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Power Calculations for a General Class of Family-Based Association Tests:
Dichotomous Traits
Christoph Lange and Nan M. Laird
Department of Biostatistics, Harvard School of Public Health, Boston

Using large-sample theory, we present a unified approach to power calculations for family-based association tests.
Currently available methods for power calculations are restricted to special designs or require approximations or
simulations. Our analytical approach to power calculations is broadly applicable in many settings. We discuss
power calculations for two scenarios that have high practical relevance and in which power previously could only
be assessed by simulation studies or by approximations: (1) studies using both affected and unaffected offspring
and (2) studies with missing parental information. When the population prevalence is high, it can be worthwhile
to genotype unaffected offspring. For many scenarios, high power can be achieved with reasonable sample sizes,
even when no parental information is available.

Introduction

In this article, we address power calculations for gen-
eralized family-based association tests (FBATs) (Laird et
al. 2000; Rabinowitz and Laird 2000). We use the term
“FBAT” to denote a genetic-association test that uses
genetic data on family members to compute the distri-
bution of a suitable test statistic under the null hypoth-
esis, conditioning on the phenotypes. Examples are given
below. FBATs are powerful tests for detecting linkage
between a marker and a disease-susceptibility locus in
the presence of linkage disequilibrium between the two
loci. The best known FBAT is the transmission/disequi-
librium test (TDT) (Ott 1989; Spielman et al. 1993); it
was designed for the special setting of sampling affected
individuals and their parents, where parents’ genotypes
are available. However, many genetic studies have miss-
ing parents, affected and unaffected offspring, contin-
uous phenotypes, and/or multiple phenotypes. A variety
of approaches have been proposed to deal with these
issues; for reviews, see Zhao (2000) or Schulze and Mc-
Mahon (2002). Most research has focused on the dis-
tribution of the proposed test statistics under the null
hypothesis and has assessed the achieved power of the
proposed tests either by simulation studies (Risch 2000;
Horvath et al. 2001; Q. Yang, X. Xu, and N. M. Laird,
unpublished data) or by approximations (Whittaker and
Lewis 1998).

Received February 21, 2002; accepted for publication June 17, 2002;
electronically published August 12, 2002.

Address for correspondence and reprints: Dr. Christoph Lange,
Department of Biostatistics, Harvard School of Public Health, 655
Huntington Avenue, Boston, MA 02115. E-mail: clange@hsph.harvard
.edu

� 2002 by The American Society of Human Genetics. All rights reserved.
0002-9297/2002/7103-0012$15.00

For “simple” scenarios (i.e., trios or trios with one
additional offspring), Knapp (1999a) and Chen and
Deng (2001) computed the power by deriving the ex-
pected value of the test statistic under the alternative
hypothesis and then computing the power of the ex-
pected statistic. In contrast with that, we compute the
expected power of the actual test statistic. First, we ob-
tain the power of the test statistic, conditional on the
phenotypes and mating types. Then, we integrate the
conditional power over the phenotypes and mating
types, to obtain the expected power. Since we are able
to compute the conditional power for virtually any sce-
nario (e.g., multiple offspring, missing parental infor-
mation, etc.), and since integrating over the data can
always be solved numerically, our approach to power
calculation can be applied much more generally. The
approach is broadly applicable to multiallelic loci, con-
tinuous traits, and/or multivariate phenotypes (Lange
et al., in press). Here, we will discuss only the situation
in which we observe one dichotomous trait; continuous
traits will be discussed in a separate article.

To illustrate the generality of our new approach, we
compare power results obtained by our approach with
those of both Knapp (1999a) and Whittaker and Lewis
(1998). Our approach and Knapp’s agree well in the
case in which Knapp’s has been applied. Since Whit-
taker and Lewis (1998) derived their results under the
assumption that the alternative hypothesis would be
very close to the null hypothesis, the two approaches
demonstrate perfect agreement when the alternative hy-
potheses are indeed close to the null hypothesis. How-
ever, when the alternative hypotheses are far away from
the null hypothesis, the Whittaker and Lewis (1998)
method becomes less reliable. In addition, we will pre-
sent power calculations for situations in which the pa-
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Figure 1 Power of FBAT test for trios with one additional unaffected offspring and both parents’ genotypes observed. The dotted line
shows the power of the standard TDT, including only the affected offspring. The vertical line shows the location of the disease prevalence K.
a, Multiplicative model for a common disease: disease prevalence , allele frequency of the disease gene , fraction of the diseaseK p 0.3 p p 0.143
attributable to carrying at least one disease gene , significance level , and sample size 100. Optimal offset choice .AF p 0.25 a p 0.01 z p 0.4
Power gain by optimal choice of z over is 25%. b, Multiplicative model for a rare disease: disease prevalence , allele frequencyz p 0 K p 0.05
of the disease gene , fraction of the disease attributable to carrying at least one disease gene , significance level ,�4p p 0.05 AF p 0.3 a p 10
and sample sizes 100. Optimal choice of . Power gain by optimal choice of z over is 5%.z p 0.15 z p 0

rental genotypes are missing, but additional offspring
are available.

In our section on “Notation and Power Calculations,”
we discuss how the unconditional/expected power can
be computed. In the following section, on “Computation
of the Conditional Marker Distribution and the Condi-
tional Family-Type Distribution,” we derive the condi-
tional probabilities required for the computation of the
unconditional power. Our approach is generally appli-
cable and can handle a variety of different scenarios—for
example, multiple offspring, multiple phenotypes, miss-
ing parental information, and environmental effects. Our
“Results” section shows power calculations for scenarios
in which additional offspring are given and/or parental
genotypic information is missing. Finally, in our section
on “Application to Study Design,” we use our approach
to power calculations to design a study for bipolar
disorder.

Notation and Power Calculations

For simplicity of exposition, we assume that we observe
a biallelic marker with alleles A and B. The disease pen-

etrances for 0, 1, or 2 disease alleles are , , and ,f f f0 1 2

respectively. We denote the allele frequency of the disease
gene by p, the population prevalence of the disease by
K, and the fraction of the disease attributable to carrying
at least one copy of the disease gene by AF—that is,

. Like Risch and Merikangas (1996),AF p (K � f )/K0

Camp (1997), Knapp (1999a) and Whittaker and Lewis
(1998), we assume the best-case scenario for the marker
locus—that is, that the marker locus is the disease locus
and that, hence, the A allele frequency is p.

Furthermore, there are n independent families, and
the ith family has offspring. We denote the markermi

score for jth offspring in the ith family by . The totalXij

number of marker scores isX ,j p 1, … ,m ; i p 1, … ,nij i

N. Note that the actual coding of the marker score
depends on the assumed genetic model. The correspond-
ing trait information is given by , where affected off-Yij

spring are coded by , unaffected offspring byY p 1ij

, and offspring with unknown phenotype byY p 0ij

. When parental genotypic information for theY p NAij

ith family is recorded, it is denoted by and . ForP Pi1 i2

biallelic markers, the possible values of and canP Pi1 i2
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be characterized as 0, 1, or 2 for the number of target
alleles. Laird et al. (2000) then defined the generalized
FBAT statistic by

2�Ui( )
i

GT p .�Var (U)i
i

In this equation, ,U p � T [x � E (X )] Var (U) pji ij ij 0 ij i

, and an appropriate coding of′� T T Cov (X ,X ) T′ ′j,j ij ij 0 ij ij ij

the phenotype . is the expected marker scoreY E (X )ij 0 ij

under the null hypothesis and is the markerCov (X ,X )′0 ij ij

covariance under the null hypothesis. When the pheno-
type is missing (i.e., when ), we set .Y p NA T p 0ij ij

When both parents are observed, setting givesT p yij ij

the TDT discussed by Spielman et al. (1993), which is
based on affected ( ) offspring only. Settingy p 1 T pij ij

, with a constant offset , defines the TDTy � z z,0 ! z ! 1ij

proposed by Whittaker and Lewis (1998), which includes
unaffected offspring in the computation of the test sta-
tistic. When both parents are observed, the marker means
and covariances under the null hypothesis, andE (X )0 ij

, are computed conditional on the parentalCov (X ,X )′0 ij ij

genotypes, and , where the transmission probabil-P Pi1 i2

ities are defined by Mendelian laws.
When parents are missing, the RC-TDT (Knapp

1999b), S-TDT (Spielman and Ewens 1998), and FBAT
(Laird et al. 2000; Rabinowitz and Laird 2000) use
alternative conditions for the computation of the
marker means and covariances under the null hypoth-
esis (e.g., the minimal sibship condition for S-TDT or
the R-condition for RC-TDT). These conditions are
based on suitable sets of available genetic information
within one family and the observed phenotypes. Loosely
speaking and without loss of generality, any of those
conditions can be understood as a function of offspring
genotypes and available parental genotypes that is held
constant when and are computed.E (X ) Cov (X ,X )′0 ij 0 ij ij

We will denote these conditions by . Although theSi

methodology proposed here is valid for all conditions
addressed by RC-TDT, S-TDT, and FBAT, we will use
the FBAT condition in all our examples. For FBAT, Si

is the minimal sufficient statistic for the parental ge-
notypes (Rabinowitz and Laird 2000).

Standard asymptotic theory implies that, under the
null hypothesis and given the phenotypes Y p

and the condition , GT is(Y , … ,Y ) S p (S , … ,S )11 nm 1 nn

distributed with 1 df—that is,2x

2GT ∼ x .1

When the marker means and (co)variancesE (X )A ij

are given under the alternative hypothesis,Cov (X ,X )′A ij ij

the distribution of GT under the alternative hypothesis

can be computed by a scaled, noncentral distribution:2x

, with2qGT ∼ x1,g

2[ ]�T E (X ) � E (X )ij A ij 0 ij{ }
ij

g p ��T T Cov (X ,X )′ ′ij ij ij ijA′i j,j

and

��T T Cov (X ,X )′ ′ij ij ij ijA′i j,j
q p . (1)��T T Cov (X ,X )′ ′ij ij ij ij0′i j,j

The proof of this result is shown in appendix A. The
extension of the conditional power formula (1) to mul-
tiallelic loci can be found in the work of Lange and
Laird (in press). In this setup, the conditional power of

for the significance level a is given byGT

cond 2 ( )P p P x � qq 1 � a . (2)2[ ]GT dY,S 1,g x1

It is important to note that, since , ,E (.) E (.) Cov (.,.)0 A 0

and are computed conditional on and ,Cov (.,.) Y SA

formula (2) can not be used directly when the pheno-
types and the data defining are not observed. andY S Y

have to be integrated out to obtain the unconditional/S
expected power—that is,

cond( )P p E P d A , (3)GT dA GT dY,S

where is the ascertainment condition for the phe-A
notype . We make the assumption that the ascertain-Y
ment condition depends only on the phenotype andY
the expectation is over the distribution of , butY,S d A
the approach can be extended so that depends onA
the phenotypes of the parents. Thus, the second stage
of computing the unconditional/expected power in-
volves the conditional distribution of the family types

under the alternative hy-p (y p (y , … ,y ),s d A ) ,i i1 im ii

pothesis. Since are discrete and bounded randomy ,si i

variables, (3) can be written as a finite sum:

cond ( )P p P p y,s d A . (4)�GT dA GT dy,s
y,s

Hence, can always be computed by direct eval-PGT dA

uation of each possible term in the summation. In ap-
pendix B, we describe technical details that accelerate
the computation of (4).

When the power function in the unconditional/ex-
pected power formula (3) is approximated by a first-
order Taylor expansion in and —that is, byY S

—the approach ofE[Power(FBAT)] p� Power[E(FBAT)]
Knapp (1999a) is obtained. In full generality, the La-
grange term in the Taylor approximation—and, there-
fore, the accuracy of Knapp’s approach (1999a)—will
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depend on the second moment expressions of and theS
phenotypes , which are not fixed by the ascertainmentY
condition. Since all phenotypes are fixed at 1 in the
scenarios considered by Knapp (1999a), and, since the
parental genotypes are observed, , the ap-S p (P ,P )1 2

proximation error is minimal. However, when not all
phenotypes are defined by the ascertainment condition
(e.g., only the first offspring must be affected) and S
becomes more complex (e.g., parental genotypic infor-
mation is missing), the approximation error can become
considerably larger.

Although the numerical differences we found between
our approach and Knapp’s were usually not noteworthy
for the scenarios considered by Knapp (1999a) and
Chen and Deng (2001), the theoretical advantages of
our methodology are of practical relevance. Since the
direct computation of the unconditional mean and var-
iance of is already rather difficult for the sce-GT d Y,S
narios considered in Knapp (1999a), and since approx-
imations have to be utilized (Knapp 1999a), potential
extensions to more-realistic scenarios become even more
complex (Chen and Deng 2001). On the other hand,
the methodology proposed here can easily be applied
to complex scenarios (e.g., missing parental genotypes
and multiple continuous phenotypes per offspring). Re-
sult (1) for conditional power calculations allows us to
compute the conditional power for any scenario, as long
as we are able to derive the conditional marker distri-
bution under the alternative hypothesis. In the next sec-
tion (formula [5]), we show that this can be done for
virtually any scenario. Then the second step, “uncon-
ditioning” the conditional power, can be achieved nu-
merically at all times, either by numerical summation,
numerical integration, Monte Carlo simulation, or Mar-
kov chain–Monte Carlo (MCMC) methods.

Note that, when numerical integration/summation is
not feasible, computing the sum by Monte Carlo sim-
ulations or MCMC is more efficient than assessing the
power by simulations. In a pure simulation experiment,
the test result is either significant or not significant,
which means that we are looking at a discrete variable
that can either be 1 or 0. However, when Monte Carlo
simulation is used for the computation of the sum in
(4), the variable of interest is the conditional power,
which is a continuous variable between 0 and 1. It is
obvious that a continuous variable contains more in-
formation and has less variance than a discrete variable.
A pure simulation study will therefore require far more
replicates than computing the sum of the conditional
power by Monte Carlo simulation. Finally, we note that
Knapp (1999a) and Chen and Deng (2001) compute an
approximation to the power of the ”expected” test sta-
tistic rather than the expected power of the actual test
statistic.

Computation of the Conditional Marker Distribution
and the Conditional Family-Type Distribution

In this section, we discuss the computation of the con-
ditional marker distribution under both hypotheses and
the conditional distribution of the family types (i.e., yi

and ) under the alternative hypothesis. Although thesi

conditional marker distribution is required in the con-
ditional power calculation for the scaling parameter q

and the noncentrality parameter g, the distribution of
the family types conditional on the ascertainment con-
dition is needed to integrate out these variables in (3) to
and obtain the unconditional/expected power.

Since we assume independence of the families, it is
sufficient to discuss the marker distribution within one
family. The conditional marker distribution p[x pi

can be derived by repeated applica-(x , … ,x ) d y ,s ]i1 im i in

tion of Bayes’s theorem and is given, under the null and
alternative hypotheses, by

p(y d x )p(x d s )i i i i( )P x d y ,s p . (5)i i i �p(y d x)p(x d s )i i
x

When the marker locus and the disease locus are not
the same, the probability of the disease locus , giveng i

the marker locus , has to be computed, by .x p(g d x )i i i

Then in (5) is replaced by .p(y d x ) � p(y d g )p(g d x )gii i i i i i

The probability can be computed under bothp(x d s )i i

hypotheses by repeated application of Bayes’s theorem.
Under the null hypothesis, note that does notp (y d x )i i

depend on the marker score and (5) simplifies to
, which will not depend upon model assump-P (x d s )i i

tions and population parameters (appendix I in Rabi-
nowitz and Laird 2000). Nevertheless formula (5) is of
practical relevance also under the null hypothesis, since
it provides a standardized way for the computation of
the conditional marker distribution that can easily be
implemented in a software package, e.g. when either one
or both parents are missing it can be used as an alternative
algorithm to compute the conditional marker distribu-
tion given in Rabinowitz and Laird (2000).

When trios with one offspring are ascertained,
, and the parental genotypes are observed, them p 1i

sufficient statistic is given by and the conditionalS p ,pi i1 i2

marker distribution for the TDT by Spielman and Ew-
ens (1998) can be obtained by direct application of for-
mula (5),

( ) ( )P y p 1 d x P x d p ,pi i i i1 i2

( )P x d y p 1,s p ,i i i ( ) ( )�P y p 1 d x P x d p ,pi i1 i2
x

where is over all possible values of , given and� x px i i1

; it depends on the marker coding, as well as onp pi2 i1
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and . The probability is given by Men-p P (x d p ,p )i2 i1 i2

delian law under both and . The conditional dis-H H0 A

tribution is given, under the null hypothesis,P (y d x )i i

by

y 1�yi i( ) ( )P y d x pK 1 � K , (6)i i

where K is the disease prevalence and under the alter-
native hypothesis by

y 1�yi i( ) ( )P y d x p f 1 � f , (7)i i x xi i

where , , and are the penetrances of the underlyingf f f0 1 2

disease model. The application of formula (5) to more
complex scenarios (e.g., multiple offspring and missing
parental information) will be discussed in our “Results”
section.

The computation of the distribution of the family type
, given , is done in a similar way. The ascertain-(y ,s ) Ai i

ment condition describes how offspring are sampledA
from the total population on the basis of their pheno-
types. For example, for the TDT proposed by Spielman
and Ewens (1998), the ascertainment condition is given
by , which means that only affected off-A p {y:y p 1}
spring are used in the test. Given the ascertainment con-
dition , the conditional distribution of can beA (y ,s )i i

computed by

{ } ( ) ( )I y � A P A d s p si i i
( )P y ,s d A p , (8)i i p(A)

with for and oth-I {y � A } p 1 y � A I {y � A } p 0i i i

erwise. As for the conditional marker distribution, prob-
abilities , , and can be computed, un-p (A ) p (A d s ) p(s )i i

der the alternative hypothesis, by repeated application
of Bayes’s theorem. All technical details for the com-
putation of the conditional probability are included in
a technical report that is available on our Web page.

Results

In this section, we discuss two power-calculation sce-
narios, additional offspring and missing parental infor-
mation; both scenarios are highly relevant to association
studies. Many diseases considered in association studies
have late onset (e.g., Alzheimer disease), and so geno-
typing the parents is not feasible. However, it might be
relatively easy to sample siblings.

Application I: Power When Both Parents Are Available
and One Additional Unaffected Offspring Is Included

In this section, we compute the power of the FBAT
for affected trios with one additional unaffected sibling
( ) and examine the influence of weighting schemem p 2ij

on the power. We will also compare our results with
those of Whittaker and Lewis (1998). Whittaker and
Lewis (1998) suggested including the unaffected off-
spring by use of the coding , whereT p y � z z p Kij ij

is the disease prevalence. Since K is not known, in gen-
eral, we examine the power of FBAT as a function of z.

We use formula (5) to derive the joint conditional
distribution of the marker scores and . All phe-x xi1 i2

notypes are fixed by the ascertainment condition
—that is, —and the parental ge-A A p {y p 1,y p 0}i1 i2

notypes are known. Hence, the minimal sufficient sta-
tistic of FBAT depends only on the parental geno-
types—that is, . The conditional markers p (p ,p )i i1 i2

distribution is given by

2

( )� P y d x P(x d p ,p )ij j j i1 i2
jp1( )P x ,x d y ,y ,s p . (9)2i1 i2 i1 i2 i

( )� �P y d x P(x d p ,p )ij i1 i2{ }
jp1 x

Note that we assume independence of and ofY d Xij j

in (9). In principle, a more general model canX d (P ,P )j i1 i2

be used that allows for nonindependence of the values
of , as in the work of Q. Yang, X. Xu, and N. M.Y d Xij j

Laird (unpublished data). Whereas dependsP(x d p ,p )i1 i2

only on Mendelian transmission, depends on˜P (y d x)ij

the hypothesis and the underlying genetic model. Under
the null hypothesis, it is given by (6) and under the
alternative hypothesis by (7).

Under the assumption of an additive coding for the
marker scores (i.e., ), there are pos-2x p 0,1,2 3 p 9ij

sible combinations for , which we will de-S p (p ,p )i i1 i2

note here by . Further, the number of observed(1) (9)S , … ,S
is given by (i.e., ). Then, the scaling(k) 9S n n p � nkp1k k

parameter q for the conditional power formula (2) can
be computed by

9
(k) 2 (k) 2[ ]� n Var (X d y p 1,S )(1 � z) � Var (X d y p 0,S )zk 0 0

kp1
q p ,9

(k) 2 (k) 2[ ]� n Var (X d y p 1,S )(1 � z) � Var (X d y p 0,S )zk H H1 1
kp1

and the noncentrality parameter g can be computed by

9

(k) (k)[ ]g p n E (X dy p 1,S ) � E (X dy p 1,S ) (1 � z)� k 0 1{kp1

2

9

(k) (k)[ ]� n E (X dy p 0,S ) � E (X dy p 0,S ) z� k 0 1 }kp1

9

(k) 2 (k) 2[ ]/ n Var (X dy p 1,S )(1 � z) �Var (X dy p 0,S )z .� k 1 1
kp1

Further, we use formula (8) to compute the distribution
of conditional on the ascertainment condition ,(k)S A
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which is given here by . HavingA p {Y p 1,Y p 0}1 2

these conditional distributions, it is straightforward to
compute the unconditional/expected power.

To compare our results with those of Whittaker and
Lewis (1998), we assume a multiplicative model, f p1

. Under the assumption that the alternative hypoth-�f f0 2

esis would be close to the null hypothesis (low gene
effect)—that is,

�f /f ≈ 1 .0 2

Whittaker and Lewis (1998) suggested that inclusion of
unaffected siblings gives maximum power when the off-
set is chosen to be the disease prevalence and that thez
power gained by inclusion of unaffected offspring does
not outweigh the cost of the additional genotyping. For
alternative hypotheses satisfying the assumption of low
gene effects, our power calculations, as well as methods
discussed elsewhere (Q. Yang, X. Xu, and N. M. Laird,
unpublished data), confirm the finding of Whittaker and
Lewis (1998).

However, when we consider scenarios like those dis-
cussed by Boehnke and Langefeld (1998) and Knapp
(1999a), in which the authors assume that is in�f /f0 2

the range 1.5–4, and in which unaffected siblings are
included, we observe, for common diseases, a substantial
gain in power over the standard TDT, which uses only
affected. For these results are illustrated for�f /f p 40 2

a common and a rare disease in figure 1. Figure 1
strongly suggests that genotyping unaffected offspring
can be worthwhile for common diseases, as shown else-
where (Q. Yang, X. Xu, and N. M. Laird, unpublished
data). Furthermore, it is important to note that, in any
case, is a better choice than the standard TDT.z 1 0
However, the power is relatively insensitive to the choice
of the offset in a limited range around the prevalence.z
When is in the range 1.5–4, our analytical power�f /f0 2

calculations show that the optimal FBAT is obtained
when the offset is chosen to be greater than the diseasez
prevalence, although the amount of power gained over
use of z as “disease prevalence” is very small.

Power of FBATs When Both Parental Genotypes Are
Missing

Since the standard TDT discussed by Spielman et al.
(1993) requires the parental genotypes, a variety of ex-
tensions have been proposed when either one or both
parents are missing: SDT by Horvath and Laird (1998),
S-TDT by Spielman and Ewens (1998), RC-TDT by
Knapp (1999b), and FBAT by Rabinowitz and Laird
(2000). The advantage of the FBAT approach is its flex-
ibility; it can handle scenarios with one missing parent,
arbitrary numbers of offspring within a family, etc. We
will therefore concentrate here on power calculations for

FBATs. However, for many scenarios, RD-TDT and
FBAT give similar results (Horvath et al. 2001).

For simplicity, we examine only scenarios where both
parents are missing. We assume that we observe at least
two offspring per family ( ). The sufficient statisticm � 2i

is given in Rabinowitz and Laird (2000) and canS (x )i i

be used directly in formula (5) to derive the conditional
marker distribution for FBATs under the null and alter-
native hypothesis.

Having these conditional distributions, the condi-
tional marker mean and variance can be calculated un-
der the null and alternative hypothesis (formula [5]).
Then, the scaling parameter q and the noncentrality pa-
rameter g in the conditional power formula (2) can be
computed as in our section on “Application I.” In the
”unconditioning” step, we assume that families are as-
certained with at least one affected offspring—that is,

. The probability is obtainedA p {Y p 1} p(y ,s d A)1 i i

by application of formula (8).
We compute the power of GT and its dependence on

the offset z for a variety of sampling plans assuming
parental genotype data are always missing. We assume
that the penetrances under the alternative model are
given by a multiplicative model. Figure 2 shows the re-
sults of the asymptotic power calculations outlined
above for common and rare disease scenarios. To study
the effect of missing parental information on the power,
we also give the power of GT for the same number of
offspring when the parental genotypes are known.

As expected, the loss of power caused by missing pa-
rental information decreases with increasing family size.
While the loss of power for two siblings with no parental
information is relatively large compared to the power
when both parents are given, the loss of power is mod-
erate for the families with 3 siblings. In fact, for K �

, the power of the three sibling design is indistin-0.2
guishable from the ”two-parent and two-offspring” de-
sign, and should be preferred as it requires less geno-
typing and has less sensitivity to z.

For all tests, choosing to be the disease prevalencez
seems to be a reasonable choice. However, the choice of

has only a minor affect on the power of all tests asz
long as is in a sensible range around the disease prev-z
alence. For rare diseases, is a reasonable choice,z p 0
which corresponds to treating the phenotypes of the un-
affected siblings as unknown. When trios with one af-
fected offspring or two offspring without parental in-
formation are given, there is no dependence on the offset
z. Although this observation is trivial for affected trios,
it is unexpected for two offspring with no parental in-
formation. In this case, it can be explained by the def-
inition of the sufficient statistic. Since the sufficient sta-
tistic conditions on the observed marker scores, the
correlation between the two marker scores is always �1
when only two offspring without parental information
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Figure 2 Power of FBAT tests for multiplicative models: Significance level . The numbers shown above the graphs corresponda p 0.01
to the numbers of genotyped subjects in each family. a, , , , . b, , , , . c,n p 200 p p 0.2 K p 0.3 AF p 0.2 n p 100 p p 0.05 K p 0.2 AF p 0.2

, , , . d, , , , .n p 100 p p 0.05 K p 0.05 AF p 0.2 n p 200 p p 0.2 K p 0.05 AF p 0.3

are given. This simplifies the formulas for the scaling
parameter q and the noncentrality parameter g, so that
they do not depend upon the offset. One might also get
the impression that the power does not depend on the
offset for three offspring and no parental information.
However, this impression is due to the selected offset
range between 0.0 and 0.6 in figure 2. For offsets be-

tween 0.6 and 1.0, the power also depends on the offset
choice for this family type.

Application to Study Design

An ancillary genetic study of bipolar disorder is being
planned that builds on patients enrolled in a large on-
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Table 1

Power for Bipolar Disorder Study

p

POWER

Additional Offspring
Phenotyped

Additional Offspring
Not Phenotyped

.5 .989 .986

.4 .997 .995

.3 .998 .997

.2 .994 .993

.1 .911 .902

.05 .488 .474

.01 .007 .007

NOTE.—Significance level , and penetrance functiona p 0.00001
, , and .f p 0.03 f p 0.02 f p 0.01AA AB BB

going clinical trial. For illustration, we assume that
1,003 families with one affected proband will participate
in the study: 213 probands with both parents, 175 pro-
bands with one parent and one sibling, 175 probands
with one parent and two siblings, 220 probands with
one sibling, and 220 probands with two siblings. Be-
cause of cost and recruitment considerations, siblings
will not be phenotyped. With low disease prevalence
( ), this should not have a substantial impactK p� 0.01
on the power, but this can be tested using our method.
We compare power under the assumptions that siblings
are phenotyped or not, for a fixed set of penetrance
functions and a range of allele frequencies that give

. For the case when the siblings are phenoty-K p� 0.01
ped, we set the offset to 0.01. Furthermore, we assume
that the significance level is . The achieveda p 0.00001
power for a range of potential allele frequencies is shown
in table 1 when the sibling are phenotyped or not. Table
1 shows that phenotyping additional offspring has vir-
tually no effect on the achieved power and therefore is
not worthwhile in this study.

Discussion

In this study, we have presented an approach to power
calculations for FBATs. Our approach differs from the
approach taken by Knapp (1999a) and its extension in
the sense that it computes the expected power of the
actual test statistic, whereas Knapp’s approach gives the
power of the expected statistic. Although the results of
the two approaches do not differ greatly for the ex-
amples considered in the literature, the difference be-
comes relevant when the family size becomes larger,
when parental information is missing, or when exten-
sions to continuous traits are considered. For all these
scenarios, the power has so far been assessed by simu-
lation experiments. Our approach allows the compu-
tation of the unconditional/expected power for these sce-
narios and thereby becomes an important tool for the
design of genetic studies (e.g., comparisons of sample
designs in terms of genotyping and prevalence). For dis-
cordant sibships, we applied our approach to verify the
results obtained by the approximation proposed by
Whittaker and Lewis (1998). Although we found that
offset choices close to the population prevalence are not

always optimal, they seem to be a reasonable rule of
thumb. Further, genotyping of unaffected offspring can
be beneficial when the population prevalence is high.

We discussed design issues and powerful offset
choices for situations in which no parental information
is available. For many scenarios, high power can be
achieved with a reasonable sample size in the absence
of parental information. In these situations, the influ-
ence of the offset on the power is negligible.

The methodology proposed here is fully general;
hence, extensions to sampling designs and power cal-
culations for multiallelic loci and continuous pheno-
types are straightforward. We have implemented our
approach to power calculations in a software package
called “PBAT,” which is available on our Web page. In
addition to the scenarios discussed here, PBAT can also
be used for power calculations for continuous traits and
when marker locus and disease locus are not identical.
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Appendix A

Asymptotic Distribution of under the Alternative HypothesisGT

We denote the vector containing all marker information by

t( )X p X ,X , … ,X ,11 12 nmn
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and the corresponding vector of the coded trait information by . Then, the statistic cantT p (T ,T , … ,T ) GT11 12 nmn

be written as

2

tT [X � E (X)]0GT p
t{ }�T Var (X)T0

2

t tT Var (X)T T [X � E (X)]1 0p t t{ }T Var (X)T �T Var (X)T0 1

Under the alternative hypothesis, note that

2

t t( ) ( ) ( )T [X � E X ] T [E X �E X ]0 1 0

E p
t t{ }� �T Var (X)T T Var (X)T1 1

t ( )T [X � E X ]0

Var p 1( )t�T Var (X)T1

Furthermore,

Tijt t�( )T [X � E X ]/ T Var (X)T p [X � E (X )]�i,j0 1 ij 0 ijt�T Var (X)T1

is a weighted sum of potentially dependent random variables. However, since we assume that the families are
independent and that the family size is bounded, we can rewrite as a sum of independent sub-tT [X � E (X)]0

sums—that is,

n

t ( )T [X � E X ]p Z with Z p T [X � E (X )] , (A1)� �0 i i ij ij 0 ij
ip1 j

where is computed on the basis of the data of the ith family. The values of are therefore independent. WeZ Zi i

standardize the weighted sum (A2) by its variance and can thent tVar {T [X � E (X)]} p � Var (Z ) p T Var (X)Ti0 i 1

apply standard asymptotic theory to . The asymptotic distribution oft t t�T [X � E (X)]/ T Var (X)T T [X �0 1

under the alternative hypothesis is, therefore, given by a noncentral distribution with 1 dft 2�E (X)]/ T Var (X)T x0 1

and noncentrality parameter . Thus, under the alternative hypothesis,t t 2�g p {T[E (X) � E (X)] / T Var (X)T}1 0 1

tT Var (X)T1 2GT ∼ x1,gtT Var (X)T0

Appendix B

We refer to each combination of possible values for and as a “family type,” denoted by the vectory s q pi i k

, where FT is the number of possible family types. If we define an n-dimensional unit vector by(y,s),k p 1, … ,FT
, it is easy to see thatt1 p (1, … ,1)n

P p P d p (n , … ,n ) (B1)�GT GT (1 q ,…,1 q ) Multinomial(p ,…,p ) 1 FTn 1 n FT 1 FT1 FT
n ,…,n ��:n �…�n pn1 FT 1 FT

where is the density of the multinomial distribution with probabilities . Thep (n , … ,n ) p , … ,pMultinomial(p ,…,p ) 1 FT 1 FT1 FT

are defined by . Therefore, it is always possible to compute the exact un-p , … ,p p p P (q d A ) ,k p 1 … ,FT1 FT k k

conditional power of by numerical integration of (B1). In situations with many potential family types (e.g.,GT qk
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either families with many offspring or offspring with many traits), this numerical integration may be very time
consuming and can be replaced either by Monte Carlo simulations or by MCMC methods. However, for the
situations considered in this study, the numerical computation of the sum is feasible.

For many scenarios, the number of family types can be reduced. For example, when the phenotypes are fixed
by the ascertainment condition (e.g., in the work of Spielman et al. [1993] or and in they p 1 y p 1 y p 01 2

work of Whittaker and Lewis [1998]), and when the parental genotypes are observed, the family types are defined
by the observed parental information. For simplicity of exposition, assume an additive marker coding. When the
scaling parameter q and the noncentrality parameter d are computed for the conditional power formula (2), it is
easy to see that and are noninformative and do not contribute to the scalingq p (p ,p ) p (0,0),(0,2),(2,0) (2,2)1 2

parameter q and the noncentrality parameter d. Further, it is important to note that and makeq p (0,1) q p (1,0)
the same contribution to q and d. The same is true for and . In this setup, therefore, it is possibleq p (0,2) q p (2,0)
to reduce the number of family types to four distinct types— , , and ”noninformative”—and to change(0,1) (1,1) (1,2)
the probabilities appropriately. This reduction of the number of family types accelerates the computation of thepi

unconditional power substantially.
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as follows:

FBAT Web page, http://www.biostat.harvard.edu/˜fbat/
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