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Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in
alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia
enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the
pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypoth-
esized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to
bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1 ™/~
(Sphk1~/~), sphingosine kinase 2=/~ (Sphk2™~), and S1P lyase™~ (Sgpl1*/~) mice were exposed to
hyperoxia (75%) from postnatal day 1 to 7. Sphk1™~, but not Sphk2~~ or Sgpl1™/~, mice offered
protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity
compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of
IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung
tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P
stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor
against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using
specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important
role for SphK1-mediated S1P signaling—regulated ROS in the development of hyperoxia-induced lung
injury in a murine neonatal model of bronchopulmonary dysplasia. (Am J Pathol 2013, 183: 1169—1182;
http://dx.doi.org/10.1016/].ajpath.2013.06.018)

Bronchopulmonary dysplasia (BPD) is a chronic lung disease
occurring as a consequence of injury to the rapidly developing
premature lungs of a preterm newborn infant.! Preterm
neonates receive ventilator care and inhaled oxygen supple-
mentation for variable periods after delivery; prolonged
exposure of preterm lungs to hyperoxia results in inflamma-
tion, pulmonary edema, lung injury, and, ultimately, death.”
BPD is characterized by decreased secondary septation of
alveoli, resulting in the formation of enlarged simplified
alveoli and reduced area for gas exchange.*” More than 25%
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of premature infants with birth weights <1500 g develop
BPD.”° Infants with BPD have higher rehospitalization rates
because of asthma, infection, pulmonary hypertension, and
other respiratory tract ailments.”* Many surviving neonatal
BPD patients reaching adulthood show a sharp decline in lung
capacity, indicating that the adverse effects of insult in the
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neonatal stage can be long 1asting.9’10 There is no effective
treatment for BPD, and strategies to prevent BPD by admin-
istering gentler ventilation and other therapeutic approaches
have not been effective.'' The identification of novel
signaling pathways linking hyperoxia-induced lung injury in
neonatal BPD is necessary for new therapeutic approaches.

Sphingolipids and their metabolites, such as ceramide,
sphingosine, and sphingosine-1-phosphate (S1P), are impor-
tant bioregulators, capable of modulating acute lung injury in
a variety of lung disorders.'”'* S1P plays an important role in
vascular development and endothelial barrier function.'*'” Tt
is generated by the phosphorylation of sphingosine catalyzed
by sphingosine kinases (SphKs) 1 and 2 and metabolized by
S1P phosphatases and lipid phosphatases to yield sphingosine
or by S1P lyase (S1PL; SgplI) that generates A2-hexadecenal
and ethanolamine phosphate in mammalian cells.'® In addition
to the previously mentioned enzymes, serine palmitoyl-
transferase (SPT) initiates the biosynthesis of sphingolipids by
catalyzing condensation of serine and palmitoyl-CoA to form
3-ketosphinganine.'’ S1P acts extracellularly and intracellu-
larly, and most effects of extracellular S1P are mediated via
a family of five highly specific G-protein—coupled S1P; 5
receptors.'*'” Significantly lower levels of SIP in plasma and
lung tissues were reported in a murine model of lipopolysac-
charide (LPS)—induced lung injury, most likely because of
elevated expression of S1PL,*° and infusion of S1P amelio-
rated LPS-induced acute lung injury in murine and canine
models.”'** Taken together, these results suggest a protective
role for S1P in LPS-mediated lung injury. Hyperoxia is also
known to cause lung injury; however, the underlying patho-
logical characteristics are not similar to those observed in the
LPS-treated mouse model.”"**

The goal of the present study was, therefore, to elucidate the
role of S1P in the development of lung injury and BPD in the
murine neonatal model. Our results showed that hyperoxia-
induced accumulation of S1P is detrimental and linked to
BPD because SphK1-, but not SphK2-, deficient mice exhibi-
ted significantly less hyperoxia-induced reactive oxygen
species (ROS) formation, lung injury, and BPD, such as
morphological characteristics, whereas S1P lyase—deficient
heterozygous mice showed the opposite. Furthermore, by using
human lung microvascular endothelial cells (HLMVECsS), we
observed that exogenous S1P stimulated ROS production, and
down-regulation of SphK1 with siRNA blocked hyperoxia-
induced ROS generation. We also present herein evidence in
support of an inflammatory role for S1P in BPD as it relates to
increased expression of NADPH oxidase (NOX) proteins, such
as NOX2 and NOX4, and the proinflammatory cytokine, IL-6.

Materials and Methods

Materials

HLMVECs, Eagle’s basal medium (EBM)-2, and the Bullet
kit were obtained from Lonza (San Diego, CA). PBS was
from Biofluids Inc. (Rockville, MD). Ampicillin, fetal bovine
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serum (FBS), trypsin, MgCl,, EGTA, Tris-HCI, Triton X-100,
sodium orthovanadate, aprotinin, and Tween 20 were obtained
from Sigma-Aldrich Inc. (St. Louis, MO). Dihydroethid-
ium (hydroethidine) and 6-carboxy-2',7'-dichlorodihydro-
fluorescein diacetate-diacetoxymethyl ester (DCFDA) were
purchased from Life Technologies (Eugene, OR). The elec-
trochemiluminescence kit was from Amersham Biosciences
(Piscataway, NJ). SMART Pool small-interfering RNA duplex
oligonucleotides targeting SphK1 antibody were purchased
from Exalpha (Shirley, MA). SphK?2 and Nox2 antibodies were
from Abcam (Cambridge, MA). SGPL, SPT2, Nox1, and Nox4
antibodies and siRNA for SphK1, Nox2, and Nox4 were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA).
SphK-I, [2-(p-hydroxyanilino)-4-(p-chlorophenyl)] thiazole
was purchased from Cayman Chemical (Ann Arbor, MI), and
S1P was obtained from Avanti Polar Lipids (Alabaster, AL).

Mouse Experiments and Animal Care

All experiments using animals were previously approved by the
Institutional Animal Care and Use Committee at the University
of Illinois at Chicago. We used neonatal mice to study the effect
of hyperoxia in the newborn developing lungs. Lung develop-
ment in the neonatal mice on the day of birth is in the late
canalicular/early alveolar stage, corresponding to that of
a preterm neonate at 24 to 26 weeks of gestation.” Sphkl ™~ and
Spth*/ ~ mice were obtained from Dr. Richard L. Proia (NIH,
Bethesda, MD)25 and were backcrossed to C57BL/6 back-
ground for two generations (F, hybrid). The resultant mixed
background of C57BL/6 strain and the original background (F,
hybrid) were used as controls and are referred to hereafter as
wild type (WT). Sgpli = adult mice (129SV background) were
purchased from Jackson Labs (Sacramento, CA). The WT,
Sphkl ™", Sphk2~"~ , or Sgpl1™"~ newborn (NB) mice, along
with the lactating dams, were exposed to hyperoxia of 75% O,
for 1 week or normoxia from postnatal (PN) day 1 for 7 days, as
previously described.”*”” The NB mice (along with their
mothers) were placed in cages in an airtight Plexiglas chamber
(55 x 40 x 50 cm) maintained at a hyperoxic condition. Two
lactating dams were used. Mothers were alternated between
hyperoxia and normoxia every 24 hours. The litter size was kept
limited to six pups to control for the effects of litter size on
nutrition and growth. The animals were maintained as per the
University of Illinois protocol for animal use. Oxygen levels
were constantly monitored by an oxygen sensor that was con-
nected to a relay switch incorporated into the oxygen supply
circuit. The inside of the chamber was kept at atmospheric
pressure. The animals were sacrificed, the lung tissues were
collected and homogenized, and whole cell lysates were
prepared for further analysis.

BAL Collection

Mice were euthanized, the trachea was isolated by blunt
dissection, tubing was secured in the airway, and bron-
choalveolar lavage (BAL) collection with PBS was undertaken,
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as described previously.”*’ Protein concentrations in BAL
fluid were measured using the Bio-Rad Protein Assay (Bio-Rad,
Hercules, CA), as previously described.'”” Optical density
readings of samples were converted to milligrams/milliliters,
using values obtained from a standard curve generated with 0.1
to 1.5 mg/mL serial dilutions of bovine serum albumin. BAL
samples were analyzed for levels of tumor necrosis factor-a,
monocyte chemoattractant protein-1, interferon-y, IL-6, and
IL-10, using a commercially available cytokine panel (Bio-Plex
Suspended Multiplex Bead Array Assay kit; Bio-Rad), in
accordance with the manufacturer’s instructions. Data from the
reactions were acquired with a flow cytometry system (X Map-
100; Luminex, Austin, TX) and accompanying software (Bio-
Plex Manager software version 5.0; Bio-Rad). The median
fluorescence intensity was used as a measure of detection of
protein. The values reported represent a median reporter fluo-
rescence intensity of at least 100 beads. All samples were read in
duplicate. Samples were considered positive when the mean
fluorescence intensity value was 3 SDs greater than the negative

30—32
control.

Analysis of Sphingoid Base-1-Phosphates

Analyses of sphingoid base-1-phosphates were performed
by electrospray ionization liquid chromatography—tandem
mass spectrometry, as previously described.””** The
instrumentation used was an API4000 Q-trap hybrid triple-
quadruple linear ion-trap mass spectrometer (Applied Bio-
systems, Foster City, CA), equipped with a turbo ion spray
ionization source interfaced with an automated Agilent 1100
series liquid chromatograph and autosampler (Agilent
Technologies, Wilmington, DE). S1P and DihydroS1P were
analyzed as bis-acetylated derivatives, with C17-S1P as the
internal standard using reverse-phase high-performance
liquid chromatography separation, negative-ion electrospray
ionization, and magnetic resonance mammography analysis.

Preparation of S1P for Exogenous Addition on
Endothelial Cells

S1P dissolved in methanol: toluene (1:1 v/v), to a final con-
centration of 1 mmol/L, was stored in aliquots, in glass vials at
—20°C. An aliquot of S1P solution was transferred to a glass
tube, the solvent was evaporated under N,, and the thin film of
S1P at the bottom of the glass tube was reconstituted by soni-
cation with probe sonicator (3x 15 seconds) in basal EGM-2
medium containing 0.1% fatty acid—free bovine serum
albumin. The S1P solution was always made fresh 10 minutes
before the experiment and kept at room temperature.””

Histological Analysis

Animals were euthanized, a median sternotomy was per-
formed, and perfusion of the right side of the heart was
accomplished with calcium and magnesium-free PBS to
clear the pulmonary intravascular space. The heart and lungs
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were then removed en bloc, fixed to pressure (15-cm water)
with neutral-buffered 2% paraformaldehyde, fixed overnight
in 2% paraformaldehyde, embedded in paraffin, divided into
sections (5 wm thick), and stained with H&E at the Research
Histology Laboratory (Department of Pathology, University
of Illinois at Chicago). The objective assessment of the
extent of alveolarization was determined by the mean linear
intercept (MLI) method.”’*® Slides were examined at x 10
magnification, and the septal thickness and tissue density for
a minimum of 50 alveoli for each section were measured. At
least two sections from each pup were used for analysis.

TUNEL Assay

End labeling of exposed 3’-OH ends of DNA fragments was
undertaken with the TUNEL in situ cell death detection kit
Alkaline Phosphatase (Roche Diagnostics, Indianapolis, IN),
as per the manufacturer’s instructions. The TUNEL index was
calculated by randomly selecting four high-power fields in
each section, counting 200 cells in each area, and expressing
the number of TUNEL-positive cells as a percentage, as
previously described.”*" At least two sections were used
from each pup for analyses.

Granulocyte Esterase Staining

Tissue was first fixed in citrate-acetone-formaldehyde solution
and then incubated in naphthol AS-D chloroacetate solution
(Fast Red Violet LB; Sigma, St. Louis), followed by coun-
terstaining with hematoxylin solution. Enzymatic hydrolysis
of ester linkages liberates free naphthol compounds. These,
coupled with the diazonium salt, form highly colored deposits
at sites of enzyme activity. Granulocyte esterase enzyme is
considered specific for cells of granulocytic lineage. Sites of
granulocyte esterase activity show bright red granulation.”*’
Activity is weak or absent in monocytes and lymphocytes.
Slides were examined at x 20 magnification, cells positive for
neutrophil esterase were counted in at least four high-power
fields in each section, and two sections were used per pup.

Endothelial Cell Culture

HLMVEGCs, passages between 5 and 8, were cultured in
EGM-2 complete medium (10% FBS, 100 U/mL penicillin,
and streptomycin) at 37°C and 5% CO,. They were allowed
to grow to approximately 90% confluence, as characterized
by typical cobblestone morphological characteristics, as
described previously.*”*" Cells from T-75 flasks were
detached with 0.05% trypsin, resuspended in fresh complete
medium, and cultured in 35- or 60-mm dishes or on glass
coverslips for various studies.

Exposure of Cells to Hyperoxia

HLMVECs (approximately 90% confluence) in complete
EGM-2 medium were placed in a humidity-controlled
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airtight modulator incubator chamber (Billups-Rothenberg,
Del Mar, CA), flushed continuously with 95% O, and 5%
CO, for 30 minutes until the oxygen level inside the
chamber reached approximately 95%. HLMVECs were then
placed in the cell culture incubator at 37°C for 3 hours of
hyperoxia exposure. The concentration of O, inside the
chamber was monitored with a digital oxygen monitor. The
buffering capacity of the cell culture medium did not change
significantly during hyperoxic exposure and was maintained
at a pH of approximately 7.4.

Determination of Hyperoxia-Induced Production of
0, and Total ROS

To measure total ROS or O, ~, spectrofluorimeter- or fluo-
rescence microscopy—based methods were used. Hyperoxia-
induced O, release by HLMVECs was measured by
hydroethidine fluorescence, as previously described.*” Total
ROS production in HLMVECs, exposed to either normoxia
or hyperoxia, was determined by the DCFDA fluorescence
method.””"?  Briefly, HLMVECs (approximately 90%
confluent in 35-mm dishes) were loaded with 10 pumol/L
DCFDA in EGM-2 basal medium and incubated at 37°C for
30 minutes. Fluorescence of oxidized DCFDA in cell lysates,
an index of formation of ROS, was measured with an
Aminco Bowman series 2 Spectrofluorimeter (Thermo
Fischer Scientific, West Palm Beach, FL) using excitation
and emission set at 490 and 530 nm, respectively, with
appropriate blanks. Hyperoxia-induced ROS formation in
cells was also quantified by fluorescence microscopy.
HLMVECs (approximately 90% confluent) in 35-mm dishes
were loaded with 10 pmol/L DCFDA in EBM-2 basal
medium for 30 minutes at 37°C in a 95% air and 5% CO,
environment. After 30 minutes of loading, the medium
containing DCFDA was aspirated; cells were rinsed once
with EGM-2 complete medium, and cells were pre-incubated
with agents for the indicated time periods, followed by
exposure to either normoxia (95% air and 5% CO,) or
hyperoxia (95% O, and 5% CO,) for 3 hours. At the end of
the incubation, cells were washed twice with PBS at room
temperature and were examined under a Nikon Eclipse
TE 2000-S fluorescence microscope (Tokyo, Japan) with
a Hamamatsu digital charge-coupled device camera (Hama-
matsu, Japan) using a 20X objective lens and MetaVue
software version 1.0 (Universal Imaging Corp, Downing-
town, PA).

RNA Isolation and Quantitative RT-PCR

Total RNA was isolated from HLMVECs grown on 35-mm
dishes or from mouse lung homogenate using TRIzol reagent
(Life Technologies, Grand Island, NY), according to the
manufacturer’s instructions, and purified using the RNeasy
Mini Kit, according to the manufacturer’s protocol (Qiagen,
Valencia, CA). iQ SYBR Green Supermix (Life Technolo-
gies) was used to perform real-time PCR using iCycler by
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Bio-Rad. 18S ribosomal RNA (sense, 5'-GTAACCCGTT-
GAACCCCATT-3'; and antisense, 5'-CCATCCAATCGG-
TAGTAGCG-3’) was used as an external control to normalize
expression. Quantitative RT-PCR was performed as previously
described.”’ All primers were designed by inspection of the
genes of interest and were designed using Beacon Designer
software version 2.1 (Premier Biosoft, Palo Alto, CA). The
sequence descriptions of mouse primers used are as follows:
Sphkl, 5'-GCTGTCAGGCTGGTGTTATG-3' (forward) and
5'-ATATGCTTGCCCTTCTGCAT-3' (reverse); mouse Sphk2,
5'-ACTGCTCGCT-TCTTCTCTGC-3' (forward) and 5'-CC-
ACTGACAGGAAGGAAAA-3' (reverse); mouse Sgpll, 5'-
AACTCTGCCTGCTCAGGGTA-3' (forward) and 5'-CTC-
CTGAGGCTTTCCCTTCT-3' (reverse); Nox2, 5'-ACTCCT-
TGGAGCACTGG-3' (forward) and 5'-GTTCCTGTCCAGT-
TGTCTTCG-3' (reverse); and Nox4, 5'-TGAACTACAGTG-
AAGATTTCCTTGAAC-3' (forward) and 5'-GACACCCGT-
CAGACCAGGAA-3 (reverse). Negative controls, consisting
of reaction mixtures containing all components except target
RNA, were included with each of the real-time PCR runs. To
verify that amplified products were derived from mRNA and did
not represent genomic DNA contamination, representative PCR
mixtures for each gene were run in the absence of the reverse
transcriptase enzyme after first being cycled to 95°C for 15
minutes. In the absence of reverse transcription, no PCR prod-
ucts were observed.

Immunoblotting

Protein expression was detected in mouse lungs and
HLMVECs by immunoblotting, as previously described.”"*
HLMVECs grown on 35-mm dishes (approximately 90%
confluence) were rinsed twice with ice-cold PBS and lysed in
100 pL of modified lysis buffer (50 mmol/L Tris-HCI, pH
7.4, 150 mmol/L NaCl, 0.25% sodium deoxycholate,
1 mmol/L EDTA, 1 mmol/L phenylmethylsulfonyl fluoride,
1 mmol/L NazVQO,4, 1 mmol/L NaF, 10 pg/mL aprotinin,
10 pg/mL leupeptin, and 1 pg/mL pepstatin), sonicated on ice
with a probe sonicator (3x for 15 seconds), and centrifuged
at 5000 x g in a microcentrifuge (4°C for 5 minutes). Protein
concentrations of the supernatants were determined using the
Pierce bicinchoninic acid protein assay kit (Thermo Scien-
tific, Rockford, IL). The supernatants, adjusted to 1 mg of
protein/mL (cell lysates), were denatured by boiling in SDS
sample buffer for 5 minutes, and samples were separated on
10% SDS-polyacrylamide gels. Protein bands were trans-
ferred overnight (24 V at 4°C) onto a nitrocellulose
membrane (0.45 pm thick; Bio-Rad), probed with primary
and secondary antibodies, according to the manufacturer’s
protocol, and immunodetected by using the electrochemi-
Iuminescence kit (GE Amersham Healthcare Life Sciences,
Pittsburgh, PA). The blots were scanned (UMAX Power
Lock II, Dallas, TX) and quantified by an automated digi-
tizing system, UN-SCAN-IT GEL (Silk Scientific Corp,
Orem, UT). On sacrifice, the neonatal mouse lungs were
perfused with PBS, resulting in removal of blood from
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Figure 1  Hyperoxia increases S1P level and alters expression of enzymes involved in S1P metabolism. WT (C57BL/6J) NB mice, along with the lactating
dams, were exposed to normoxia (NO; white bars) or hyperoxia (HO; black bars) of 75% 0, for 1 week from PN day 1 for 7 days. After exposure, NB mice were
euthanized, lungs were removed for protein, and RNA was extracted as described in Materials and Methods. A: Whole lung homogenates subjected to SDS-PAGE
and Western blot analysis showed that HO enhanced expression of SphK1, SPT2, and S1PL after exposure to HO for 7 days. No significant difference was noted
in the expression of SphK2. B—E: Western blots probed with anti-SphK1 (B), anti-SphK2 (C), anti-SPT2 (D), and anti-S1P lyase (E) antibodies were quantified
by densitometry and normalized to total actin. F—I: Real-time RT-PCR quantification of mRNA demonstrated that HO induced an increase in mRNA expression
of Sphk1 (F) and SPT2 (H), whereas a decrease in mRNA expression of Sphk2 (G) and S1P lyase (Sgpl1) (I) was noted. J: C18-S1P levels in lung tissue from WT
NB mice exposed to HO were significantly elevated in the lung tissue compared with normoxia. Significantly increased from NO control: *P < 0.05,

***P < 0.001 (n = 5 to 8 per group).

pulmonary blood vessels. Protein extraction was performed
using T-PER (Thermo Scientific). A ratio of 20 mL of T-
PER/1 g of tissue was added to the tissue and homogenized.
Lysate was centrifuged at 10,000 x g for 5 minutes to pellet
cell/tissue debris at 4°C. Supernatant was collected, equal
amounts of protein (20 pg) were loaded onto 10% SDS-
PAGE gels, and Western blot analysis was performed
according to standard protocols.

Transient Transfection of HLMVECs

For siRNA experiments, HLMVECs were transfected with
Fl-luciferase GL2 duplex siRNA (target sequence, 5'-
CGTACGCGGAATACTTCGA-3'; Dharmacon, Lafayette,
CO) as a positive control (scrambled RNA). HLMVECs
grown to approximately 50% confluence in 6-well plates
were transfected with Gene Silencer transfection agent
(Genlantis, San Diego, CA) plus scrambled RNA or siRNA
specific for SphK1, Nox2, or Nox4 (50 nmol/L) in serum-
free EBM-2 medium, according to the manufacturer’s
recommendations. After 3 hours of transfection, the serum-
free medium was replaced by 1 mL of fresh complete EGM-
2 medium containing 10% FBS and the growth factors, and
cells were cultured for an additional 72 hours before
experiments.

Treatment with Exogenous S1P

HLMVECs (approximately 90% confluence), grown on
35-mm dishes, were starved for 3 hours in EBM-2 without
growth factors. Cells were treated with 1 pmol/L S1P for 5 and
30 minutes, respectively, followed by ROS measurements
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with DCFDA. Control cells were always treated accordingly
in the presence of vehicle for the indicated times.

H,0, Measurement

HLMVECs were exposed to normoxia and hyperoxia for
5 and 30 minutes, respectively. Cell culture media were
collected and centrifuged at 3000 x g, for 10 minutes at 4°C,
and H,O, in the supernatant was measured immediately using
a commercial kit and according to the manufacturer’s
protocol. In brief, 50 puL of control or S1P-treated samples and
standards were mixed with a working solution of 100 pmol/L
Amplex Red reagent and 0.2 U/mL horseradish peroxidase
(Life Technologies, Grand Island, NY). Reaction solutions
were protected from light and incubated at room temperature
for 30 minutes, and absorbance was read at 560 nm.

Pretreatment of Cells with SKI-II

HLMVECs grown to approximately 90% confluence were
pre-incubated with an SphK inhibitor (SKI-II; 1 to 10 pmol/L)
in serum-free media containing 1% FBS, as indicated for 24
hours before stimulation with hyperoxia (95% O, and 5%
CO,) for 3 hours.™

Statistical Analysis

An analysis of variance and a Student-Newman-Keul’s
test were used to compare means of two or more differ-
ent treatment groups. The level of significance was set to
P < 0.05, unless otherwise stated. Results are expressed as
means £ SEM.
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Figure 2  Deficiency of sphingosine kinase 1 protects alveolarization of
murine neonatal lungs under hyperoxia. WT (C57BL/63) or Sphk1 ™~ NB mice,
along with the lactating dams, were exposed to normoxia (NO; white bars) or
hyperoxia (HO; black bars; 75% 0,) from PN day 1 for 7 days. On completion of
exposure, NB mice were euthanized, and lungs were removed, embedded in
paraffin, and cut into sections (5 pum thick) for staining. A: Representative
H&E photomicrographs of lung sections obtained from WT and Sphk1 ™~ NB
mice exposed to NO or HO. Sphk1 ™~ NB mice showed significantly improved
alveolarization under HO compared with WT NB. Original magnification, x10.
B: The objective assessment of alveolarization of neonatal lungs was deter-
mined by the MLI method. After exposure to HO, lung MLI in Sphk1 ™~ NB is
significantly lower compared with WT. *P < 0.05 (n = 5 to 8 per group).

Results

Expression of S1P-Metabolizing Enzymes and S1P
Levels in Lung Tissues from Hyperoxia-Challenged
Neonatal Mice

The relative protein expression levels of SphK 1 and 2, S1PL,
and SPT in lung tissues from neonatal pups, exposed to
normoxia or hyperoxia, were determined by immunoblotting
(Figure 1, A—E). SphK1, SPT2, and SIPL levels were
significantly elevated in neonatal lung tissues from hyperoxic
mice compared with normoxic animals. SphK2 protein
expression, however, remained unaltered in response to
hyperoxia. There was some discrepancy between protein and
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mRNA levels. Hyperoxia resulted in a decreased mRNA
expression of Sphk2 and Sgpll, but not Sphkl and SPT2
(Figure 1, F—I). Furthermore, S1P levels were significantly
elevated in lung tissues from hyperoxia-exposed mice
(Figure 1J). These results suggested that hyperoxia differen-
tially modulates the expression levels of the S1P-metabolizing
enzymes and S1P generation in neonatal lung tissues.

SphK1, But Not SphK2, Deficiency Attenuates
Hyperoxia-Induced BPD in Neonatal Mice

SphK1 and SphK?2 are widely expressed in most mammalian
tissues, including the lung.”>*® Because the expression of
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Figure 3  Deficiency of sphingosine kinase 2 does not protect murine
neonatal lungs from hyperoxia. WT (C57BL/6J) or Sphk2™~ NB mice, along
with the lactating dams, were exposed to normoxia (NO; white bars) or
hyperoxia (HO; black bars; 75% 0,) for 1 week from PN day 1 for 7 days. On
completion of exposure, NB mice were euthanized, and lungs were removed,
embedded in paraffin, and cut into sections (5 um thick) for staining. A:
Representative H&E photomicrographs of lung sections obtained from
Sphk2~~ NB mice exposed to NO or HO. Sphk2 ™~ NB mice, similar to WT NB,
showed disruption of normal alveolarization under HO. Original magnifica-
tion, x10. B: The objective assessment of alveolarization of neonatal lungs
was determined by the MLI method. MLI in both Sphk2~~ NB and WT NB mice
lungs is significantly higher compared with NB mice exposed to NO. *P < 0.05
versus normoxia control. No significant difference was found between WT and
Sphk2™~~ exposed to hyperoxia (n = 5 to 8 per group).
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Deficiency of sphingosine kinase 1 attenuates hyperoxia-induced inflammatory changes in neonatal mouse lungs. WT (C57BL/6J) or Sphk1™~ NB

mice were exposed to normoxia (NO; white bars) or hyperoxia (HO; black bars) (75% 0,) from PN day 1 for 7 days. On completion of exposure, the mice were
euthanized, lungs were lavaged by PBS solution, and BAL fluids were analyzed as described in Materials and Methods. Deficiency of SphK1 reduced pulmonary
vascular leak after HO (A), as shown by a significant decrease in BAL fluid total protein levels, decreased total cell count (B), lower levels of IL-6 (C), and
decreased neutrophils in Sphk1 ™~ mice compared with WT mice exposed to HO (D). Lung tissue showed reduced granulocyte esterase staining (E) and reduced
TUNEL-positive cells (F) in Sphk1™~ mice compared with WT mice exposed to HO. Data are expressed as means + SEM. Significantly different from NO control:
*P < 0.05, significant decrease in Sphk1™~ compared with WT under HO (n = 5 to 8 per group), ***P < 0.001.

SphK1, but not that of SphK2, was enhanced in neonatal lung
tissues from hyperoxia-challenged mice, we investigated the
effect of genetic deletion of SphK1 and SphK2 on hyperoxia-
induced BPD. As anticipated, lung tissues from Sphkl '~ or
Sphk2~"~ mice did not express SphK1 or SphK2, respec-
tively, and deletion of either SphK1 or SphK2 had no overt
phenotypic effects under normoxic conditions (data not
shown). Plasma S1P levels were significantly lower in
Sphkl™~ mice (approximately 30%) compared with WT
mice (plasma S1P, 658 & 34 versus 1107 + 218 pmol/mL;
P < 0.05). However, plasma S1P levels were not signifi-
cantly different between SphK2-deficient mice and the WT
mice exposed to hyperoxia (data not shown). To investigate
the effects of SphK1 or SphK2 deficiency on hyperoxia-
induced BPD, 1-day-old WT, Sphkl =, or Sphk2™"~ pups
were exposed to normoxia or hyperoxia (75% O,) for 7 days.
The rate of survival in hyperoxia-treated WT, Sphkl ~ -, or
Sphk2~'~ groups was not significantly different in all of the
genotypes, and this exposure regimen did not significantly
affect the mortality of the pups. A litter size of six neonatal
mice was used in the study for the normoxia and hyperoxia
groups. A minimum of two mothers per group were used in
the study. The survival rate was 11 to 12 of 12 pups in each of
the groups.
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The effect of SphK1 deficiency on hyperoxia-induced
alveolarization defect and lung injury were evaluated by the
MLI method and H&E staining, respectively. Exposure to
hyperoxia significantly increased injury and reduced
alveolarization in the lung by day 7 in the WT mice, which
was ameliorated in Sphkl '~ mice exposed to hyperoxia
(Figure 2A). Improved alveolarization was noted in the
Sphkl~"~ group, as shown by histopathological quantifica-
tion for alveolarization (MLI) (Figure 2B). More important,
Sphkl™~ deficiency alone had no significant effect on
MLI in the absence of hyperoxia challenge. Interestingly,
hyperoxia did not alter lung collagen content in SphK1 "/~
and WT mice (data not shown). In contrast to SphK1 defi-
ciency, loss of SphK2 (Sphk2™~ mice) had no effect on
hyperoxia-induced lung injury, BPD-like morphological
characteristics (Figure 3A), and impaired alveolarization,
as characterized by enlarged simplified alveoli showing a
higher MLI (Figure 3B).

Next, the effect of SphK1 deficiency on hyperoxia-induced
lung inflammation was assessed. The total protein, cell
number, and IL-6 levels were significantly elevated in BAL
fluids from WT pups exposed to hyperoxia compared with
those from Sphkl ™"~ pups (Figure 4, A—C). There was an
increase in the level of monocyte chemoattractant protein-1 in
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Figure 5  Partial deficiency of S1P lyase aggravates hyperoxia-induced
neonatal lung injury. WT or Sgpl1*/~ heterozygous NB mice in a 1295V
background, along with the lactating dams, were exposed to normoxia (NO;
white bars) or hyperoxia (HO; black bars; 75% 0,) for 1 week from PN day 1
for 7 days. On completion of exposure, NB mice were euthanized, and lungs
were removed, embedded in paraffin, and cut into sections (5 um thick) for
staining. A: Representative H&E photomicrographs of lung sections
obtained from WT and Sgp(1™/~ NB mice exposed to NO or HO. Sgpl1*/~ NB
mice exposed to HO showed significant lung injury with impaired alveola-
rization compared with WT NB exposed HO. Original magnification, x10.
B: The objective assessment of alveolarization of neonatal lungs was
determined by the MLI method. MLI in Sgp(1™/~ NB mouse lungs exposed
to HO was significantly higher compared with WT NB exposed to HO. C:
Lungs were lavaged by PBS solutions, and BAL fluids were analyzed as
described in Materials and Methods. Partial deficiency of S1P lyase increased
pulmonary vascular leak after HO, as shown by a significant increase in BAL
total protein levels. Data are expressed as means + SEM. Significantly
different from control: *P < 0.05, ***P < 0.001 (n = 5 to 8 per group).

both groups exposed to hyperoxia, whereas no significant
elevation was noted with tumor necrosis factor-o, interferon-
v, and IL-1a.. The BAL fluids from WT and Sphkl ~~ mice
showed macrophage dominance (mean, 91.2% =+ 2.3% for
WT and 90.4% =+ 2.7% for Sphkl ") under normoxia and
hyperoxia. The total neutrophil count was decreased in the
BAL of Sphkl™~ pups compared with WT exposed to
hyperoxia (mean, 144.1 + 58.8 for WT and 74.9 £ 30.6 for
Sphkl™"~), and specific neutrophil esterase staining of lung
tissue also showed a significant decrease in Sphkl ™"~ pups
compared with WT exposed to hyperoxia (mean, 4.05 £ 0.3
for WT and 1.92 4 0.31 for Sphklf/f) (Figure 4, D and E).
For a better understanding of the pathways involved in
the protection against alveolar simplification, we determined
apoptosis using TUNEL staining on lung tissues. A significant
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decrease of TUNEL-positive cells was noted in the lungs of
Sphkl™"~ pups compared with WT exposed to hyperoxia
(Figure 4F). These results suggest a detrimental role for
SphK1, but not SphK?2, in hyperoxia-induced BPD.

S1P Lyase Deficiency Potentiates Hyperoxia-Induced
BPD in Neonatal Mice

Having established that SphK1 deficiency confers protection
against hyperoxia-induced BPD, we further determined the
role of SIPL, the S1P-metabolizing enzyme, in BPD using
Sgpll1™*’~ heterozygous mice. Sgpll '~ mice do not survive
beyond 3 to 4 weeks after birth and exhibit vascular defects.”’
The Sgpll™~ mice that have partial deficiency of SI1PL
enzyme exhibited elevated S1P levels in lung tissue, but not
in plasma, under normoxia (data not shown). Hyperoxia
challenge of 1-day-old pups significantly increased injury
and alveolar simplification in WT (Sgpll™") mice after 7
days of hyperoxia exposure, which was further aggravated in
Sgpll™~ mice (Figure 5A). Histopathological quantification
for alveolar simplification (MLI) showed a significant
negative effect of partial SIPL deficiency in the form of
enlarged simplified alveoli (Figure 5B). More important,
S1PL deficiency alone had no significant effect on alveolar
development in the absence of hyperoxia challenge.
Furthermore, hyperoxia-induced protein leakage into BAL
fluids was markedly higher in Sgpl/I™~ mice compared with
WT mice (Figure 5C).

SphK1, But Not SphK2, Deficiency Modulates
Hyperoxia-Induced NOX Expression and ROS
Generation in Neonatal Lung Tissue

We have shown earlier that hyperoxia enhances the expression
of NOX2 and NOX4, which, in turn, mediate increased ROS
generation in lung endothelium.*'** Because SphK1 defi-
ciency ameliorated hyperoxia-induced lung injury and BPD in
neonatal mice, we investigated the potential link between
SphK1, NOX expression, and ROS generation. Hyperoxia
challenge of WT neonatal 1-day-old mice increased mRNA
levels and protein expression of NOX2 and NOX4 in lung
tissues compared with normoxic controls at day 7 after the
challenge (Figure 6, A—F). Interestingly, in Sphkl " mice,
the hyperoxia-induced up-regulation of NOX mRNA and
protein levels was less pronounced (Figure 6, E and F). In
contrast to SphK1 deficiency, loss of SphK?2 had no significant
effect on hyperoxia-induced protein expression of NOX2 and
NOX4 (Figure 7, A—C). The previously described data sug-
gested that SphK1, but not SphK2, modulates hyperoxia-
induced expression of NOX proteins in neonatal lung.

Role of Endogenous and Exogenous S1P on
Hyperoxia-Induced ROS Generation in HLMVECs

To further characterize the potential link between hyperoxia-
induced SphK1/S1P signaling axis and ROS generation,
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Figure 6  Effect of hyperoxia on expression of NOX2 and NOX4 in neonatal lungs of WT and Sphk1™~ mice. WT NB or Sphk1™~ NB mice, along with the
lactating dams, were exposed to normoxia (NO; white bars) or hyperoxia (HO; black bars; 75% 0,) for 1 week from PN day 1 for 7 days. After exposure, NB mice
were euthanized, lungs were removed for protein, and RNA was extracted as described in Materials and Methods. A: Whole lung homogenates were subjected to
SDS-PAGE and Western blot analysis. Immunoblot showed increased expression of NOX2 and NOX4 in lungs from WT after exposure to HO for 7 days. NOX2 and
NOX4 protein expressions were significantly decreased in Sphk1 ™~ exposed to HO, compared with WT, mice. Western blots probed with anti-NOX1 (B), anti-NOX2
(€), and anti-NOX4 (D) antibodies were quantified by densitometry and normalized to the corresponding total actin. E and F: Total RNA was isolated and subjected
to real-time RT-PCR. Quantification of mRNA demonstrated that HO induced an increase in mRNA expression of NOX2 (E) and NOX4 (F) in WT mice, which was
significantly less in the lungs of Sphk1 ™~ NB exposed to HO. Significantly increased from NO control: *P < 0.05, ***P < 0.001 (n = 5 to 8 per group).

SphK1 was knocked down using siRNA in HLMVECs and
exposed to hyperoxia (95% O,) for 3 hours. Hyperoxia
stimulated ROS generation, as evidenced by DCFDA oxida-
tion, and hydrogen peroxide accumulation in conditioned
media was attenuated in SphK1 siRNA-treated HLMVECs
(Figure 8, A and B). SphK1 siRNA transfection effectively
knocked down >80% of SphK1 protein in HLMVECs
(Figure 8C). In addition to SphK1 siRNA, blocking SphK1/
SphK2 activity with SKI-II, an inhibitor of both the isoforms
of SphK, attenuated hyperoxia-induced S1P generation and
ROS formation in HLMVECs (Figure 8, D and E). Consistent
with the previously described data, exposure of HLMVECsS to
1 umol/L exogenous S1P for 30 minutes also stimulated
intracellular ROS generation (Figure 8, F and G). These

A

(vy)

results further strengthened the role of SphK1/S1P signaling
in hyperoxia-induced ROS generation in human lung ECs.

Down-Regulation of NOX2 and NOX4 Expression
Attenuates S1P-Induced ROS Generation in HLMVECs

Our earlier studies showed that hyperoxia-induced ROS
formation in human lung ECs is NOX2 and NOX4 depen-
dent.”” However, the contribution of S1P signaling and the
role of activated NOX proteins in the generation of super-
oxide/ROS in human lung ECs are unclear. Therefore, we
investigated the link between S1P and NOX proteins by
selectively down-regulating NOX2 and NOX4 with specific
siRNAs. We also suppressed Racl, an essential component
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Figure 7  Effect of hyperoxia on expression of NOX2 and NOX4 in neonatal lungs of Sphk2™~ NB mice compared with WT NB. WT NB or Sphk2~~ NB mice
were exposed to normoxia (NO; white bars) or hyperoxia (HO; black bars) (75% 0,) from PN day 1 for 7 days. After exposure, NB mice were euthanized and the
lungs were removed for protein extraction, as described in Materials and Methods. A: Whole lung homogenates were subjected to SDS-PAGE and Western blot
analysis. A representative immunoblot showed increased expression of NOX2 and NOX4 in the lungs of WT and Sphk2™~ NB mice after exposure to HO for 7
days. Western blots probed with anti-NOX2 (B) and anti-NOX4 (C) antibodies were quantified by densitometry and normalized to the corresponding total actin.
*P < 0.05, NO control. No significant difference was found compared with WT HO (n = 5 to 8 per group).
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Figure 8  S1P enhances ROS generation in human lung endothelial cells. A: HLMVECs were transfected with 50 nmol/L scrambled RNA or SphK1 siRNA for
72 hours and exposed to normoxia (NO) or hyperoxia (HO) for 3 hours, and total ROS production was measured by DCFDA fluorescence. Original magnification,
x20. B: Hyperoxia-induced increase in ROS production in HLMVECs was significantly decreased by SphK1 knockdown in cells. Images were quantified by
Imaged (NIH, Bethesda, MD). Values for ROS production are means + SD from three independent experiments and normalized to percentage control.
C: Immunoblot showing effective knockdown of expression of SphK1 by SphK1siRNA. D: HLMVECs grown to approximately 90% confluence were pre-incubated
with 1 to 10 pmol/L SKI-II (SphK1/SphK2 inhibitor) in serum-free or media containing 1% FBS, as indicated for 24 hours before stimulation with hyperoxia
(95% 0, and 5%C0,) for 3 hours. After incubation, cells were washed twice with PBS at room temperature, and total ROS production was measured by DCFDA
fluorescence. SKI-II blocked ROS production in HLMVECs under hyperoxia. Original magnification, x20. E: Data were quantified based on the number of DCFDA
pixels. Values for ROS production are means + SD from three independent experiments and normalized to percentage control. F: HLMVECs (approximately 90%
confluence), grown on 35-mm dishes, were starved for 3 hours in EBM-2 containing 0.1% FBS, without growth factors, and treated with 1 pmol/L S1P for 5 and
30 minutes, respectively. Cells were loaded with DCFDA and exposed to 1 umol/L S1P for 5 and 30 minutes, respectively, followed by washing. Intracellular ROS
generation in HLMVECs was quantified by DCFDA measurement. G: H,0, in medium from normoxia and hyperoxia cells. *P < 0.05, versus control; 'P < 0.05,

significant decrease of ROS formation under HO by SphK1 inhibition.

of NOX2 activation, using the inhibitor, NS(C23766.484
Down-regulation of NOX2 or NOX4 with 50 nmol/L
siRNA for 48 hours reduced both basal (approximately
70%) and S1P-induced (approximately 80%) ROS forma-
tion (Figure 9, A—D). Effective knockdown of expression
of NOX2 and NOX4 by siRNA is demonstrated by immu-
noblot (Figure 9E). Similarly, pretreatment of HLMVECs
with NSC23766 significantly attenuated S1P-induced ROS
production (Figure 9, F and G). Furthermore, it also blocked
S1P-mediated translocation of p47phox to the cell periphery
(Figure 9G), a prerequisite for NOX2 activation. These
results showed that S1P-induced ROS production is, in part,
dependent on NOX2 and NOX4 in HLMVECs.

Discussion
BPD is a severe debilitating disease affecting the preterm

newborn, with no effective treatment. Identification of new
therapeutic targets for drug development is critical to
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improve the prognosis of this increasingly prevalent condi-
tion. By using a neonatal mouse model, our study provides
the first direct in vivo evidence that SphK1 is a novel thera-
peutic target for BPD in the newborn. The major findings of
this study are as follows: i) increased expression of SphK1
and elevated S1P levels, along with increased expression of
NOX2 and NOX4 in the neonatal lung tissue after exposure
to hyperoxia; ii) Sphkl™’~ mice exposed to hyperoxia
showed improved alveolarization, and decreased ROS
accumulation, neutrophil influx into the lungs, apoptosis, and
protein expression of NOX2, NOX4, and IL-6 levels; iii)
in vitro, SphK1siRNA attenuated hyperoxia-induced SI1P
generation and ROS formation in HLMVECs; and iv) down-
regulation of NOX2 or NOX4 with siRNA reduced both
basal and S1P-induced ROS formation. This study suggests
a novel link between the hyperoxia-induced SphK/S1P
signaling axis, NOX proteins, and ROS; and raises the
possibility that these are potential therapeutic targets against
BPD.
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Figure 9  Role of NOX2, NOX4, and Rac1 on S1P-induced ROS production in HLMVECs. A: HLMVECs were transfected with 50 nmol/L scrambled (sc) or Nox2
siRNA for 72 hours, washed with ice-cold PBS, loaded with DCFDA, and then exposed to 1 umol/L S1P for 30 minutes. ROS production was measured by DCFDA
fluorescence. Nox2 siRNA inhibits S1P-stimulated formation of ROS. Original magnification, x20. B: Quantified data show that Nox2 siRNA inhibits S1P-
stimulated formation of ROS. Values for ROS production are means + SD from three independent experiments. C: HLMVECs were transfected with 50 nmol/L
scrambled (sc) or Nox4 siRNA for 72 hours, loaded with DCFDA, and exposed to 1 pumol/L S1P for 30 minutes, as previously described. Nox4 siRNA inhibits S1P-
stimulated formation of ROS. D: Quantified data show that Nox4 siRNA inhibits S1P-stimulated formation of ROS. Values for ROS production are means + SD from
three independent experiments. E: Immunoblot demonstrating effective knockdown of expression of NOX2 and NOX4 by siRNA. F: Inhibition of Racl with NSC23766
blunts S1P-induced translocation of p47°"° to the cell periphery and ROS production. HLMVECs grown on slide chambers were pretreated with 50 pmol/L NSC23766
for 30 minutes, exposed to 1 pmol/L S1P for 30 minutes, washed, fixed, permeabilized, probed with anti-p47°"°* antibody, and examined by immunofluorescence
microscopy. Original magnification, x60 (oil objective). Exposure of cells to S1P resulted in redistribution of p47°"* to the cell periphery, whereas NSC23766
blunted p47P"° redistribution. A representative image from one of the three independent experiments is shown. G: HLMVECs were pretreated with 50 pmol/L
NSC23766 for 30 minutes and exposed to 1 pumol/L S1P for 30 minutes, and total ROS production was measured by DCFDA fluorescence. Original magni-
fication, x20. Values for ROS production are means & SD from three independent experiments. Significantly increased from control untreated cells (sc).

*P < 0.05, significant decrease of ROS formation compared with control. NO, normoxia; Veh, vehicle.

The pathogenesis of BPD is well described, and its
development is associated with lung inflammation,
epithelial/endothelial injury, and impaired postnatal lung
growth.”?%>"  Several factors, including angiogenesis
proteins, proinflammatory cytokines, and oxidative stress,
have been described to protect against or contribute to the
pathogenesis of BPD.”” However, molecular mechanisms
contributing to impaired alveolar formation and develop-
ment of BPD are incompletely understood. ROS accumu-
lation and an imbalance in cellular reduction-oxidation
status have been implicated in hyperoxia-induced lung
injury and BPD.”*** Earlier, we have demonstrated that
exposure of adult mice to hyperoxia increased ROS
production in the lung, which was NADPH oxidase
dependent, with minimal or no contribution of mitochon-
drial electron transport.”” Furthermore, the hyperoxia-
induced ROS production in the mouse lung and human
lung ECs was mediated by enhanced expression of NOX2
and NOX4, because blocking NOX2 or NOX4 attenuated
hyperoxia-induced ROS generation, lung injury, and
inflammation (Figure 6A).*” Expression levels of NOX2
and NOX4 were elevated in the neonatal BPD mouse lung,
confirming that the physiological role of NOX proteins is
the key regulator of lung inflammation and injury.

The first interesting and novel finding of the present study
is the potential involvement of SphK1/SIP signaling in
impaired alveolarization and lung injury in neonatal mice

The American Journal of Pathology m ajp.amjpathol.org

exposed to hyperoxia. SIP is a naturally occurring bioactive
sphingophospholipid, which is present in plasma and tissues
at concentrations ranging from nM to uM.”® In tissues, S1P
levels are maintained by its synthesis and catabolism, and
changes in the tissue environment can alter S1P homeo-
stasis. In the present study, S1P accumulation in the lungs of
neonatal pups exposed to hyperoxia correlated with
increased SphK1 and SPT expression, the key enzymes of
sphingolipid homeostasis in mammalian cells. In contrast to
the mRNA levels, the protein expression of SIPL was
higher in WT mice exposed to hyperoxia. Protein expres-
sion is dictated by several factors, including level of mRNA,
its half-life, translational efficiency, and turnover rate of the
protein of interest. Also, it is evident that there is no direct
correlation between mRNA expression levels and protein
expression, and in many instances, an increase in mRNA
expression does not necessarily translate to a similar level of
protein expression.””>® Thus, our current observation of
a lack of correlation between mRNA and protein expression
of SIPL is in accordance with reports in the literature.”*
Our data indicate that enhanced S1P accumulation in lungs
is linked to BPD because Sphkl ~ ~, but not Sphk2_/ ~, mice
exposed to hyperoxia showed better alveolar development
and had a reduced vascular leak. This beneficial effect of
SphK1 deficiency against BPD is probably because of
a direct consequence of reduced S1P levels in circulation and
lung tissues in SphK1-deficient mice. Additional support for
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this contention comes from experiments performed with
Sgpll™~ mice, in which alveolar formation and vascular leak
were significantly impaired after exposure to hyperoxia, and
earlier studies have shown elevated S1P levels in plasma,
lungs, and other tissues of Sgpll ™~ mice.””’ The role of
S1P in pulmonary diseases is complex. In an ovalbumin-
challenged murine model of asthma, increased S1P levels
in lung tissue aggravated airway inflammation and hyper-
responsiveness.’’ Earlier studies showed that the adminis-
tration of SphK inhibitors, N,N-dimethylsphingosine or SKI-II,
significantly reduced eosinophilia, pulmonary inflammatory
cell infiltrate, IL-4 and IL-5 levels, and peroxidase activitym in
BAL fluid in response to inhaled ovalbumin challenge.’"®*
Similarly, we noted reduced markers of inflammation in
Sphkl ™~ neonatal mice exposed to hyperoxia. In contrast, in
the LPS-induced murine model of acute lung injury, a decrease
in S1Pin the lungs, as evident in SphK1 deficiency, potentiated
the lung injury,”” whereas S1PL suppression in the same
model ameliorated pulmonary inflammatory response and
barrier disruption, both in vivo and in vitro.2%?! Recently,
knocking down of SphK1 or treatment with SphK inhibitor,
SKI-II, attenuated S1P generation and development of
bleomycin-induced pulmonary fibrosis in mice.®* Thus, S1P
is a double-edged sword with both beneficial and detrimental
effects in different pathological conditions.””® A role for
SPT in the development of BPD is unclear. It is reasonable to
assume that enhanced expression of SPT2 in hyperoxia can
also contribute to altered sphingolipid metabolism and S1P
accumulation in lungs. Further studies are necessary to
delineate the potential role of SPT in BPD.
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kinase 1, which stimulates formation of S1P. Stimu-
lation by S1P, in turn, increases levels of NOX2 and
NOX4, leading to increased formation of ROS. The
process of secondary septation, leading to anincrease
in lung surface area in the developing neonatal lung,
is affected by ROS, leading to BPD, such as morpho-
logical characteristics. SphK1 knockout (KO) mice
demonstrated protection against hyperoxia because
alveoli formation was better preserved compared with
WT exposed to hyperoxia.

The second interesting aspect of this study is the potential
cross talk between the SphK1/S1P signaling and NOX
proteins in ROS generation in response to hyperoxia. Our
results show, for the first time to our knowledge, that
SphK1, but not SphK2, modulates NOX expression in the
neonatal lung. Knockdown of SphK1 blunted hyperoxia-
induced NOX2 and NOX4 expression in mouse lung.
In vitro, exogenous addition of S1P to HLMVECs stimu-
lated redistribution of NADPH oxidase components, such as
Racl and p47°"** to cell periphery and ROS production,
which was blocked by SphK1 siRNA (Figure 9). The exact
mechanism of up-regulation of NOX2/NOX4 by S1P is yet
to be defined; however, in adult murine lungs, Pseudomonas
aeruginosa—mediated NOX2 expression is regulated by
NF-kB°” and hyperoxia-induced NOX4 by Nrf2.°® Inter-
estingly, S1P activates Nrf2 in HLMVECS, and inhibition of
SphK1 attenuated S1P-induced translocation of Nrf2 to the
cell nucleus (data not shown). Thus, the potential link
between SphK1/S1P— Nrf2—ROS in the development of
lung injury needs to be explored in BPD.

In conclusion, our findings provide correlative evidence
for the SphKI1/S1P signaling pathway as an essential
mediator of hyperoxia-induced lung injury and development
of BPD-like morphological characteristics in mice. In
addition, we have identified a potential link between SphK1/
S1P signaling in NOX2/NOX4 activation, ROS generation,
and subsequent development of lung injury and BPD
(Figure 10). These findings suggest that targeting SphK1/
S1P signaling with small-molecule inhibitors may represent
a novel therapeutic approach against human BPD.
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