice
were measured once a week at different time points. For
analysis of the hair follicle cycle, 13-day-oldCreERT2;Twist1f/f

and Twist1f/f mice were injected with 0.4 mg tamoxifen/day
intraperitoneally for three consecutive days. Dorsal skin spec-
imens were collected at various time points after tamoxifen
treatment for histological examination and immunostaining.

Morphological Analysis of Mouse Mammary Glands

The staining of whole-mounted mammary glands was per-
formed as described previously.59 In brief, whole mammary
glands were dissected out from mice and fixed on glass
slides in Carnoy’s fixative (1:3:7 glacial acetic acide
CHCl3eethanol). They were then hydrated in 70% ethanol,
rinsed in water, and stained overnight in carmine alum, fol-
lowed by dehydration in increasing series of alcohol and
clearing in xylene. The glands were mounted under cover-
slips with Permount.

Body Composition Measurement

Body composition was measured using a PIXImus body
composition and densitometry system (Piximus, Fitchburg,
WI). Mice were weighed on a compact scale (cs200; Ohaus,
Pine Brook, NJ), and body lengths were measured from the
The American Journal of Pathology - ajp.amjpathol.org
nose to the base of the tail. Mice were anesthetized with 2%
isoflurane during the procedure. Data analysis was performed
at the Mouse Phenotyping Core Facility at Baylor College of
Medicine using PIXImus software (version 1.43).

Electrocardiography

A MouseMonitor made by Indus Instruments (Webster, TX)
was used to obtain the ECG data. Its unique integrated pad
incorporates ultra-low noise, high-resolution ECG elec-
tronics and a homeothermic heating pad with a steel plat-
form that supports magnetic accessories. During the
procedure, mice were anesthetized with isoflurane (0.5% to
2%) and placed on the heated pad (37.5�C). Screenshots
with clear wavelengths of ECG and heart rates were recor-
ded by professional staff at the Mouse Phenotyping Core
Facility at Baylor College of Medicine.

Blood Pressure Measurement

The mouse blood pressure was recorded using the nonin-
vasive Mouse and Rat Tail Cuff Blood Pressure System
(IITC Life Science, Woodland Hills, CA). Mice were pre-
trained to adapt to the experimental conditions for blood
pressure measurement. Specifically, mice were placed in
a restrainer for 12 minutes on day 1. On day 2, mice in the
restrainer were placed in a warm chamber (w37�C) for 12
minutes. On day 3, a trial of blood pressure measurement
was performed by mounting the blood pressure cuff on the
mice in the restrainer located in the warm chamber. On day
4, blood pressure data were collected from three rounds of
measurement, each round comprising five tests, for a total of
15 data points. Only those tests providing good signals were
counted for data analysis. The systolic pressure was calcu-
lated by using the manufacturer’s BPMONWIN software
version 1.35 (IITC Life Sciences).

Statistical Analysis

Data are expressed as means � standard deviation (SD). The
unpaired Student’s t-test was used for analysis of statistical
significance. P < 0.05 was considered significant.

Results

Twist1 Protein Is Detected in Only Several Specific
Tissues in Adult Mice

To map the functional sites of Twist1 in adult mice, we
performed IHC on tissue sections prepared from various
organs of 7-week-old mice using a Twist1-specific antibody.
Twist1 protein was not detected in heart, lung, liver, or
kidney (Figure 1A), nor in skeletal muscle, adrenal gland, or
testis (data not shown). Twist1 protein was also not detected
in the epithelial cells of the small intestine, including
the intestinal crypts where epithelial stem cells reside
(Figure 1A).60 Furthermore, Twist1 protein was not detected
1283
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Figure 1 Detectionof Twist1 proteinby immunostaining indifferent tissues of adultmice. Tissuesweredissectedout from7-week-oldwild-typemice andprocessed
for IHC (brown) or IHF (red or green) staining using Twist1 antibody. The sections stained by IHC were counterstained with hematoxylin. DAPI was used as a nuclear
counterstain.Boxed regions are shownenlarged in adjacent panels.A: Twist1 is seen in themeninges of thebrain, but not inheart, lung, liver, kidney, or small intestine.
B: Twist1 is seen in some fibroblast-like cells surrounding the mammary gland duct and terminal end bud (TEB). These Twist1-positive cells do not express a-SMA or E-
cadherin, but do express vimentin. C: Twist1 is detected by IHC in DP cells of the hair follicle and in some cells outside of the outer root sheath above the bulge region of
the hair. Both Twist1 and Lef-1 are seen in DP cells with IHF. Scale bars: 100 mm (A and IHC in B); 20 mm (IHC in B and C; IHF in C).
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in any neuronal or glial cells in the neuronal tissues (data not
shown). It was, however, detected in some cells of the
meninges membrane that envelops the brain (Figure 1A).

Although Twist1 protein was not detected in the mammary
gland epithelial cells, it was detected in the stromal cells
surrounding the mammary gland ducts and terminal end buds
(Figure 1B). These Twist1-positive cells were negative for
the luminal epithelial marker E-cadherin and for the myoe-
pithelial marker a-SMA, but were positive for the fibroblast
marker vimentin (Figure 1B). These results indicate that
Twist1 is expressed in the stromal fibroblast cells of the
mammary gland.

The hair follicle consists of multiple cell types, including
dermal papilla (DP) cells with a mesenchymal origin,
epithelial dividing and differentiating cells located in the
hair matrix, epithelial inner and outer root sheath cells, and
epithelial stem cells located in the bulge region of the outer
root sheath.61 Interestingly, Twist1 protein was specifically
detected in DP cells, an identification that was further sup-
ported by the colocalization of Twist1 and the DP cell
protein Lef-1 in the nuclei of all DP cells (Figure 1C). In
addition, a few Twist1-positive cells were identified in the
connective tissue outside of the outer root sheath above the
bulge region (Figure 1C). Double-IHF staining analysis
revealed that some of these Twist1-positive cells were
positive for the glial cell marker S100B (data not shown),
1284
indicating that some of these cells may be glial cells
wrapping the nerves that regulate the hair follicle.

Inducible Knockout of Twist1 in Adult Mice

To define the physiological function of Twist1 in adulthood
and to test whether Twist1 can be a tolerable in vivomolecular
target for cancer therapy, we generated both the CreERT2;
Twist1f/f experimental mice and the control Twist1f/fmice with
a similar genetic strain background and fully functional floxed
Twist1 alleles but no CreERT2 (Figure 2A). In this system, the
ROSA26 locus directs universal expression of CreERT2 in all
cells of CreERT2;Twist1f/f mice.57 The 6-week-old mice in
both genotype groups were treated with tamoxifen for 5 days.
We then examined the deletion efficiency of the floxed Twist1
alleles on day 7 after the final tamoxifen injection in CreERT2;
Twist1f/f mice versus Twist1f/f control mice by Twist1f

allele-specific and Twist1D allele-specific PCR reactions using
genomic DNA templates prepared from different organs. Only
the Twist1f/f alleles were detected in tamoxifen-treated Twist1f/f

control mice (indicative of the absence of CreERT2 expres-
sion). In contrast, only the Twist1D/D alleles were detected in
the lung, liver, small intestine, kidney, skeletal muscle, skin,
and mammary gland of the tamoxifen-treated CreERT2;
Twist1f/f mice. These data indicate that the floxed Twist1
alleles were effectively and efficiently excised by the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Generation of the inducible Twist1-knockout mouse model. A:
Schematic of the Twist1 wild-type (WT), floxed, and conditionally deleted
alleles. Tamoxifen treatment does not induce the deletion inmicewith only the
Twist1f allele, but does induce deletion in mice with both the Twist1f allele and
the CreERT2 transgene. Exons 1 and 2 are indicated as E1 and E2; loxP sites are
indicated by triangles; cross-breeding is indicated by X. B: Genotype analysis
by PCR using allele-specific primer pairs as shown in panel A. Genomic DNA
samples were prepared from different tissues isolated from WT mice (control),
tamoxifen-treated Twist1f/f mice, and Twist1D/D mice. C: With IHC staining,
Twist1 is detected in the mammary gland and hair follicle cells (arrows) in
tamoxifen-treated 7-week-old Twist1f/f mice, but is absent in tamoxifen-
treated 7-week-old Twist1D/D mice (arrows point to the expected location).
Original magnification, �400.
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tamoxifen-activated CreERT2 in the tissues examined
(Figure 2B). Intriguingly, the Twist1f/f alleles in the heart and
brain of these tamoxifen-treated CreERT2;Twist1f/f mice were
not completely converted into Twist1D/D alleles, suggesting
that the floxed Twist1 alleles in these organs are partially
excised (Figure 2B). However, because Twist1 protein was not
detected in the heart, nor in the neuronal or glial cells of the
brain, this incomplete genetic deletion of the Twist1 gene in
these organs may not significantly affect the assessment of
Twist1 physiological function in adult mice.

Next, we used IHC to compare Twist1 protein expression
in the hair follicles and mammary glands of the tamoxifen-
treated Twist1f/f control and Twist1D/D tester mice on day 7
after the final tamoxifen injection. Consistent with the Twist1
expression pattern in untreated wild-type mice (Figure 1, B
and C), Twist1 protein was detected in some fibroblast cells
of the mammary gland and in hair follicle DP cells, as well as
in some neighboring cells in the tamoxifen-treated Twist1f/f

mice. In contrast, Twist1 protein was absent in these cells in
Twist1D/D mice (Figure 2C). These results demonstrate that
The American Journal of Pathology - ajp.amjpathol.org
Twist1 protein was reliably knocked out in Twist1D/D mice
after tamoxifen treatment.

Inducible Knockout of Twist1 Does Not Impair
Mammary Gland Development and Function

To determine whether Twist1 expression in the fibroblast
cells of the mammary gland plays a role in mammary gland
development, we compared mammary gland morphologies at
different developmental phases after the 6-week-old female
Twist1f/f and Twist1D/Dmice had been treated with tamoxifen
for 5 days. Because of the inhibitory effects of tamoxifen
treatment at the age of 6 weeks on estrogen-stimulated
mammary gland growth, mammary ductal growth in both
groups of 10-week-old (4 weeks after the final tamoxifen
injection) mice was blunted and had failed to fill the fat pads
by this age. To generate a model for examining the responses
of both types of mammary glands to pregnancy and lactation
hormones, we crossbred tamoxifen-treated female Twist1f/f

and Twist1D/D mice with normal male mice and generated
pregnant and lactating Twist1f/f and Twist1D/D female mice.
Upon the stimulation of pregnancy hormones, the mammary
glands in both groups of mice exhibited extensive ductal
growth, branch morphogenesis, and alveolar structures, as
examined on day 15 of pregnancy (Figure 3A). Lactating
glands of both groups also demonstrated normal alveolar
differentiation, as examined by whole-mount staining
(Figure 3A). Furthermore, both groups of mammary glands
also exhibited the same normal tissue architectures at the
virgin, pregnant, and lactation stages and plentiful milk
production at the lactation stage, as examined by H&E
staining of tissue sections (Figure 3B). Moreover, both
Twist1f/f and Twist1D/D mice were able to sustain their pups
throughout lactation. No weight differences were observed
between pups from Twist1f/f and Twist1D/D dams (data not
shown). Finally, IHC analysis demonstrated that the Twist1
protein was expressed in stromal cells in the mammary
glands of Twist1f/f but not Twist1D/D mice at the virgin,
pregnant, or lactating stages, indicating that Twist1 knockout
was maintained in the mammary glands throughout the entire
experimental process (Figure 3C). These results indicate that
Twist1 is not essential for mammary gland development and
function in adult mice. Furthermore, these findings suggest
that female Twist1D/D mice maintain reproductive function,
because they are able to get pregnant and foster their pups.

Inducible Knockout of Twist1 Significantly Extends the
Anagen Phase of the Hair Follicle Cycle

In mice, the morphogenesis of hair follicle starts at a late
embryogenic stage and is completed on postnatal day 14
(P14); the first two hair follicle cycles are synchronized.62 The
DP cells of the hair follicle play a pivotal role in regulation of
hair formation, growth, and cycling.63 Because our data
indicated a specific expression of Twist1 protein in DP cells,
we hypothesized that Twist1may play an important role in DP
1285
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Figure 3 Inducible knockout of Twist1 does not alter mammary gland morphogenesis. A: Whole-mount analysis of the fourth-pair mammary glands of
tamoxifen-treated Twist1f/f and Twist1D/D littermate mice at 10 weeks of age, at pregnancy day 15, and lactation day 1. Insets show enlarged regions from the
same image. B: H&E-stained mammary gland sections prepared from the mice shown in panel A. C: IHC detected Twist1 in some fibroblast cells (asterisks) in
the mammary glands of Twist1f/f mice but not Twist1D/D mice. Scale bars: 1 cm (A), 100 mm (B); 50 mm (C).

Xu et al
cells to regulate hair follicles. To define the role of Twist1 in
hair follicle cycling, we treated 13-day-old Twist1f/f and
CreERT2;Twist1f/f (referred to as Twist1D/D after tamoxifen
treatment) mice with tamoxifen for 3 days, shaved the hair on
the back twice (on P13 and P49), and examined hair growth
from P15 to P67. After the first shave on P13, the hair grew
significantly faster in Twist1D/D mice versus Twist1f/f mice
(photographed on P27). On P35, the hair in Twist1f/fmice had
grown back, and showed similar thickness as the hair of
Twist1D/Dmice (Figure 4A). After the second shave on P49,
when the hair follicles of normal mice are in the telogen
phase of the hair growth cycle, the hair in Twist1f/f control
mice showed very little growth until P67, whereas the hair in
Twist1D/Dmice still maintained rapid growth as examined on
P67 (Figure 4A). Importantly, Twist1 protein was detected
in DP cells in Twist1f/f mice but not in Twist1D/D mice, as
examined by IHC on P15, P18, P23, P29, P45, and P61
(Figure 4B), validating the constant status of Twist1
knockout in the hair follicles of Twist1D/D mice (data not
shown). These results indicate that Twist1 plays an essential
role in regulating the hair growth cycle, and that inducible
knockout of Twist1 significantly extends the hair-growth
phase in adult mice.

Twist1 IHC also demonstrated that Twist1 protein is
expressed at similar levels in DP cells of the control Twist1f/f

mice across different phases of the hair follicle cycle, including
catagen, telogen, and anagen phases, suggesting that Twist1
expression is not cyclically regulated during the hair follicle
growth cycle (Figure 4B). Upon brief examination of the
morphology of Twist1D/D hair follicles on the IHC-stained
sections, we noticed changes of the hair follicle phases from
catagen on P45 and telogen on P61 to anagen on both P45 and
P61 (Figure 4B). We further examined the histological
changes of the mid-dorsal skin in Twist1D/D mice at multiple
time points during the first two hair growth cycles. After
Twist1f/f and Twist1D/Dmicewere treatedwith tamoxifen from
P13 to P15, no histological differences in hair follicles were
observed between the two groups of mice at the catagen phase
on P15 and at the telogen phase on P18 of the first hair follicle
cycle (Figure 5A). However, although all hair follicles in the
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dorsal skin of Twist1f/f mice were still maintained in the tel-
ogen phase of the first hair cycle on P21, the hair follicles in
Twist1D/D mice had already progressed into the anagen phase
of the second hair growth cycle. These observations suggest
that the telogen phase of the first hair cycle is drastically
shortened in Twist1D/D mice. On P23, the Twist1f/f hair folli-
cles had just started the anagen phase of the second hair cycle.
This anagen phase was sustained to approximately P40, and
then was followed by the catagen phase observed at P45 and
the telogen phase observed at P54 and P61 (Figure 5A). In
contrast, the Twist1D/D hair follicles always remained in the
anagen phase, as histologically examined on P21, P23, P29,
P34, P37, P40, P45, P54, and P61 (Figure 5A). A schematic
comparison of these differences in the hair follicle growth
cycle is presented in Figure 5B. These results clearly indicate
that Twist1 plays an essential role in maintaining the hair
growth cycle by converting the anagen phase into the catagen
phase,which is then followed by the telogen phase. The loss of
Twist1 function keeps the hair growth cycle at its anagen phase
in adult mice.
Consistent with the hair follicle cycle, IHC for Ki-67

detected numerous proliferating cells in the hair follicles of
Twist1f/f mice at the transition phase between anagen and
catagen on P15 and the anagen phase on P29, and no
proliferating cells were detected in these follicles at the
telogen phase on P18, P21, and P61 or at the catagen phase
on P45. As in control mice, proliferating cells were
observed in Twist1D/D hair follicles on P15, but not on P18.
However, proliferating cells were detected in Twist1D/D hair
follicles on P21, P29, P45, and P61, which is consistent with
the sustained anagen phase from P21 to P61 (Figure 5C). On
the other hand, TUNEL assay detected extensive cell
apoptosis in the control Twist1f/f hair follicles at the early
and late catagen phase on P15 and P45, as well as the early
telogen phase on P18, but not at the late telogen phase on
P21 and P61 or the anagen phase on P29. However,
apoptotic cells were detected in the Twist1D/D hair follicles
only at the catagen phase on P15 and the telogen phase on
P18, but not in the anagen phase from P21 to P61
(Figure 5D). These results further support the notion that
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Inducible knockout of Twist1 results in faster hair growth. A: Twist1f/f and Twist1D/D mice (sex-matched littermates) were treated with tamoxifen
from P13 to P15. The hair on the back area of these mice was shaved on P13 and P49. Mice were photographed to document hair growth on P27, P35, and P67.
Faster hair growth in Twist1D/D mice, compared with control, was observed at P27 and P67. B: Twist1 is detected in DP cells at all phases of the Twist1f/f mouse
hair follicles (arrows), but is absent in the hair follicles of Twist1D/D mice, as examined by IHC on P18, P23, P29, P45, and P61. Scale bar Z 50 mm.

Twist1 Knockout in Young and Adult Mice
inducible knockout of Twist1 in young mice leads to arrest
of the hair follicle cycle at the anagen phase in adulthood.

Inducible Knockout of Twist1 Has Subtle Negative
Effects on General Health in Adult Mice

To evaluate the overall effects of inducible Twist1 ablation
on the general health of adult mice, we treated 6-week-old
Twist1f/f and CreERT2;Twist1f/f (referred as Twist1D/D after
tamoxifen treatment) mice with tamoxifen for 5 days and
then monitored body weight change over time and measured
a series of general health parameters at 4 weeks after the
final tamoxifen injection. There were no significant differ-
ences in body mass between Twist1f/f and Twist1D/D mice of
either sex, as measured from 6 to 13 weeks (Figure 6, A and
B). These results indicate that Twist1 is not required for
mouse somatic growth and body weight maintenance after
6 weeks of age. The heart rates and ECGs of Twist1f/f and
Twist1D/D mice, measured at 4 weeks after the final ta-
moxifen treatment, were normal and very similar (Figure 6C
and ECG data not shown). There were no significant
differences in systolic and diastolic blood pressures between
male Twist1f/f and Twist1D/D mice (Figure 6, D and E).
Although the systolic and diastolic blood pressure values
were significantly decreased in the female Twist1D/D mice,
compared with female Twist1f/f mice, the changes expressed
The American Journal of Pathology - ajp.amjpathol.org
as ratios were subtle, and both blood pressures were still
within the normal range (Figure 6, D and E). There were
also no significant differences in fat percentage between the
two groups of mice (Figure 6F), nor in lean mass or fat mass
(data not shown). These results demonstrate that Twist1 is
not essential for maintaining generally normal health in
adult mice.

Discussion

Twist1 has been identified in many types of metastatic
cancers and is considered one of the master transcription
factors that drive cancer cell EMT, metastasis, stemness, and
drug resistance (reviewed in2,64). However, given that
Twist1-null mice die in utero and that heterozygous mutant
mouse and human develop SCS,13e22 it is unknown whether
Twist1 can be targeted in cancer patients with tolerable side
effects. Developing Twist1 as a clinical target for cancer
therapy would require understanding of the physiological
role of Twist1 and the consequence of Twist1 inactivation in
young and adult cancer patients. In the present study,
through mapping the expression pattern of Twist1 protein
and characterizing the inducible Twist1 knockout mouse
model, we have shown that inducible knockout of Twist1 in
young and adult mice has no severe effects on general health
condition. Specifically, Twist1 protein is detected in only
1287
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Figure 6 Inducible knockout of Twist1 in adult mice has subtle effect on general health. A and B: Male and female Twist1f/f (white symbols) and Twist1D/D

(black symbols) mice were treated with tamoxifen for 5 days at 6 weeks of age, and body weights were measured once a week for 7 weeks. CeF: Heart rate (C),
blood pressure (D and E), and total fat percentage (F) were measured at 4 weeks after the final tamoxifen treatment. Data are expressed as means � SD, and
sample size is indicated on each data bar (CeF). *P < 0.05, **P < 0.01, unpaired Student’s t-test.

Twist1 Knockout in Young and Adult Mice
a few tissues and cell types, including some meninges cells,
mammary gland fibroblasts, and hair follicle DP cells.
Inducible knockout of Twist1 in 6-week-old mice had no
effect on mammary gland morphogenesis or lactating
function in response to pregnancy and lactation hormones.
Knockout of Twist1 at this age also had no effect on somatic
growth, heart rate, or total fat components. Furthermore,
inducible knockout of Twist1 at 6 weeks did not affect
blood pressures in male mice, and only slightly reduced
the blood pressures of female mice. Taken together,
these results indicate that Twist1 is not essential for adult
mice to maintain overall health and suggest that Twist1
may be a safe cancer-specific molecular target in adult
patients.

EMT induced by expression of Twist1 or other EMT-
inducing factors is reported to enhance the stemness features
of epithelial and cancer cells.40,42 Thus, the question is
whether adult tissue stem cells express and require Twist1 to
maintain stemness. In the present study, we did not detect
Twist1 protein in the stem cells of hair follicles and skin,
suggesting that Twist1 is not required for the stem cells in
these tissues.

Hair growth occurs in a cyclic manner, through growth
(anagen), cessation (catagen), and rest (telogen) phases. In
Figure 5 Histological analysis of hair follicle cycles in Twist1f/f and Twist1D/D m
with tamoxifen from P13 to P15. Dorsal skin specimens were isolated from these mic
with H&E. Specific phases of the hair follicle growth cycle were determined by previo
follicle cycles between Twist1f/f and Twist1D/Dmice. C: Proliferating cells detected b
mice. Areas with many Ki-67epositive proliferating cells are indicated by arrowh
follicle phases of Twist1f/f and Twist1D/D mice. Areas with many TUNEL-positive
telogen. Original magnification, �200 (C and D).
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mice, hair follicle morphogenesis (the initial anagen phase) is
completed on P14, which is followed by a short catagen
regression phase and a resting telogen phase for the first
cycle. After the first cycle, a new anagen phase is initiated
with the start of the second cycle. The first and second cycles
are synchronized, but the third and later cycles become
unsynchronized.65,66 In the present study, high levels of
Twist1 protein were detected in DP cells of the hair follicle,
which is consistent with previously reported expression
data.67 Interestingly, inducible knockout of Twist1 in these
DP cells by tamoxifen treatment from P13 to P15 (the tran-
sition time between anagen and catagen phases of the first
cycle) resulted in faster hair growth by P27 (the time point
with early anagen phase in control mice) and P61 (the time
point with telogen phase in control mice). These observations
indicate that Twist1 plays a role in arresting hair growth, so
that loss of function accelerates hair growth and changes the
normal hair growth cycle.

Our histological examination over a long time course
after the knockout of Twist1 provided explanations for this
phenotype. Inducible knockout of Twist1 by tamoxifen
treatment from P13 to P15 significantly shortens the telogen
phase of the first cycle and drastically extends the anagen
phase of the second cycle. The hair follicles of control mice
ice. A: Twist1f/f and Twist1D/D mice (sex-matched littermates) were treated
e at different time points, from P15 to P61, and the skin sections were stained
usly established criteria. Scale barZ 200 mm. B: Observed differences in hair
y Ki-67 IHC (brown) at different hair follicle phases of Twist1f/f and Twist1D/D

eads. D: Apoptotic cells detected by TUNEL assay (brown) at different hair
apoptotic cells are indicated by arrowheads. An, anagen; Ca, catagen; Te,
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have transitioned into the catagen phase on P45, which is
shortly followed by the telogen phase. The hair follicles of
knockout mice still remain in anagen phase even on P61.
Importantly, the hair follicle phases characterized by histo-
logical features in control and inducible Twist1 knockout
mice are perfectly associated with the patterns of follicular
cell proliferation and apoptosis, respectively. This suggests
that Twist1 may play a role in suppressing follicular cell
proliferation and promoting follicular cell apoptosis at the
catagen and telogen phases. In addition, it is not clear
whether the hair follicles of the knockout mice will remain
at anagen phase for the remaining lifetime. These findings
clearly indicate an essential role of Twist1 in regulation of
the hair follicle cycle.

Our data also show that the Twist1 protein level in DP
cells does not change significantly at different phases of the
hair follicle, suggesting that the function but not the
expression level of Twist1 is regulated during the hair
growth cycle. Because it is still unknown how the hair
follicle growth cycle is regulated, the identification of
Twist1 as a key regulator of hair cycle in the present study
should largely facilitate studies designed to understand the
molecular mechanisms responsible for controlling the hair
follicle cycle. Our findings may also have some implication
in preventing hair loss through inhibiting Twist1 function.

The rapid growth of the early-stage embryo somewhat
simulates the rapid growth of a tumor. Some genes expressed
during early embryonic development and required for early
embryonic development are also expressed in cancer cells.
For example, Twist1 is expressed at specific locations of the
embryo at the gastrulation stage to induce mesodermal
formation, and Twist1-null mice die in utero. Twist1 is also
expressed in many types of metastatic cancers to drive EMT,
metastasis, stemness, and drug resistance (reviewed by Qin
et al2). COUP transcription factor 2 (COUP-TFII, encoded by
Nr2f2), a member of the nuclear receptor superfamily, is
highly expressed during embryonic development to enhance
angiogenesis and Nr2f2-null mice also die in utero.68 On the
other hand, COUP-TFII is also highly expressed in prostate
cancer cells to promote carcinogenesis.69 Interestingly, both
the present study and a previous study70 demonstrate that
inducible knockout of either Twist1 or Nr2f2 in young or
adult mice causes neither death nor severe phenotype. These
findings support the notion that some genes or proteins
required for embryonic development and cancer cell growth
and/or metastasis are not essential for maintaining a generally
healthy condition in adulthood. Thus, such genes or proteins
could be used as specific targets for cancer therapy without
severe side effects.
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