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Abstract: EEG-fMRI in epileptic patients is commonly analyzed using the general linear model (GLM),
which assumes a known hemodynamic response function (HRF) to epileptic spikes in the EEG. In con-
trast, independent component analysis (ICA) can extract Blood-Oxygenation Level Dependent (BOLD)
responses without imposing constraints on the HRF. This technique was evaluated on data generated
by superimposing artificial responses on real background fMRI signals. Simulations were run using a
wide range of EEG spiking rates, HRF amplitudes, and activation regions. The data were decomposed
by spatial ICA into independent components. A deconvolution method then identified component time
courses significantly related to the simulated spikes, without constraining the shape of the HRF. Com-
ponents matching the simulated activation regions (‘‘concordant components’’) were found in 84.4% of
simulations, while components at discordant locations were found in 12.2% of simulations. These false
activations were often related to large artifacts that coincidentally occurred simultaneously with some
of the random simulated spikes. The performance of the method depended closely on the simulation
parameters; when the number of spikes was low, concordant components could only be identified
when HRF amplitudes were large. Although ICA did not depend on the shape of the HRF, data proc-
essed with the GLM did not reveal the appropriate activation region when the HRF varied slightly
from the canonical shape used in the model. ICA may thus be able to extract BOLD responses from
EEG-fMRI data in epileptic patients, in a way that is robust to uncertainty and variability in the shape
of the HRF. Hum Brain Mapp 30:2021–2031, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Simultaneous electroencephalographic (EEG) and func-
tional magnetic resonance imaging (fMRI) recordings have
shown promise in the study of epilepsy. This noninvasive
technique can locate significant Blood-Oxygenation Level
Dependent (BOLD) responses to epileptiform discharges
measured on the EEG. Several studies [Aghakhani et al.,
2006; Al Asmi et al., 2003; Federico et al., 2005; Salek-
Haddadi et al., 2006] have reported cases where the EEG-
fMRI localization was consistent with other clinical data.
However, there were also a large proportion of investi-
gated patients who did not show significant BOLD
responses to interictal spikes. In the large majority of stud-
ies, the fMRI data were processed using the general linear
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model (GLM) framework [Worsley and Friston, 1995;
Worsley et al., 2002], which requires a model of the hemo-
dynamic response function (HRF) to identify voxels signifi-
cantly correlated with the model time course.
It has been suggested that the absence of significant

BOLD responses may be partially explained by a mis-spec-
ification of the model [Bagshaw et al., 2004; Lemieux et al.,
2008; Lu et al., 2006]. Typically, a canonical HRF based on
the BOLD response to brief auditory stimuli [Glover, 1999]
is used, although this shape may be altered for interictal
spikes [Benar et al., 2002]. The HRF may show variability
for different types of epileptiform discharges, between sub-
jects, across brain regions, and even across sessions for the
same subject [Aguirre et al., 1998; Handwerker et al., 2004;
Menz et al., 2006]. Moreover, even if the HRF shape is
specified correctly, there is evidence that the linearity of
the model may not hold, especially if the events of interest
are closely spaced in time [Friston et al., 1998; Jacobs et al.,
2008].
Independent component analysis (ICA) is a data-driven

method that has recently found applications in the study
of fMRI data [McKeown et al., 1998]. ICA can be used in
an exploratory manner to detect consistent patterns of
brain activation with a common fMRI time course. A large
number of such components may be identified, after which
it becomes necessary to reliably recognize the components
that represent activity relevant to the task under investiga-
tion. Nevertheless, the attractiveness of ICA lies in its lack
of use of any strong assumptions on the data. Unlike
approaches based on the GLM, ICA methods do not
impose constraints on the shape of the HRF. ICA may thus
detect responses that would otherwise be ignored by a
model-based framework. Moreover, ICA has shown the
ability to isolate sources of structured noise that may oth-
erwise be too complex to model as confounds in the multi-
ple regression framework of the GLM [Thomas et al.,
2002].
In the context of epileptiform discharges, the uncertainty

surrounding the shape of the HRF and the validity of the
model naturally suggests the use of a data-driven method
for analysis of the fMRI data acquired from epileptic
patients. A study on patients, whose GLM activations
were concordant with other clinical data, revealed that
ICA could also identify similar brain areas [Rodionov
et al., 2007]. This study used an automated classification
procedure [De Martino et al., 2007] to discard components
representing fMRI artifacts (scanner noise, motion, physio-
logical artifacts). Components related to the epileptic activ-
ity were then identified by a combination of visual inspec-
tion, overlap of the component spatial maps with the GLM
activation, and correlation of the component time course
with the model used in the GLM analysis. Therefore, the
component selection still depended on the canonical HRF
used in the GLM. The purpose of the current study was to
develop an ICA framework to identify BOLD responses to
epileptiform discharges, in a way that is independent of
the shape of the HRF. However, validation of such meth-

ods can be very difficult due to the absence of a gold
standard with which to corroborate the results. Conse-
quently, the method was applied to simulated BOLD
changes in real simultaneous EEG-fMRI data. Moreover,
simulations provide a way of controlling the signal charac-
teristics, allowing the evaluation of the performance of the
method under a wide variety of parameters.

METHODS

Data Selection

Data were collected from five epileptic patients who
underwent continuous EEG-fMRI recordings using a 1.5T
Siemens Vision Magnetom scanner (Siemens, Erlangen,
Germany). BOLD-EPI data were acquired in 6–14 consecu-
tive scanning runs, each lasting 6 min; a total of 90 min
were planned for the scanning session, but some patients
had to be taken out early from the scanner due to discom-
fort. The following technical parameters were used: TR of
3 s, TE of 50 ms, flip angle of 908, 5 3 5 3 5 mm voxel
size in a 64 3 64 matrix and 25 slices. EEG sampled at
5 kHz was simultaneously recorded from MR-compatible
Ag/AgCl electrodes using a BrainAmp amplifier (Brain
Products, Gilching, Germany). Scanner gradient artifact
was removed using BrainVision Analyzer software (Brain
Products) and ballistocardiogram artifact was eliminated
by an ICA method [Benar et al., 2003; Srivastava et al.,
2005]. The patients were selected on the basis of having
few or no spikes on the EEG (less than 1 spike on average
per scanning run), so that the data could be used as back-
ground fMRI data for this simulation study. A standard
anatomical scan (TR of 22 ms, TE of 9.2 ms, flip angle of
308, 1 3 1 3 1 mm voxel size, 256 3 256 matrix and 176
slices) was also acquired prior to the fMRI acquisition.

Simulated Data

Artificial time courses were created by generating spikes
at random timings and convolving them with a canonical
HRF computed from the difference of two gamma func-
tions (see Fig. 1) [Glover, 1999]. Simulated data were cre-
ated by varying the following parameters:

Figure 1.

Canonical HRF used to generate the artificial time courses.
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� Location of the activation: For each patient, three corti-
cal regions of size 3 3 3 3 3 voxels were selected.
Each simulated dataset was obtained by superimpos-
ing the generated time courses on all the voxels of one
of these regions of interest in the motion-corrected
fMRI data of each patient. The time courses were
sampled at the appropriate slice acquisition times cor-
responding to each voxel in these regions.

� Number of simulated spikes per run: There were 1, 5,
or 10 randomly generated spike timings per 6-min
scanning run.

� HRF amplitude: The amplitude of the simulated
BOLD changes was a fixed percentage of the mean
fMRI signal value. Datasets were created using a per-
centage signal change between 0.5 and 2%, in 0.25%
increments. Additional datasets were generated with a
random HRF amplitude varying uniformly in the fol-
lowing ranges: 0.25–1.25%, 0.5–1.5%, 0.75–1.75%, and
1–2%.

There were thus 3 locations, 3 numbers of spikes per
run, and 11 HRF amplitudes (7 fixed and 4 randomly
varying) for a total of 99 possible combinations of parame-
ters. For each of the five patients, all combinations were
used with five randomly determined spike timings, yield-
ing 2,475 simulated datasets. Examples of artificial time
courses are shown in Figure 2.
To evaluate the robustness of traditional analysis meth-

ods based on the GLM when the HRF is mis-specified, an
additional dataset was created using a noncanonical HRF

formed by a single gamma function peaking 3 s later than
the canonical shape and without undershoot. This dataset
used 5 spikes per scanning run and a constant HRF ampli-
tude of 1% of the mean fMRI signal value. For each
patient, these time courses were superimposed on the
same three cortical regions determined previously.

Data Preprocessing

The simulated data were first corrected for timing differ-
ences between the acquisitions of each slice. This was
accomplished by resampling the fMRI time courses to the
acquisition time of the top slice using sinc interpolation
with Hanning windowing to attenuate ringing artifacts.
Scanner drift was removed by high-pass filtering. For each
patient, all scanning runs were then concatenated. A
method based on ICA was then applied on the data to try
to recover the simulated activation regions. The method is
summarized in Figure 3 and described in detail in the fol-
lowing sections.

Independent Component Analysis

ICA assumes that the fMRI data can be represented as a
linear mixture of spatially independent sources

X ¼ ASþ h;

where X is the matrix of observed fMRI images at each
time frame, S is the matrix of independent sources, A is
the linear mixing matrix representing the contribution of
the sources at each time point, and h is a matrix of addi-
tive Gaussian noise.
ICA consists of estimating the sources and the mixing

matrix, given only the observed mixtures. One possible
approach is to use iterative optimization methods to obtain
maximally non-Gaussian sources, which is equivalent to
maximizing statistical independence [Hyvarinen and Oja,
2000]. It can be shown that the independent non-Gaussian
components are uniquely identifiable, if the number of
sources is known a priori or can be reliably estimated
[Beckmann and Smith, 2004]. In this case, principal compo-
nent analysis (PCA) can be used to first reduce the data
into a principal subspace of dimensionality equal to the
number of sources to extract. Decomposition within a
higher-dimensional subspace could result in sources being

Figure 2.

Simulated BOLD responses to epileptic spikes superimposed on

background fMRI data. Vertical bars indicate random spike tim-

ings. (A) With a simulated HRF amplitude of 2% of the mean

background fMRI signal value, the HRF peaks are clearly visible

following the spikes. (B) Same background fMRI data, with differ-

ent spike timings and HRF amplitude of only 0.5% of the mean

fMRI signal value.

Figure 3.

Schematic representation of the data processing steps. Twenty

ICA decompositions are applied to the preprocessed data, and

the number of reproducible components is determined. An

additional ICA is then performed in the lower-dimensional sub-

space extracted by PCA, and whose dimension is determined

by the number of stable components. A deconvolution method

is then applied to identify components related to the simulated

spikes.
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split into several components. Methods based on the appli-
cation of information-theoretic criteria to the eigenspec-
trum can provide a good estimate of the dimensionality of
the data, but only if the covariance of the noise is known
[Cordes and Nandy, 2006]. Otherwise, the estimated num-
ber of sources tends to be proportional to the number
of time points in the fMRI acquisition, an unrealistic
assumption.
It was decided instead to use a criterion of reproducibil-

ity to determine the number of components to extract. In
many ICA algorithms, the mixing matrix is initialized with
random values and iteratively optimized to maximize the
independence between the sources. This stochastic aspect
results in a potentially different decomposition for each
application of ICA on the same data. Nevertheless, compo-
nents representing true independent sources are more
likely to appear consistently across ICA realizations
[Himberg et al., 2004]. Therefore, ICA was applied several
times on the preprocessed fMRI data to determine how
many components occurred consistently in each realiza-
tion. It would then be possible to consider those reproduci-
ble components as the true sources composing the data.
However, since ICA has been applied on the original high-
dimensional data, the sources may actually have been split
into multiple components. It was thus decided to use only
the number of reproducible components as an estimate of
the dimensionality of the data. This estimate is then used
to reduce the dimensionality of the original dataset using
PCA. An additional application of ICA on this dimension-
ality-reduced dataset was then used to obtain the final
decomposition of the data.
In detail, for each patient, 20 repetitions of probabilistic

ICA [Beckmann and Smith, 2004], as implemented in FSL
software [Smith et al., 2004], were applied on the fMRI
data with a random initial seed. As the order of the com-
ponents extracted by ICA is stochastic, it was then neces-
sary to identify, in all ICA decompositions, the compo-
nents corresponding to the same source. Cross-correlation
coefficients were computed between each spatial map and
all the maps from other realizations. Highly cross-corre-
lated components were then clustered following the meth-
ods of Yang et al. [2008]. Specifically, the pair of spatial
maps with maximum absolute correlation coefficient is
first identified. Spatial maps in the remaining 18 ICA
decompositions not yet belonging to the cluster with maxi-
mum correlation coefficient with either of the spatial maps
in the first pair are then added to the cluster. The cluster
is thus complete when it contains exactly one spatial map
from each of the 20 ICA realizations. The procedure is
repeated to determine the next cluster of components,
finding the maximum correlation coefficient among the
remaining spatial maps. A reproducibility index is then
calculated by summing the absolute correlation coefficients
between all pairs of spatial maps belonging to each cluster.
Since there are 20 spatial maps in each cluster, the maxi-
mum value of the reproducibility index is 20319

2 ¼ 190.
Clusters with a reproducibility index above 50% of this

maximum value were considered to represent stable com-
ponents, as recommended by Yang et al., 2008. As
described above, PCA was then used to project the data
onto its principal subspace of dimension equal to the num-
ber of stable components. The sources making up the data
were then extracted by an additional application of ICA
within this subspace of lower dimensionality. It was then
necessary to identify which components represented the
simulated epileptic activity. A deconvolution method [Lu
et al., 2006, 2007] was applied to detect time courses that
showed significant changes following the spike timings,
without constraining the HRF to a canonical shape. This
method uses a basis set formed by separate regressors
modeling the amplitude of the HRF for each time lag fol-
lowing the spikes, up to the maximum expected length of
the response. The amplitude of each regressor is allowed
to vary freely; the basis set can thus represent HRFs of ar-
bitrary shapes. It was decided to use a basis set represent-
ing the HRF amplitude at intervals of 1 s following the
spikes, with a maximum HRF duration of 32 s [Lu et al.,
2006]. Since the fMRI data were only acquired with a TR
of 3 s, they were upsampled using linear interpolation to
obtain a signal value every second.
The basis set convolved with the spike timings was

then fitted to the ICA time courses in the GLM frame-
work using ordinary least squares (OLS). This approach
only assumes that each spike is followed by a consistent
HRF, regardless of its shape. Components not related to
the spikes should yield HRFs that are indistinguishable
from the background noise. Statistical significance was
determined using an F-test on the fitted HRF. Although
OLS assumes that the noise is temporally uncorrelated,
this was not the case due to the upsampling of the ICA
time course and the autocorrelations that are known to
exist in fMRI data [Friston et al., 2000]. The noise was
modeled as an autoregressive (AR) process estimated
from the OLS residuals. Specifically, the Yule–Walker
equations were used to estimate the partial autocorrela-
tion coefficients from the sample autocorrelation of the
residuals. The order of the AR process was determined
by performing the estimation with gradually increasing
AR orders, until the highest-order coefficient was no lon-
ger statistically significant (P < 0.05). These parameters
were then used to perform an adjusted F-test with an
appropriately weighted F-statistic and effective degrees of
freedom [Kruggel et al., 2002].
The adjusted F-tests were used to detect components

with a fitted HRF accounting for a statistically significant
portion of the time course variance (P < 0.05, Bonferroni-
corrected for the number of components being examined).
A Gaussian and two Gamma distributions, representing
background noise, activations, and deactivations, were
used in a mixture model to fit the distributions of voxel
intensities in the spatial maps of the identified components
[Beckmann and Smith, 2004]. These maps were then
thresholded to identify voxels with a probability of activa-
tion or deactivation greater than 99.9%. The activated or
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deactivated voxels could then be compared with the
known activation regions used in the simulated datasets.
Since the ICA and deconvolution methods are independ-

ent of the shape of the HRF, it was expected that the per-
formance would be identical whether the simulated data
were generated with a canonical or a noncanonical HRF.
On the other hand, analysis using the GLM is critically de-
pendent on the appropriate representation of the HRF. In
addition to ICA, the dataset generated with the noncanoni-
cal HRF was also analyzed using the GLM [Worsley et al.,
2002]. Statistical t-maps were generated assuming a canon-
ical HRF to the simulated spikes for each voxel. The maps
were then thresholded at |t| > 3.1 (corresponding to P <

0.001, uncorrected). A spatial extent threshold of 3 voxels
was then applied to achieve a corrected cluster P-value of
0.05 [Friston et al., 1994]. It was then possible to evaluate
the performance of the GLM method when applied to data
that deviated slightly from the assumption of a canonical
HRF.

RESULTS

The number of reproducible components in the multiple
ICA decompositions ranged from 222 to 353. The number
of components was highly correlated with the number of
scanning runs used for each patient (Pearson’s r 5 0.98, P
< 0.01).
In 2,089 out of 2,475 simulations (84.4%), a significant

component was detected with spatial topography consist-
ing of one activated cluster accounting for at least 10 vox-
els in the simulated region. In the following, these compo-
nents will be referred as ‘‘concordant components’’; an
example of activation map is shown in Figure 4, where the
fitted HRF resembles closely the canonical HRF. In 37.2%
of these components, the activated cluster was actually
slightly larger than the simulated region, containing at
least 1 voxel immediately adjacent to this region. 7.0% of
the concordant components contained a single isolated
activated voxel at another location, while 4.9% had more

than one false positive voxel. These falsely activated voxels
were generally isolated at locations without any recogniz-
able pattern. Figure 5 shows time courses from a simula-
tion, which resulted in a falsely activated voxel that coinci-
dentally occurred in the same slice as a 3 3 3 region of
voxels corresponding to the simulated active region. The
figure shows an excerpt of the time courses of the falsely
activated voxel, of the central voxel of the activated region,
of the simulated spike-related signal, and of the concord-
ant ICA component. The time course of the voxel in the
true activated region is shown prior to superimposing on
it the simulated signal. There is a small but significant cor-
relation (r 5 0.13, P < 0.01) between that time course and
that of the falsely activated voxel. The average correlation
between the falsely activated voxel and the 27 voxels com-
prising the active region was 0.19, with 24 of the correla-
tions being significant (P < 0.05, Bonferroni-corrected). Af-
ter superimposing the low-amplitude simulated spike-
related signal (HRF of 1.25% of the mean fMRI signal) in
the activated region, the average correlation was 0.18, with
the same 24 voxels still showing significant correlation (P
< 0.05, Bonferroni-corrected). It is not clear whether the
significant correlations between the falsely activated voxel
and the activated region are due to actual functional con-
nectivity between these regions. Nevertheless, it is not sur-
prising that ICA groups these two regions in a single com-
ponent. Adjacent voxels are more likely to be functionally
connected; hence the relatively large proportion of simula-
tions with falsely activated voxels immediately adjacent
to the truly active region (although not in the example of
Fig. 5).
In addition, 303 simulations (12.2%) resulted in the iden-

tification of a component with a time course that was sig-
nificantly related to the spike timings, but with spatial to-
pography that did not correspond to the simulated activa-

Figure 4.

(A) Activation map corresponding exactly to the simulated acti-

vation region in the displayed plane. (B) Significant HRF fitted by

the deconvolution method, matching the original simulated ca-

nonical HRF.

Figure 5.

Time courses of a simulation yielding a concordant component

(3 3 3 activated right frontal region shown in the spatial map)

and a falsely activated voxel (left posterior). (A) The time

courses of the falsely activated voxel and of the central voxel of

the activated region, prior to superimposing the simulated spike-

related signal, are significantly correlated (r 5 0.13, P < 0.01).

(B) The time course of the concordant component is signifi-

cantly correlated (r 5 0.24, P < 0.01) with the time course of

the falsely activated voxel. (C) Component time course and

simulated spike-related signal.
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tion region (in 96.7% of cases, there were no activated vox-
els in the simulated region; the remaining 3.3% had fewer
than 10 true positive voxels). Henceforth, these compo-
nents will be referred as ‘‘discordant components.’’ Typi-
cally, the erroneous activations consisted of clusters near
brain boundaries or in the ventricles. An example of such
a component is shown in Figure 6. This spatial pattern is
typical of residual motion artifact that may persist even af-
ter motion correction. Moreover, the time course of this
discordant component shows sudden sharp transients that
seem to match the z-direction translation parameters deter-
mined during motion correction. The movements occurred
shortly following three of the random simulated spikes.
Even though it is improbable that movement would follow

every spike, the residual artifact may still be large enough
for the deconvolution method to determine that the com-
ponent is significantly related to the spike timings. A sin-
gle high-amplitude movement-related transient following
only one of the simulated spikes may be sufficient to be
falsely detected by the method, as it causes a violation of
the assumption of stationarity of the residuals in the GLM
used for the deconvolution.

Simulations With Constant HRF Amplitude

Figure 7 summarizes the percentage of simulations
where concordant components could be detected for differ-
ent levels of constant HRF amplitudes, the proportion of
simulations yielding discordant components, and the aver-
age number of falsely activated voxels found in concordant
components.
In simulations with 10 spikes per run and constant HRF

amplitude, concordant components could almost always
be found, with a sensitivity greater than 97% for all tested
HRF amplitudes. However, HRF amplitudes of at least
0.75% of the mean fMRI signal with 5 spikes per run, or
1.75% with 1 spike per run, were necessary to reach the
same 97% sensitivity. The sensitivity was greatly reduced
at lower HRF amplitudes. For example, the sensitivity was
only 53.3% with 0.5% HRF amplitude and 5 spikes per
run, and the sensitivity was below 50% for HRF ampli-
tudes of 1% or less and 1 spike per run. The average num-
ber of falsely activated voxels was highest for simulations
with 1 spike per run and 0.5% HRF amplitude, where the
low variance of the simulated signal does not greatly affect
the correlations already present in the background fMRI
data.
Discordant components were detected in only 3.6% of

the simulations with 10 spikes per run, 8.8% of simulations
with 5 spikes per run, and 26.7% of simulations with 1
spike per run.
Large movement artifacts occurring at the same time as

the spikes may be fitted by the deconvolution method. In
simulations with a low number of spikes, these artifacts
are more likely to account for a significant amount of var-
iance in relation to the simulated BOLD responses to the
spikes. Hence these artifactual components tend to show
as discordant components in simulations with only 1 spike
per run, resulting in a higher percentage of simulations
with discordant components.

Simulations With Varying HRF Amplitude

Similar results were obtained when the HRF amplitude
varied randomly (see Fig. 8). In simulations with 10 spikes
per run or 5 spikes per run, a concordant component was
detected in more than 99% of the cases. However, when
there was only 1 spike per run, a concordant component
could only be identified in 57.3% of the cases. When only
considering simulations with a mean HRF amplitude of at

Figure 6.

(A) Two slices of a typical spatial map of a significant component

that was not concordant with the simulated activation region.

The activation cluster at the edge of the brain suggests a residual

motion artifact. (B) Part of the time course of the same compo-

nent, with vertical dashed bars showing the timings of the simu-

lated spikes. Sharp transients follow some of the spike timings.

(C) Translation in the z-direction determined from the motion

correction preprocessing step. The arrows show that the transi-

ents found in panel B seem to correspond to residual motion

artifacts. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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Figure 7.

(A) Percentage of simulations with constant HRF amplitudes where significant components were

found, either correctly matching the simulated activation region (concordant components) or at

another location (discordant components). (B) Mean number of falsely activated voxels in con-

cordant components.

Figure 8.

(A) Percentage of simulations with varying HRF amplitudes where significant components were

found, either correctly matching the simulated activation region (concordant components) or at

another location (discordant components). (B) Mean number of falsely activated voxels in con-

cordant components.
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least 1.25%, the proportion of cases resulting in the identi-
fication of a concordant component increased to 84.0%.
As for discordant components, they occurred in 4.0% of

simulations with 10 spikes per run, 5.3% of simulations
with 5 spikes per run, and 22.0% of simulations with 1
spike per run. Similar to the simulations with constant
HRF amplitude, the spatial maps corresponding to the dis-
cordant components often included voxels near brain
boundaries, suggesting that they represented residual
movement artifacts.

Simulations With Noncanonical HRF

The noncanonical HRF used in these simulations was
significantly correlated with the standard canonical HRF
(Pearson’s r 5 0.26, P < 0.001). In 14 of the 15 datasets
generated with this noncanonical HRF, the ICA method
successfully extracted a concordant component. No dis-
cordant components were erroneously detected. However,
analysis using the GLM, assuming a canonical HRF, could
only find a significant cluster at the correct location in 3 of
15 datasets. The sizes of these clusters were 5, 5, and 11
voxels, respectively, which is smaller than the original
simulated activation region of size 27 voxels. One of these
three datasets also had a significant cluster at another loca-
tion in the brain outside of the simulated activation region.
Such a false activation was also found in 2 of the 12 data-
sets that did not have a significant cluster in the correct
location. The remaining 10 t-maps did not contain any sig-
nificant clusters.

DISCUSSION

Simulation Parameters

The results reveal the conditions under which the ICA
method could detect the simulated activations. The range
of HRF amplitudes from 0.5 to 2% corresponded to typical
values in realistic fMRI data [Gu et al., 2001]. Studies
investigating the BOLD response to epileptic spikes have
found large variations in amplitude across patients and
brain regions [Benar et al., 2002; Gotman et al., 2006]. HRF
amplitudes as high as 5% or less than 0.5% of the baseline
fMRI signal were reported. However, a HRF amplitude of
2% was sufficient to detect the simulated activations in
almost all test cases, so larger amplitudes were not exam-
ined. At low amplitudes, the BOLD signal change can be
very difficult to detect, as it is smaller than background
noise levels. ICA separates structured noise components
[Perlbarg et al., 2007; Thomas et al., 2002], allowing the
detection of small amplitude activations.
The number of spikes per 6-min scanning run also

greatly influenced the ability of the method to detect the
simulated activations. Patients undergoing EEG-fMRI stud-
ies are usually selected on the basis of having frequent epi-
leptic discharges visible on the EEG [Krakow et al., 1999;
Laufs and Duncan, 2007]. There is a tendency to detect sig-

nificant responses more frequently with higher spiking
rates [Al Asmi et al., 2003]. However, activations may
sometimes be detected with only a few spikes, and having
a large number of spikes does not guarantee that a signifi-
cant response will be found. Studies with high spiking
rates (more than 2 or 3 per minute) have revealed nonlin-
ear effects of the HRF due to the saturation of the overlap-
ping BOLD responses to closely spaced events [Jacobs
et al., 2008; Salek-Haddadi et al., 2006]. These high spiking
rates are greater than the maximal rate of 10 spikes per
run used in the simulations. Although the artificial time
courses were generated in a way that preserved the linear-
ity of the response, it should be noted that ICA does not
depend on a linear assumption to detect spatial patterns
related to the spikes. However, the identification of the rel-
evant component using the deconvolution method does
assume that there is a consistent linear response.
The simulated activation size of 3 3 3 3 3 voxels (5-mm

isotropic resolution) corresponds to a volume of 3.375 cm3,
which is a typical size for fMRI spike-related activation.
Early experiments have suggested that spikes visible on
scalp EEG were the result of an active synchronized corti-
cal area of at least 6 cm2 [Cooper et al., 1965], although fig-
ures ranging from 10 to 20 cm2 have been proposed more
recently [Tao et al., 2007]. In terms of volume, EEG-fMRI
studies have yielded similar volumes of activation, such as
an average of 3.3 cm3 reported by [Lemieux et al., 2001] or
an average of 3.06 cm3 found by [Al Asmi et al., 2003]. It
should be noted that the fMRI activation volume is often
closely linked to the statistical threshold used. Neverthe-
less, in the absence of any gold standard to accurately
determine the volume of activation, the region size for the
simulation was an appropriate realistic choice.
Although simulations cannot reproduce all the condi-

tions present in real data, they still provide a controlled
way of evaluating the performance of the ICA method
under realistic parameters. The proposed method could
clearly identify a spatial map that corresponded to the
simulated region of activation unless the number of spikes
or HRF amplitude were smaller than the expected range of
values found in real data.

Component Identification

The application of ICA to fMRI relies on the assumption
that ICA can provide a good separation of the data into its
constituent sources. However, the results may depend on
the number of components selected for the decomposition.
Currently, there is no consensus on the most appropriate
way of determining the dimensionality of the fMRI data-
set, and several methods have been proposed [Beckmann
and Smith, 2004; Cordes and Nandy, 2006; Li et al., 2007;
Yang et al., 2008]. Nevertheless, identifying reproducible
components in multiple ICA decompositions at least elimi-
nates noisy components due to the stochastic nature of the
algorithm. Moreover, the additional application of ICA on
a subspace of reduced dimensionality helps reduce the
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degradation that occurs when overfitting the ICA model
with too many components in the original decompositions
[Li et al., 2007]. It should also be noted that the dimension-
ality used for the final application of ICA was higher than
some values reported in the literature [Cordes and Nandy,
2006; Li et al., 2007; Rodionov et al., 2007], which were less
than 100, although we had larger datasets. Extracting a
large number of components may prevent relevant signals
of very low amplitude from being missed by the decompo-
sition. It is hoped that the development of better dimen-
sionality estimation results in better decompositions in the
future. Nevertheless, it should be noted that our empirical
results suggest that the method used can extract valid
spike-related components in simulations with realistic sig-
nal amplitude.
Data-driven methods such as ICA can identify common

spatial patterns in the fMRI signal without the need for a
priori assumptions about the location of the activation or
the timing of the epileptic activity. Other methods such as
TCA [Morgan et al., 2004] also have shown the potential to
reveal hemodynamic correlates of epileptic activity based
purely on the analysis of the BOLD signal. However, it
then becomes a problem to validate the extracted patterns
of activation and determine if they truly represent epileptic
activity. The use of concurrently recorded EEG thus seems
to be necessary to identify brain areas that show BOLD
changes in response to epileptic spikes [Hamandi et al.,
2005]. The nature of these BOLD changes is still not clearly
defined, and the variability in the shape of the HRF may
affect the results of purely hypothesis-driven methods. On
the other hand, ICA can detect components representing
epileptic activity regardless of the shape of the BOLD
response. The spike timings provided by EEG are only
used in a posterior analysis to identify the appropriate
components.
In another study using ICA on fMRI data acquired dur-

ing a sensorimotor task, the component selection was per-
formed using a priori knowledge of the expected spatial to-
pography of the task, namely the auditory and sensorimotor
cortices [Gu et al., 2001]. However, in epilepsy patients, the
region of activation cannot be known in advance, and it is
expected that EEG-fMRI could provide localization informa-
tion to complement other modalities. This precludes the use
of precise spatial priors for ICA components identification.
It would be possible to convolve the spike timings with a
canonical HRF, finding component time courses highly cor-
related with this model. However, this method would not
identify BOLD responses with an HRF that is substantially
different from the canonical shape. The deconvolution
method is seen as a good compromise between hypothesis-
driven and data-driven methods. It does not restrict the
shape of the HRF, and only assumes that the HRF is linear
and consistent for each spike. Nevertheless, it would be
interesting to develop a method that would take into
account possible nonlinear effects. As for the consistency of
the HRF, some variability has been reported, even in adja-
cent brain regions [Gotman et al., 2006]. The robustness of

the method was thus evaluated by generating time courses
with randomly varying HRF amplitude. Components with
spatial topography matching the simulated activation region
could still be found when there were a sufficient number of
spikes or large enough mean HRF amplitude. Compared to
the simulations with constant HRF amplitudes, the perform-
ance of the method, given the same mean HRF amplitude,
was only slightly degraded for simulations with random
amplitudes.
The deconvolution method would be particularly effec-

tive if the HRF had a consistent shape, even similar to the
canonical shape, but with an unknown time-to-peak. The
simulations showed that the performance of the GLM
analysis, assuming a canonical HRF, could be greatly
affected in this case. Variations from the canonical delay of
the HRF to epileptic spikes have been reported, such as
for negative BOLD responses, which tend to occur later
than positive responses [Bagshaw et al., 2004]. BOLD
changes occur before the spikes have even been found,
perhaps due to electrical activity that did not result in visi-
ble discharges on the scalp [Hawco et al., 2007]. A study
using ICA on EEG-fMRI data found component time
courses that were maximally correlated with a canonical
HRF model at a wide variety of lags [Rodionov et al.,
2007]. The use of correlation with the GLM regressor
might however prevent the identification of BOLD activa-
tions related to the spikes, but with an HRF different from
the canonical shape. This study used an automated compo-
nent classification scheme [De Martino et al., 2007] to reject
components due to fMRI artifacts. The remaining compo-
nents were then considered to represent BOLD responses
to cerebral activity. However, a visual inspection was still
necessary to distinguish components of epileptic activity
from other unrelated brain processes and resting-state net-
works. Nevertheless, the automated classification method
could be used to eliminate many of the discordant compo-
nents that were due to movements at the same time as the
simulated spikes. A combination of the deconvolution
method with this artifact rejection would thus be an effec-
tive way of automatically identifiying ICA components
related to the spikes, without any constraints on the shape
of the HRF.

CONCLUSION

Even though the artificial time courses were created
with a canonical HRF, the method is independent of the
HRF shape. ICA could provide a model-free approach, ro-
bust to uncertainty and variability in the HRF, for the
detection of activation regions in EEG-fMRI data.
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