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Multiphasic Finite Element
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Hydrated Mixtures With Multiple
Neutral and Charged Solutes
Computational tools are often needed to model the complex behavior of biological tissues
and cells when they are represented as mixtures of multiple neutral or charged constitu-
ents. This study presents the formulation of a finite element modeling framework for
describing multiphasic materials in the open-source finite element software FEBio.1 Multi-
phasic materials may consist of a charged porous solid matrix, a solvent, and any number
of neutral or charged solutes. This formulation proposes novel approaches for addressing
several challenges posed by the finite element analysis of such complex materials: The
exclusion of solutes from a fraction of the pore space due to steric volume and short-
range electrostatic effects is modeled by a solubility factor, whose dependence on solid
matrix deformation and solute concentrations may be described by user-defined constitu-
tive relations. These solute exclusion mechanisms combine with long-range electrostatic
interactions into a partition coefficient for each solute whose value is dependent upon the
evaluation of the electric potential from the electroneutrality condition. It is shown that
this electroneutrality condition reduces to a polynomial equation with only one valid root
for the electric potential, regardless of the number and valence of charged solutes in the
mixture. The equation of charge conservation is enforced as a constraint within the equa-
tion of mass balance for each solute, producing a natural boundary condition for solute
fluxes that facilitates the prescription of electric current density on a boundary. It is also
shown that electrical grounding is necessary to produce numerical stability in analyses
where all the boundaries of a multiphasic material are impermeable to ions. Several veri-
fication problems are presented that demonstrate the ability of the code to reproduce
known or newly derived solutions: (1) the Kedem–Katchalsky model for osmotic loading
of a cell; (2) Donnan osmotic swelling of a charged hydrated tissue; and (3) current flow
in an electrolyte. Furthermore, the code is used to generate novel theoretical predictions
of known experimental findings in biological tissues: (1) current-generated stress in
articular cartilage and (2) the influence of salt cation charge number on the cartilage
creep response. This generalized finite element framework for multiphasic materials
makes it possible to model the mechanoelectrochemical behavior of biological tissues
and cells and sets the stage for the future analysis of reactive mixtures to account for
growth and remodeling. [DOI: 10.1115/1.4024823]

1 Introduction

Many biological cells, as well as most biological tissues, consist
of a porous solid matrix imbibed with an interstitial fluid. This
fluid typically consists of water and charged or neutral solutes,
including salt ions, nucleic acids, amino acids, carbohydrates, and
larger molecular species, such as proteins, polysaccharides, pro-
teoglycans, DNA, RNA, etc. In many tissues, the solid matrix
includes charged molecular species, such as bound or enmeshed
proteoglycans, which impart it with a fixed charge density. In a
continuum mechanics framework, it is possible to model mechan-
ics and transport in tissues and cells using mixture theory [1,2],
where various constituents may be modeled as either a solid, a sol-
ute, or the solvent.

Mixture theory has been applied successfully for the modeling
of various biological tissues and cells. For example, biphasic mod-
els that include a neutral porous solid matrix and a pure interstitial
fluid (no solutes) have been used for the modeling of the arterial
wall [3] and articular cartilage [4–6]. Triphasic [7] and quadripha-

sic [8] models that include a charged solid matrix and an intersti-
tial fluid consisting of a solvent and two monovalent counterions
have been used to model mechanoelectrochemical phenomena in
cartilage [9–14] and chondrons [15,16], intervertebral disc
[17,18], arterial wall [19], cornea [20], and brain [21]. Biphasic-
solute models, consisting of a mixture of a neutral solid and an in-
terstitial fluid containing one or more neutral solutes, have also
been used to model the response of cells to osmotic loading
[22–24] and the transport of nutrients in dynamically loaded engi-
neered gels and tissue constructs [25,26].

The set of governing equations for mixture models increases in
size in direct proportion to the number of constituents modeled.
Furthermore, even under infinitesimal strains, the governing equa-
tions for mixtures that include solutes are nonlinear [7,8,25,27].
Therefore, few analytical solutions are available for mixture mod-
els and numerical methods become a necessity when modeling
common phenomena or experimental configurations. The finite
element method has been applied successfully for the modeling of
biphasic tissues under infinitesimal [28,29] and finite [30,31]
deformations; commercial finite element codes are similarly
available for modeling porous deformable media under finite
deformations (ABAQUS

2 and MARC
3) using Biot’s consolidation
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(poroelasticity) theory [32]. (As shown by Bowen [33] and Mow
and Lai [34], the mixture framework reproduces Biot’s poroelas-
ticity equations in the case of a biphasic mixture in the limit of in-
finitesimal strains.)

Finite element implementations of triphasic/quadriphasic
charged porous media have been presented by several authors, ap-
plicable to infinitesimal [17,35–39] and finite deformations [40],
under specialized conditions where the interstitial fluid includes
only two monovalent counterions. Other investigators have used
the analogy between thermal diffusion and solute transport to sim-
ulate a triphasic medium under infinitesimal deformation [41] or
have constrained their triphasic finite element analyses to model-
ing the equilibrium response to Donnan osmotic swelling under fi-
nite deformation [19,42]. The neutral transport of solutes in
porous deformable media was addressed by Sengers et al. [43],
who formulated a finite element implementation of a biphasic
(uncharged) medium, undergoing finite deformation, with solute
transport and biosynthesis. Steck et al. [44] and Zhang and Szeri
[45] used a commercial finite element code to combine mass (sol-
ute) transport with a poroelastic analysis using a two-stage solu-
tion procedure. In general, these prior implementations have not
addressed the possibility that solutes might be excluded from a
fraction of the pore space [46]. Recently, we implemented the
biphasic-solute theory [47] into the open-source finite element
software FEBio [48], where partial solute exclusion was described
using the concept of solubility [24,25]. This implementation also
highlighted the importance of modeling the well-recognized phe-
nomenon of increased hindrance of the solute by the porous solid
matrix [46], which retards the flow of solutes relative to the sol-
vent and also produces interesting coupling effects between me-
chanical loading and solute transport [25,26,49].

In biological systems, it is sometimes necessary to model more
than two solutes in order to produce accurate insight into biologi-
cal and physiological phenomena. For example, to understand ba-
sic cell physiology, it may be necessary to analyze models that
include many different ions, such as Naþ, Kþ, Ca2þ, Cl�, and
HCO�3 , while also accounting for the charged nature of cytos-
keletal proteins. Similarly, to analyze transport of growth factors
in tissues, it may be necessary to model the charged solid matrix,
interstitial ions, and charged growth factor. A framework for
describing a mixture with any number of electrolytes has been for-
mulated by Gu et al. [27], though this framework has not yet been
generalized to account for solubility effects. Furthermore, few sol-
utions for this generalized framework have been presented in the
literature, undoubtedly due to the complexity associated with
modeling such mixtures.

The objectives of the current study are to extend Gu et al.’s
[27] multielectrolyte theory to account for the solubility of sol-
utes, as well as their increased hindrance, within the deformable
charged porous solid matrix; to generalize earlier finite element
implementations of specialized triphasic/quadriphasic mixtures to
account for any number of neutral solutes and ions whose charge
number is an arbitrary signed integer; and to formulate a frame-
work that facilitates the application of electric current as a bound-
ary condition. This novel finite element formulation and
implementation is verified against newly derived analytical as
well as alternative numerical solutions, as may be achieved under
various special cases. Furthermore, initial validations of this
framework are presented, whereby finite element predictions are
shown to agree with classical experimental findings involving
current-generated stress in cartilage and loading of cartilage in
electrolytes containing cations of various charges.

2 Finite Element Implementation

2.1 Governing Equations. A detailed presentation of the
governing equations for multiphasic mixtures may be found in the
paper by Gu et al. [27]. The generalization of their mixture frame-
work to incorporate tensorial permeability and diffusivity, mo-

mentum exchange between solute and solid, and solute steric
volume exclusion from the porous solid was described in detail in
our recent presentation of finite element modeling of biphasic-
solute mixtures [47]. Though that study only included a single
neutral solute, the resulting governing equations are substantially
similar to the more general case of multiphasic mixtures. There-
fore, to avoid repetition of modeling assumptions and derivations
starting from fundamental axioms of mass and momentum bal-
ance, we refer the reader to the previous publication and herein
provide the details that extend the previous presentation to the
multiphasic case of charged solutes. The reader will also find
details in a recent book chapter [50].

In a multiphasic mixture, the deformation of the solid matrix
is represented by the solid displacement u. The interstitial fluid
pressure is p. The molar concentration of solutes (on a solution-
volume basis) is ca, where a represents any of the solute spe-
cies. The solid matrix Cauchy stress is rs, and the mixture
stress is r ¼ �pIþ rs, where I is the identity tensor. The boun-
daries of the mixture are defined on the solid matrix. Each mix-
ture constituent is assumed to be intrinsically incompressible,
though the mixture may change volume as interstitial fluid flows
into or out of the solid matrix pores. The volume fraction of
the solid (in the current configuration) is denoted by us and that
of the solvent is uw. It is assumed that the volume fraction of
solutes is negligible relative to the solid and solvent content;
thus, us þ uw � 1.

In a finite element implementation of multiphasic materials,
since the solid matrix displacement u must remain continuous
across adjoining elements, it may be used as a nodal variable
(degree of freedom). However, based on mass, momentum, and
energy continuity requirements across interfaces, p and ca are not
necessarily continuous across element boundaries; therefore, they
may not be used as nodal variables [36]. The quantities that satisfy
continuity are the mechanoelectrochemical potentials of the sol-
vent and solutes [51,52]. Since these potentials are defined relative
to arbitrary reference states, they are not convenient for use as
nodal variables. Instead, based on standard constitutive relations
from physical chemistry that relate these potentials to fluid pres-
sure and solute concentrations, it is possible to define the follow-
ing variables [36,47]: the effective fluid pressure

~p ¼ p� RhU
X

a

ca (2.1)

and the effective solute concentration

~ca ¼ ca=~ja (2.2)

In these expressions, R is the universal gas constant; h is the abso-
lute temperature; U is the osmotic coefficient, a nondimensional
property that describes the deviation of the osmotic pressure from
the ideal behavior known as van’t Hoff’s law [53]; ~ja is the parti-
tion coefficient of solute a relative to an ideal solution [54,55].
This partition coefficient may be further described by

~ja ¼ ja

ca
exp � zaFcw

Rh

� �
(2.3)

where the nondimensional property ja is the solubility of solute a
in the mixture, representing the fraction of the interstitial pore vol-
ume that is accessible to the solute [25]; and ca is the activity coef-
ficient of solute a, a nondimensional property that describes the
deviation of the solute chemical potential from the ideal behavior
of a very dilute solution [56]. The ratio ĵa � ja=ca may be inter-
preted as the effective solubility of solute a [47]. Here, w is the
electric potential, Fc is Faraday’s constant; and za is the charge
number of solute a. For a neutral solute (za¼ 0), the partition coef-
ficient reduces to the effective solubility. Constitutive relations
must be provided for U and ĵa; in FEBio, it is assumed that these
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material functions depend at most on J¼ det F, where F is the de-
formation gradient of the solid and ~cb of all the solutes. For ideal
mixtures in the context of physical chemistry, U¼ 1 and ĵa ¼ 1.

Physically, since RhU
P

a ca is the osmotic (chemical) contri-
bution to the fluid pressure, ~p may be interpreted as that part of
the total (mechanochemical) fluid pressure that does not result
from osmotic effects; thus, it is the mechanical contribution to p.
Similarly, the effective solute concentration ~ca represents the true
contribution of the molar solute content to its electrochemical
potential.

The volume flux of solvent relative to the solid is
w ¼ uw vw � vsð Þ, where v

w is the solvent velocity and v
s is the

solid velocity (the time derivative of u). The molar flux of solute
a relative to the solid is ja ¼ uwca va � vsð Þ, where va is the solute
velocity. Using the momentum balance equations for the solvent
and solutes, it is possible to relate these fluxes to gradients in ~p
and ~ca according to

w ¼ �~k � grad~pþ Rh
X

b

~jb

db
0

db � grad~cb

 !
(2.4)

ja ¼ ~jada � �uwgrad~ca þ ~ca

da
0

w

� �
(2.5)

with

~k ¼ k�1 þ Rh
uw

X
a

~ja~ca

da
0

I� da

da
0

� �" #�1

(2.6)

In these expressions, d
a is the diffusivity tensor of solute a in the

mixture (solidþ fluid), which accounts for the increased hin-
drance affected by the porous solid matrix on the solute; da

0 is the

isotropic diffusivity of the solute in free solution (fluid); ~k is
the hydraulic permeability tensor of the porous solid to the inter-
stitial fluid (solventþ solutes); and k is the hydraulic permeability
tensor of the porous solid to the interstitial solvent. Constitutive
relations must be provided for k, da, and da

0, which relate them to
state variables, such as solid matrix strain and suitable measures
of solute concentrations.

Under quasistatic conditions, in the absence of external body
forces, the momentum balance for the mixture is

div r ¼ 0 (2.7)

When the volume fraction of solutes is negligible compared to
solid and solvent content, the mass balance for the mixture
reduces to

div vs þ wð Þ ¼ 0 (2.8)

The mass balance for the solid produces the relation

us ¼ us
r=J (2.9)

where us
r is the solid volume fraction in the reference state. The

mass balance for solutes may be written in a form convenient for
a finite element formulation where the mixture boundaries are
defined on the solid matrix

1

J

Ds

Dt
Juw ~ja~cað Þ þ divja ¼ 0 (2.10)

where Ds �ð Þ=Dt is the material time derivative in the spatial frame
following the solid.

If it is assumed that there can be no charge accumulation in the
mixture, this electroneutrality condition must be enforced with the
following constraint:

X
a

za ~ja~ca ¼ 0 (2.11)

where the sum is taken over all constituents. Multiplying the
mass balance in Eq. (2.10) with za, taking the sum over all con-
stituents, and making use of the above electroneutrality constraint
produces

div
X

a

zaja ¼ 0 (2.12)

or, equivalently divIe ¼ 0, where Ie ¼ Fc

P
a zaja is the electric

current density (the net rate of flow of electric charge per unit
area of the mixture). Thus, the electroneutrality condition pro-
duces a constraint on the current density vector field in the
mixture.

In most biological mixtures, the solvent is water and thus neu-
tral (zw¼ 0). The charge on the solid matrix is described as a net
fixed charge density cF � zscs. For solids, cF may be used in lieu
of a molar concentration and associated charge number. The mass
balance equation for the solid also applies to the fixed charge den-
sity, producing

cF ¼ 1� us
r

J � us
r

cF
r (2.13)

where cF
r is the fixed charge density in the reference

configuration.

2.2 Virtual Work and Weak Form. The virtual work inte-
gral for a mixture of intrinsically incompressible constituents
combines the balance of momentum for the mixture, the balance
of mass for the mixture, and the balance of mass for each of the
solutes. In addition, for charged mixtures, the current condition of
Eq. (2.12) may be enforced as a penalty constraint on each solute
mass balance equation,

dW ¼
ð

b

dv � div rdtþ
ð

b

d~p div vs þ wð Þdt

þ
X
a6¼s;w

ð
b

d~ca 1

J

Ds

Dt
Juw ~ja~cað Þ þ divja þ

X
b6¼s;w

zbdivjb

" #
dt

(2.14)

where dv is the virtual velocity of the solid, d~p is the virtual effec-
tive fluid pressure, and d~ca is the virtual molar energy of solute a.
Here, b represents the mixture domain in the spatial frame and dt
is an elemental volume in b. Applying the divergence theorem,
dW may be split into internal and external contributions to the vir-
tual work, dW ¼ dWext � dWint, where

dWint ¼
ð

b

r : dddtþ
ð

b

w � gradd~p� d~p

J

DsJ

Dt

� �
dt

þ
X
a6¼s;w

ð
b

ja � gradd~ca � d~ca

Js

Ds

Dt
J/w ~ja~cað Þ

� �
dt

þ
X
a6¼s;w

ð
b

gradd~ca �
X
b6¼s;w

zbjbdt (2.15)

dWext ¼
ð
@b

dv � tþ d~pwn þ
X

a

d~ca~jan

 !
da (2.16)

In these expressions, dd ¼ graddvþ gradTdv
� �

=2, @b is the
boundary of b, and da is an elemental area on @b. In this finite ele-
ment formulation, u, ~p, and ~ca are used as nodal variables, and
essential boundary conditions may be prescribed on these varia-
bles. Natural boundary conditions are prescribed to the mixture
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traction, t ¼ r � n, normal fluid flux, wn ¼ w � n, and normal
effective solute flux, ~jan � jan þ

P
b zbjbn , where jan ¼ ja � n and n is

the outward unit normal to @b. To solve the system dW¼ 0 for
nodal values of u, ~p, and ~ca, a Newton scheme is used to solve the
resulting equations iteratively. In Newton’s method, the nonlinear
equations are linearized about a known configuration using a Tay-
lor series expansion. The solution is obtained by iteration and
involves the formation and factorization of a stiffness matrix.
Therefore, it is necessary to linearize these equations along incre-
ments in each of these variables [57], as shown, for example, in
Ref. [47], to produce the (nonsymmetric) stiffness matrix needed
for the evaluation of incremental changes Du, D~p, and D~ca in this
iterative scheme.

If the mixture is charged, it is also necessary to solve for
the electric potential w using the electroneutrality condition in
Eq. (2.11). This equation may be rewritten as a polynomial
in f,

Xn

i¼0

aif
i ¼ 0 (2.17)

where

f ¼ exp �Fcw
Rh

� �
(2.18)

ai ¼
zaĵa~ca i ¼ za � zmin

cF i ¼ �zmin

(
(2.19)

and zmin ¼ mina fa. If we also let zmax ¼ maxa fa, it follows that
the polynomial degree is n ¼ zmax � zmin. Since more than one
solute may share the same charge number za, the coefficients ai

should represent summations of zaĵa~ca over all such solutes. This
polynomial will have n roots, though they may not all be real.
Only real positive roots are valid, since w ¼ �Rh ln fð Þ=Fc

according to Eq. (2.18). Using Descartes’ rule of signs, an inspec-
tion of the coefficients ai shows that there is only one sign change
in the polynomial, regardless of the sign of cF, implying that there
will always be only one positive root f, which must thus be real.
Therefore, there cannot be any ambiguity in the calculation of w,
irrespective of the polynomial degree. Newton’s method is used to
solve for the positive real root when n> 2. In the special case of a
mixture having two equivalent counterions (a ¼ þ;� and
zþ ¼ �z� � z), this polynomial may be solved in closed form to
produce

w ¼ 1

z

Rh
Fc

ln
2zĵþ~cþ

�cF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cFð Þ2þ 4z2 ĵþ~cþð Þ ĵ�~c�ð Þ

q
0
B@

1
CA (2.20)

Using the above relations, it follows that ~ja ¼ ĵafza

. An exami-
nation of Eq. (2.15) shows it is necessary to evaluate Ds ~ja=Dt to
obtain the internal virtual work. This evaluation is performed
using the chain rule,

Ds ~ja

Dt
¼ @~ja

@J

DsJ

Dt
þ
X

b

@~ja

@~cb

Ds~cb

Dt
(2.21)

where the derivatives of the partition coefficient ~ja are given by

@~ja

@J
¼ @ĵ

a

@J
fza þ za ~ja 1

f
@f
@J

@~ja

@~cb
¼ @ĵ

a

@~cb
fza þ za ~ja 1

f
@f
@~cb

(2.22)

In these expressions, the derivatives of ĵa are obtained from the
user-defined constitutive relations. Derivatives of f may be eval-

uated by differentiating the electroneutrality condition in Eq.
(2.11) to produce

1

f
@f
@J
¼ �

@cF

@J þ
P

a zafza
~ca@ĵa

@JP
a zað Þ2 ~ja~ca

1

f
@f
@~cb
¼ �

zb ~jb þ
P

a zafza
~ca@ĵa

@~cbP
a zað Þ2 ~ja~ca

(2.23)

The relations in Eqs. (2.17)–(2.23) provide the method to evaluate
~ja and its various derivatives. A basic algorithmic scheme for the
finite element implementation of this method is outlined in Fig. 1.

3 Verifications

A broad range of problems may be analyzed using multiphasic
materials, which may serve as verification of the current imple-
mentation. Since multiphasic materials subsume biphasic (neutral
solidþ solvent) and biphasic-solute (neutral solidþ solventþ sin-
gle neutral solute) materials, the multiphasic implementation has
been verified against analytical solutions and existing finite ele-
ment implementations for such materials [47,48,58]. For brevity,
details of those verifications are not reported here. Instead, this
study focuses on verification problems that address the new capa-
bilities of the multiphasic implementation.

3.1 The K-K Model for Osmotic Loading of a Cell. In
1958, Kedem and Katchalsky [59] proposed a model to describe
the response of biological cells to osmotic loading (altering the
concentration of the cell’s bathing environment). In this classic
model, the cell is modeled as a gel-filled semipermeable mem-
brane; the membrane sustains negligible stress and is selectively
permeable to the solvent (water) and certain types of solutes (clas-
sified as permeant), whereas other (impermeant) solutes cannot
transport across it. In this model, the intracellular fluid contains at
least one impermeant solute; osmotic loading may be performed
with either a permeant or an impermeant solute. The material
properties for this model include the membrane hydraulic conduc-
tivity, Lp, the membrane solute permeability Pa and Staverman’s
reflection coefficient ra (permeant solutes only), and the intracel-
lular volume fraction of “osmotically active water” in the refer-
ence configuration; this latter property corresponds to 1� us

r in
the above mixture notation. In this model, it is implicit that
solvent and solutes diffuse much more slowly across the cell
membrane than within the protoplasm. Given these assumptions, a
coupled set of nonlinear ordinary differential equations may be
posed and solved for the time-varying cell volume V(t) and num-
ber of moles na(t) for each permeant solute in the intracellular
space when the cell is subjected to osmotic loading with such per-
meant solutes; when osmotic loading is performed with an imper-
meant solute, only one differential equation remains for the
unknown V(t).

Fig. 1 Basic algorithmic scheme for finite element implemen-
tation of multiphasic materials
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In 2006, it was shown that governing equations of the K–K
model for cells may be reproduced using mixture theory [22], pro-
viding relations between the membrane properties (Lp, Pa, ra) and
the multiphasic material properties described above. To reproduce
this K–K cell model in FEBio for the purpose of verifying the
implementation of multiphasic materials, a spherical model of a
cell is created that incorporates two multiphasic regions: (1) the
protoplasm (radius r0), consisting of a mixture with a neutral po-
rous solid matrix (compressible neo-Hookean material [57] with
Young’s modulus EY and Poisson’s ratio �) and referential solid
volume fraction us

r , an isotropic and constant hydraulic perme-
ability (k ¼ kI), an impermeant solute a¼ n, and a permeant sol-
ute a¼ p. For both solutes, the diffusivity is set to one-half the
corresponding free diffusivity value, da ¼ 1

2
da

0I; the effective solu-
bility of the impermeant solute is set to unity, ĵn ¼ 1, whereas that
of the permeant solute, ĵp, is left as a user-defined parameter. (2)
The cell membrane (thickness h), consists of a mixture with a neu-
tral porous solid matrix (uncoupled Mooney–Rivlin material [57]
with shear modulus l and bulk modulus j, with j� l to prevent
membrane compaction under elevated transmembrane osmotic gra-
dients while simultaneously producing negligible membrane ten-
sion) and referential solid volume fraction us

r , an isotropic and
constant hydraulic permeability (k ¼ kI), and only the permeant
solute a¼ p with constant, isotropic diffusivity dp ¼ 1

2
dp

0I.
Initially, the protoplasmic solute concentrations are set to

cn ¼ c0 (a user-defined parameter) and cp¼ 0. This initial configu-
ration requires that the extracellular bath also contains an imper-
meant solute with the same concentration c0 (prescribed as a
boundary condition on the outer cell membrane surface). Osmotic
loading with the permeant solute is achieved by prescribing
cp ¼ c1H tð Þ on the outer cell membrane surface, where H(t) is the
unit step function. These initial and boundary conditions need to
be suitably converted to corresponding values for the effective
fluid pressure and solute concentrations, since the nodal variables
in the finite element model are ~p and ~ca. Assuming that the ambi-
ent fluid pressure in the bath is p¼ 0 and the ambient electric
potential is w¼ 0, the initial conditions are ~p ¼ �Rhc0 and ~cp ¼ 0
in the intracellular space and in the membrane and ~cn ¼ c0 in the
intracellular space. The boundary conditions on the outer mem-
brane surface are ~p ¼ �Rh c0 þ c1H tð Þð Þ and ~cp ¼ c1H tð Þ=ĵp.

To replicate the assumptions of the K–K model, the intracellu-
lar permeability k and solute diffusivities da

0 are taken to be much
larger than the corresponding membrane values of k and dp

0. Simi-
larly, since the membrane is assumed to sustain negligible stress,
its shear modulus l is taken to be much smaller than the peak os-
motic pressure magnitude acting across it, Rhc1; however, to pre-
vent the compaction (and possible inversion) of the finite
elements forming the cell membrane, the bulk modulus j is taken
to be comparable to Rhc1. Since the K–K model does not attribute
any stiffness to the intracellular environment, EY is similarly taken
to be much smaller than Rhc1; � is taken to be zero to preclude
any resistance to volume changes. The finite element mesh uses 8-
node hexahedral elements and takes advantage of the spherical
symmetry by modeling only a small arc along the azimuth and
elevation and employing symmetry planes along both directions.
Only a single element is used along the radial direction for the in-
tracellular space (since the K–K model assumes a homogeneous
response there); similarly, a single element is used through the
thickness of the membrane.

The response of the cell volume to osmotic loading is presented
in Fig. 2 for different values of ĵp, showing a comparison of the
FEBio results against the numerical solution of the K–K equations
using a fourth-order Runge–Kutta scheme as described in our ear-
lier study [22]. The observed agreement verifies the accuracy of
FEBio for this problem over a range of large deformations, taking
into account transport of one (in the membrane) or two (in the cell
protoplasm) neutral solutes through a neutral porous solid matrix.
Small differences between the two solutions may be attributed to
the fact that certain idealized assumptions of the K–K model (zero
stiffness for the membrane and protoplasm, infinitely fast trans-

port of solute and solvent in the protoplasm, membrane permeant
solute concentration exactly equal to the mean of intra- and
extracellular values) cannot be reproduced exactly in the finite
element representation.

The physical explanation for the observed response stems from
the imbalance in osmolarity between the intracellular and extrac-
ellular environments, which drives the fluid flux into or out of the
cell, thus altering its volume. Substituting Eq. (2.1) into the sol-
vent flux relation in Eq. (2.4), assuming ideal physicochemical
relations, and recognizing that p � 0, since neither the membrane
nor the protoplasm can sustain stress, we find that
w ¼ Rh~k �

P
b I� da=da

0

� �
� grad ~cb. This relation makes it evi-

dent that solvent will initially exude from the cell when the
extracellular osmolarity exceeds the intracellular value due to the
prescribed increase in permeant solute concentration. However, as
the cell shrinks, the intracellular osmolarity increases, due to the
fact that impermeant solutes cannot leave the cell; combined with
the increasing intracellular permeant solute concentration, the
osmolarity gradient eventually reverses itself (when ĵp�<1), pro-
ducing a volume recovery, or subsides (when ĵp is sufficiently
smaller than unity), producing no further reduction in volume.

3.2 Donnan Osmotic Swelling. Osmotic forces arise in a
multiphasic material as a result of gradients in the osmolarity of
the interstitial fluid or, equivalently, gradients in solute concentra-
tions. Such gradients may be enabled by properties of the multi-
phasic material, such as semipermeable membranes that
selectively allow transport of the solvent and certain solutes or
electric charges fixed to the solid matrix that produce an imbal-
ance in the concentrations of interstitial fluid anions and cations
due to the electroneutrality condition. When a multiphasic mate-
rial with a charged solid matrix is immersed in an electrolyte
whose ions may transport into or out of the porous material, the
electroneutrality condition enforces an imbalance in the osmolar-
ities of the interstitial fluid and external bathing solution. This
charge-induced imbalance produces an osmotic pressure differ-
ence known as the Donnan osmotic pressure [60]. In a multiphasic
material with a deformable solid matrix, this Donnan pressure
may produce nonnegligible swelling, depending on the magnitude
of the interstitial osmotic pressure relative to the stiffness of the
porous solid matrix [7,19].

When the interstitial fluid and bathing solution contain two
monovalent counterions (zþ ¼ 1, z� ¼ �1), an analytical solution

Fig. 2 Cell volume response to osmotic loading: V is the
current cell volume and Vr is its volume in the reference
configuration. Black curves are the responses from the K–K
model and gray curves are the finite element solutions. For
the finite element model, the membrane thickness is 10 nm
and its properties are us

r 5 0:3, l 5 2:5kPa, j 5 2:5MPa,
k 5 5310�7lm4=nN � s, dp

0 5 1:43310�3lm2=s, and ĵp 5 1; the
protoplasm has a radius of 10lm, and its properties are us

r 5 0:3,
EY 5 2:5kPa, m 5 0, k 5 5310�3lm4=nN � s, dp

0 5 dn
0 5 14:3lm2=s,

and ĵp values are indicated on the graph. For the K–K model, the
equivalent membrane properties are reported in Ref. [22]. For
these analyses, c0 5 0:3M and c1 5 1M (see text).
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may be obtained for the dependence of the osmotic pressure on
the fixed charge density cF and bathing solution concentration c*

as a result of the existence of a closed-form solution for the elec-
tric potential w (Eq. (2.20)). Furthermore, if the solid matrix de-
formation is homogeneous, the solution to this deformation
reduces to a set of nonlinear algebraic equations. For example, if
the solid matrix is isotropic, the homogeneous deformation
becomes isotropic with F ¼ kI, where k is the stretch ratio along
any direction. For a neo-Hookean solid with Lam�e constants ks

and ls, assuming ideal physicochemical conditions, Azeloglu
et al. [19] have shown that k must satisfy

ls k2� 1
� �

þ 3ks lnkð Þ� k3Rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�us

r

� �
cF

r

k3�us
r

 !2

þ 2c�ð Þ2
vuut � 2c�

2
64

3
75

¼ 0

(3.1)

under traction-free conditions on the boundaries (free swelling).
Such a homogeneous state for the deformation is typically
achieved under steady-state conditions when solvent and solute
fluxes have subsided.

These homogeneous free-swelling conditions are easily repro-
duced in a representative finite element model in FEBio by using a
single cuboid hexahedral element with symmetry constraints on
three orthogonal faces (zero normal displacement, and zero sol-
vent and solute normal fluxes, the latter being natural boundary
conditions); on the remaining three faces, the mixture traction is
zero (a natural boundary condition), the effective fluid pressure is
~p ¼ �2Rhc� (under the assumption that the ambient bath pressure
is zero), and the effective solute concentrations are ~ca ¼ c�
(a ¼ þ;�) (under the assumption that the ambient bath electric
potential is zero). Since steady-state conditions are sought, the
selection of k, da, and da

0 is arbitrary in the finite element analysis.
A comparison of the FEBio solution with a numerical solution to

Eq. (3.1) is provided in Fig. 3 for representative values of ks, ls,
and us

r and a range of values for cF
r and c�. Agreement is observed

over the entire range, providing a verification of the finite element
code with regard to the interaction between Donnan osmotic pres-
sure and solid matrix deformation.

3.3 Current Flow in an Electrolyte. Electrolytes conduct
electricity as a result of the net transport of ionic charges. Con-
sider a monovalent salt, such as NaCl, placed in a rigid imperme-
able chamber of length h, having impermeable silver-silver

chloride (Ag/AgCl) electrodes at each end (Fig. 4). A prescribed
current density I0 is passed through the electrolyte, and we would
like to determine the ion concentrations and electric potential
throughout the electrolyte as a function of time. When analyzing
problems involving electrodes, it is important to understand the
nature and interactions of the electrode with the electrolyte solu-
tion. In the case of Ag/AgCl electrodes in contact with a NaCl so-
lution, a chemical reaction occurs at the electrodes that converts
silver to silver chloride, or vice versa, according to

Ag0
ðsÞ þ Cl� Ð AgClðsÞ þ e� (3.2)

At the anode, the silver metal reacts with a chloride ion from the
electrolyte solution to produce an insoluble silver-chloride salt
that gets deposited onto the electrode; an electron is freed at the
junction to flow through the electrode. At the cathode, the silver-
chloride salt dissociates into silver metal, which remains on the
electrode, and a chloride ion that gets released into the solution;
an electron is captured from the electrode in this process.

This problem is set up to be one-dimensional in space, with ion
transport occurring along the z�direction over the range
0 	 z 	 h. Accordingly, the current density is also directed along
z; based on the charge numbers of Naþand Cl�, this current den-
sity is given by I0 ¼ Fc jþ � j�ð Þ. For a one-dimensional problem,
I0 must remain uniform over z, based on Eq. (2.12). From the
chemical reaction described in Eq. (3..2), it follows that jþ ¼ 0 at
the electrodes and throughout the electrolyte (since sodium ion
does not react with the electrodes), whereas j� ¼ �I0=Fc (since
chloride ion is exchanged with the electrodes). Combining these
conditions with the electroneutrality constraint and the remaining
governing equations of mixture theory (in the absence of a charged
solid matrix), it can be shown that the electrolyte concentration
c z; tð Þ (where c � cþ ¼ c� based on electroneutrality) in response
to a step increase in the current density from zero to I0 is given by

c z; tð Þ
c0

¼ 1þ Î0

"
2z

h
� 1þ 8

p2

X1
n¼1

�1ð Þn

2n� 1ð Þ2

sin n� 1

2

� �
p

2z

h
� 1

� �� �
exp � 2n� 1ð Þ2p2 d0t

h2

� �#
(3.3)

where c0 is the initial homogeneous electrolyte concentration, d0

is the electrolyte free diffusivity related to the ion diffusivities via

1

d0

¼ 1

2

1

dþ0
þ 1

d�0

� �
(3.4)

and Î0 is the nondimensional current density given by

Î0 ¼
hI0

4d�0 Fcc0

(3.5)

At steady state, the solution reduces to

lim
t!1

c z; tð Þ
c0

¼ 1þ Î0

2z

h
� 1

� �
(3.6)

Fig. 3 Donnan osmotic swelling of a triphasic material
(us

r 5 0:2) with a neo-Hookean solid (ks 5 0, ls 5 0:25 MPa).
The relative volume J 5 k3 is plotted for four different values of
cF

r (ranging from 2100 to 2400 mEq=L by increments of
2100 mEq=L) over a range of values for the bath concentration
c* (h 5 293 K). The numerical solution to Eq. (3.1) is given by the
thin black curves, and the finite element solution is represented
by the thicker gray curves.

Fig. 4 Schematic for current flow in an electrolyte
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It should be noted that this solution is only valid for Î0 	 1, since
higher values produce meaningless negative concentrations in Eq.
(3.3). The physical explanation is that the upper-limiting case
Î0 ¼ 1 represents the (normalized) current density at which the
requisite rate of chloride ion oxidation at the anode is balanced by
the maximum rate at which chloride ions from the bulk solution
can diffuse toward the anode to sustain the oxidation reaction;
since diffusion is driven by the concentration gradient, the highest
possible gradient in a linearly varying concentration field at
steady-state occurs when the chloride ion concentration reduces to
zero at z¼ 0.

This problem is simulated in FEBio by using a triphasic material
with two monovalent counterions (zþ ¼ 1, z� ¼ �1). Though the
actual material consists of a pure fluid (solventþ ions), all multi-
phasic models in FEBio must include a porous solid matrix, since
the finite element mesh is defined on the solid. For this problem,
the solid matrix is modeled to be neutral (cF

r ¼ 0) with zero solid
volume fraction us

r ¼ 0
� �

. The solid matrix stiffness has no effect
on the solution, since this problem produces no solid deformation;
therefore, a stress-strain constitutive model and corresponding
material properties may be selected arbitrarily for the solid (e.g.,
neo-Hookean with Young’s modulus equal to 10 MPa and Pois-
son’s ratio equal to zero). Similarly, the permeability of the solid
to the solvent, k, has no effect on the solution, since there is no
solvent flux in this problem (one-dimensional problem with
impermeable boundaries); thus, k ¼ kI with k ¼ 10�3mm4=N � s
may be selected arbitrarily. Since the solid matrix should not
hinder solute transport in this simulation of a pure fluid, the ion
diffusivities are set to da ¼ da

0I (a ¼ þ;�) with
dþ0 ¼ 1:0
 10�3mm2=s and d�0 ¼ 1:2
 10�3mm2=s. A cuboid
geometry is selected for this analysis, with h ¼ 1mm along the
z�direction. Ideal physicochemical conditions are assumed to pre-
vail; thus, ĵa ¼ 1 and U ¼ 1. A biased mesh of 40 elements along
z is employed, with an increasingly finer mesh near z¼ 0 and
z¼ 1.

The current density I0 is prescribed by letting jþn ¼ 0 and
j�n ¼ 10�1nmol=mm2 � s at z¼ 0 (where the outward normal to the
boundary points in the negative z�direction), producing a current
density I0 ¼ 9:65lA=mm2 (with Fc ¼ 9:65
 10�5C=nmol) along
the positive z�direction. Since FEBio requires that solute flux
boundary conditions for solute a be imposed as ~jan � jan þ

P
b zbjbn

(see Eq. (2.16)), the actual flux conditions in the finite element
model are ~jþn ¼ �j�n and ~j�n ¼ 0. Similarly, since the current den-
sity is uniform along z, the same boundary conditions are applied
at z¼ 1 with j�n ¼ �10�1nmol=mm2 � s (since the outer normal on
that boundary is along the positive z�direction). Initially, the ion
concentration is taken to be c0 ¼ 150mM throughout the chamber.
If it is assumed that the electric potential w is initially zero, it fol-
lows from Eqs. (2.2) and (2.3) that ~ja ¼ 1 and ~ca ¼ c0 initially.

While it may seem that these boundary conditions are sufficient
to solve this problem, it should be noted that, since there are no
boundary conditions on ~ca at z¼ 0 or z¼ h, there are no con-
straints imposed on the reference electric potential in the chamber.
In other words, the electrolyte solution is not electrically grounded
and the value of w may float randomly. A numerical solution can
be obtained for this set of initial and boundary conditions, but con-
vergence is very poor and the final solution may show random nu-
merical fluctuations in w, even while grad w remains well-
behaved. To ground the electrolyte in the chamber and produce a
stable numerical solution with good convergence properties, the
effective solute concentrations at the midpoint of the chamber are
constrained to remain constant, ~ca h=2; tð Þ ¼ c0; this constraint sat-
isfies the electroneutrality condition while also imposing w¼ 0 at
z¼ h/2, thereby successfully grounding the solution.

A comparison of the FEBio solution with the analytical solution
of Eq. (3.3) is presented in Fig. 5 at several representative time
points, showing agreement across all values of z and t. This verifi-
cation problem demonstrates that this multiphasic implementation
may properly solve problems of mass transport and electric con-
duction in an electrolyte.

4 Illustrations

4.1 Current-Generated Stress in Cartilage. In 1987, Frank
and Grodzinsky [61] demonstrated experimentally that passing an
alternating electric current across an articular cartilage sample
that is clamped between two electrodes produces an alternating
stress response. They observed that the stress magnitude and
phase angle decreased with increasing input current frequency.
They proposed a theoretical framework to describe this electrome-
chanical response, which extended porous media theories by
including electrokinetic equations relating the current density to
gradients in fluid pressure and electric potential while also
accounting for the dependence of the interstitial fluid flux on those
same gradients [62]. The primary distinction between their elec-
tromechanical model and the subsequent triphasic theory of Lai
et al. [7] is that the former does not include an explicit description
of ions. Whereas the electromechanical model has been shown to
reproduce the experimental observation of current-generated
stress [62], the triphasic theory has not yet been used to analyze
this problem.

To simulate this current-generated stress phenomenon in FEBio,
a triphasic material is used with negative fixed charge density and
monovalent counterions Naþ and Cl� (zþ ¼ 1, z� ¼ �1). The
solid matrix is modeled as neo-Hookean (Young’s modu-
lus¼ 0.24 MPa, Poisson’s ratio¼ 0), the hydraulic permeability is
isotropic and constant (k ¼ kI with k ¼ 10�3mm4=N � s), and the
solute diffusivities are taken to be half their respective values
in free solution (da ¼ 1

2
da

0I, dþ0 ¼ 1:0
 10�3mm2=s, and
d�0 ¼ 1:6
 10�3mm2=s). Ideal physicochemical conditions are
assumed (U¼ 1, ĵa ¼ 1). The geometry for this problem is pre-
sented in Fig. 6; the mesh distribution is identical to the finite ele-
ment model for current flow through an electrolyte, as described
above. The material has a thickness h¼ 1 mm in its reference
(stress-free) configuration; it is assumed to be inside a rigid
confining chamber with impermeable side walls (the chamber is
not modeled explicitly, but displacement constraints prevent lat-
eral motion). The bottom end of the chamber (z¼ 0) is an imper-
meable rigid Ag/AgCl electrode with zero axial displacement

Fig. 5 One-dimensional current flow in NaCl. The concentra-
tion of NaCl along the entire length of the domain is provided at
selected time points. Black curves represent the analytical solu-
tion and gray curves represent the finite element solution.

Fig. 6 Schematic for configuration of current-generated stress
analysis in cartilage
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and flux boundary conditions specified as wn 0; tð Þ ¼ 0,
~jþn 0; tð Þ ¼ Ie tð Þ=Fc (Fc ¼ 9:65
 10�5C=nmol), and ~j�n 0; tð Þ ¼ 0,
where Ie tð Þ is the prescribed current density (positive along the
negative z�direction). At the top end (z¼ h), a rigid porous (free-
draining) Ag/AgCl electrode acts as an indenter that constrains
the material (zero axial displacement). This porous electrode is
assumed to be immersed in a well-mixed electrolyte bath with
zero ambient pressure and electric potential; thus, effective solute
boundary conditions at z¼ h are ~cþ h; tð Þ ¼ ~c� h; tð Þ ¼ c0, where
c0 is the electrolyte bath concentration (c0 ¼ 150 mM) and the
effective pressure is ~p ¼ �2Rhc0 (R ¼ 8:314
 10�3mJ=nmol � K
and h ¼ 293 K).

Initial conditions inside the material are given by
~cþ z; 0ð Þ ¼ ~c� z; 0ð Þ ¼ c0 and ~p z; 0ð Þ ¼ �Rh cþ þ c�ð Þ, where
cþand c� are the actual ion concentrations. There are two ways
to determine these concentrations: (1) The value of w may be
evaluated from the closed-form solution in Eq. (2.20) (which
requires knowledge of J in order to also evaluate cF from Eq.
(2.13)) and then substituted into Eq. (2.3) to evaluate ~ja and then
into Eq. (2.2). This method is not sufficiently general, since a
closed-form expression is not always available for w, nor is J nec-
essarily known at t¼ 0. (2) Let cF

r ¼ 0 at t¼ 0, implying that
w z; 0ð Þ ¼ 0 and cþ ¼ c� ¼ c0; then decrease cF

r to the desired
value (cF

r ¼ �150mEq=L) using a steady-state analysis for com-
putational efficiency to achieve the desired initial conditions for a
charged solid matrix.4 As cF

r is decreased, and since the triphasic
material is exposed to an external bath without restriction on elec-
trolyte transport, ion exchanges take place and a Donnan osmotic
pressure is produced. Since the material is clamped between the
two electrodes, it now exerts a tare stress on the electrodes equal
in magnitude to the Donnan pressure. Once this state is achieved,
the transient response to In tð Þ may be initiated.

For this illustrative example, a step increase in current is
applied (with a magnitude of 4
 10�6A=mm2) and the transient
response is monitored until a steady state is achieved. The
current-generated stress is observed to increase slowly over time,
with a characteristic time constant on the order of �103s (Fig.
7(a)). Relative to the tare stress (� 0:09MPa), the current-
generated compressive stress rises in magnitude by an additional
�0:08 MPa at steady state. A plot of the ion concentrations ca

(a ¼ þ;�) at various time points is presented in Fig. 7(b). The
stress is generated because the application of the current produces
an increasing concentration of Cl� at the impermeable cathode
(z¼ 0), where this ion is being released; even though Cl� is simul-
taneously absorbed at the porous anode (z¼ h), its concentration
does not decrease substantially there, due to the plentiful supply
from the external bath. The net result is that the osmolarity
(cþ þ c�) of the interstitial fluid increases over the entire range of
z, producing an increase in the osmotic pressure, which is respon-
sible for the increased stress.

4.2 Effect of Cation Charge on Creep Response of
Cartilage. In 1963, Sokoloff reported on the creep response of
articular cartilage in solutions containing monovalent, divalent, or
trivalent cations [63]. He observed that the creep deformation in
divalent cation solutions (such as CaCl2, BaCl2, and MgCl2) was
significantly greater than with monovalent cation solutions (e.g.,
NaCl, KCl, and LiCl). He also observed that trivalent cation solu-
tions (e.g., AlCl3, LaCl3, and FeCl3) produced a response substan-
tially similar to divalent cation solutions. To examine whether
these findings may be replicated from theory, unconfined com-
pression creep analyses are performed on cylindrical cartilage
models in FEBio, using bathing solutions where the cation is either
monovalent (0.15 M NaCl), divalent (0.11 M CaCl2), or trivalent
(0.085 M AlCl3).

The cartilage solid matrix is modeled using a continuous iso-
tropic fiber distribution to represent the collagen, where each fiber
bundle has a power-law response with a modulus n¼ 2 MPa and
exponent b¼ 2.5 [42], a neo-Hookean ground matrix with
Young’s modulus EY¼ 0.1 MPa and Poisson’s ratio � ¼ 0 to rep-
resent the nonelectrostatic contribution of the proteoglycans [64]
and a fixed charged density cF

r ¼ �200 mEq=L to represent the
proteoglycan charges. The permeability tensor is assumed to be
isotropic and dependent on J via a combined power/exponential
law [6] with a zero-strain permeability of k0 ¼ 10�3mm4=N � s, a
power-law exponent given by a¼ 2, and an exponential rate given
by M¼ 4. The ions diffusivity tensors are taken to be isotropic
and constant with dþ0 ¼ 10�3mm2=s, d�0 ¼ 1:6
 10�3mm2=s,
and da ¼ 1

2
da

0I. Room temperature was assumed in the analysis
(h¼ 293 K).

A rigid, impermeable, frictionless loading platen is used to
apply the load on the cartilage for the creep response. Using a
steady-state analysis, the fixed-charge density is reduced from
zero to the desired negative value of cF

r , allowing the tissue to
swell radially and circumferentially while constrained axially by
the initially stationary loading platen. Then, using a transient anal-
ysis, a step load is prescribed on the loading platen, corresponding
to a mean engineering contact stress r0 ¼ 0:8MPa, and the engi-
neering strain is examined.

The creep responses for the three solutions are presented in
Fig. 8. Upon application of the load, the tissue undergoes a nearly
isochoric instantaneous axial compression and lateral expansion at
t¼ 0þ followed by a time-dependent increase in deformation as
its interstitial fluid exudes. The deformation in the CaCl2 solution
is considerably greater than that in NaCl; however, the deforma-
tion in AlCl3 is only slightly greater than in CaCl2. These results
are in remarkable agreement with the experimental observations

Fig. 7 Current-generated stress. (a) Stress response rzz as a
function of time, inclusive of the tare stress resulting from the
initial Donnan osmotic pressure. (b) Concentrations c 1 of Na1

and c2 of Cl2 along the axis z of the tissue at selected time
points t (t 5 0 s corresponds to the state immediately prior to
current application; remaining time points increase from 100 s
to 104 s by decade).

4A steady-state analysis is performed by setting time derivatives to zero in
Eq. (2.15). This option is available in FEBio by setting a switch in the input file.
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of Sokoloff [63]. They indicate that the experimental observations
may be explained substantially by the differences in electrostatic
and Donnan osmotic mechanisms, whereby the Donnan osmotic
pressure is substantially reduced when switching from NaCl
(0.146 MPa before application of the creep load) to CaCl2
(0.061 MPa), but not much more when switching to AlCl3
(0.040 MPa).

5 Discussion

This study presents the finite element implementation of multi-
phasic materials using the framework of mixture theory. The mul-
tiphasic material consists of a solid matrix, a solvent, and any
number of neutral or charged solutes. The finite element imple-
mentation is valid for three-dimensional analyses where the solid
matrix may undergo finite deformation. Each constituent is
intrinsically incompressible, though the porous solid matrix may
undergo volume changes as interstitial fluid is exchanged with the
pore space. To the best of our knowledge, this represents the first
implementation of such a general mixture theory framework for
applications to biological tissues and cells.

To successfully implement this formulation, it was necessary to
provide a general method to solve for the unknown electric poten-
tial when the mixture includes any number of multivalent ions, as
shown in Eqs. (2.17)–(2.19). It was found that the resulting poly-
nomial equation only admits one valid solution, eliminating any
ambiguity in the selection of the correct root. It was also neces-
sary to enforce the divergence-free current condition of Eq. (2.12)
as a constraint in the mass balance equation for every solute, as
shown in Eq. (2.15), instead of enforcing it once for the entire mix-
ture. This approach preserved symmetry in the equations for all the
solutes, from which the effective normal flux ~jan emerged as the nat-
ural boundary condition for these constituents. Since
~jan ¼ jan þ Ie=Fc, where Ie is the component of the current density
normal to the surface, this boundary condition makes it easy to pre-
scribe an electric current while also accounting for the type of elec-
trode used for current transmission, as illustrated in Figs. 4 and 6.

The finite element implementation of this study also uniquely
incorporates the well-recognized phenomenon of solute partition-
ing by accounting for steric volume exclusion and short-range
electrostatic interactions via the solubility, ja, as well as long-
range electrostatic interactions via the expression of Eq. (2.3) for
the partition coefficient, ~ja. The formulation accounts for the de-
pendence of the partition coefficient on solid deformation as well
as solute concentrations, as expressed in Eqs. (2.21)–(2.23).

Another distinctive characteristic of this formulation is the use
of the effective fluid pressure ~p and effective solute concentration
~ca instead of the mechanoelectrochemical potentials of these spe-
cies as essential variables. This approach preserves full consis-
tency with the meaning of fluid pressure and solute concentration

in related biphasic-solute and biphasic frameworks, while also
providing a compact and elegant form for the flux relations of
Eqs. (2.4) and (2.5). This formulation accepts every possible com-
bination of mechanical, chemical, and electrical essential bound-
ary conditions, making it straightforward to analyze the full
complexity of multiphasic systems.

Several verification problems were presented that demonstrated
the ability of the code to replicate known solutions, including
problems that involve large deformations resulting from osmotic
effects. The analytical solution of Eq. (3.3) for current flow in an
electrolyte is original and was derived from first principles using
the governing equations and boundary conditions presented
above. It demonstrates the interesting phenomenon that such elec-
trolytes can only carry a finite amount of current. Producing an
agreement between the finite element solution and this analytical
result required electrical grounding of the multiphasic medium by
suitably prescribing specific conditions as presented above.
Though the physical need for electrical grounding of circuits is a
well-recognized phenomenon, the concept of electrical grounding
of multiphasic media has not been addressed in prior studies of
multiphasic materials. This concept is critical for a subset of mul-
tiphasic problems where all the mixture boundaries are imperme-
able to ions.

Furthermore, some illustrative problems were presented that
replicate known experimental findings, such as current-generated
stress and the influence of salt cation charge in cartilage, that are
rarely addressed from theory. The current-generated stress analy-
sis in Sec. 4.1 is the first such study to demonstrate this fundamen-
tal mechanism in a formulation that explicitly models the ions that
carry the electric current. Though Frank and Grodzinsky’s earlier
electromechanical model proposed equations to describe current-
generated stress [62], their framework did not explicitly model
ions; instead, it provided an equation for electrokinetics that
related electric current density to the gradient in fluid pressure and
electric potential. The solution presented in Fig. 7 demonstrates
that the phenomenon of current-generated stress may be predicted
in a charged tissue directly as a result of ions flowing through it.
In this multiphasic framework, the transient stress response to a
step change in the current depends explicitly on the ion diffusiv-
ities, whereas the magnitude of the stress depends explicitly on
the fixed-charge density. The multiphasic framework also explic-
itly accounts for the fact that the transference of energy at the
electrodes is dependent on the nature of the electrodes and ions
present in the tissue.

Similarly, the analysis of the response of cartilage to loading in
electrolyte solutions having different cation charges, Sec. 4.2, is
the first theoretical verification of the experimental findings
reported by Sokoloff [63]. This example illustrated the ability of
the finite element implementation to solve problems with multiva-
lent ions just as easily as with monovalent ions. Furthermore, by
facilitating the examination of the fluid pressure response, it
helped reinforce the physical explanation for those findings.

Due to the potential complexity of multiphasic analyses and
because of the limited collective experience of the research com-
munity with this framework, it may take a certain amount of effort
to set up well-posed problems using this finite element implemen-
tation, especially when modeling charged constituents. Pitfalls
that are otherwise familiar in finite element analyses, such as anal-
ysis failures when applying excessive loads in a finite deformation
problem or lack of convergence when using excessively large pen-
alty parameters for nearly incompressible solids, may not be as in-
tuitive or familiar in multiphasic problems. Over time, users need
to develop an intuitive understanding of the underlying physics of
multiphasic problems to minimize such pitfalls in their finite ele-
ment analyses.

For example, in the cell osmotic loading analysis (Fig. 2), it
was necessary to model the solid matrix of the membrane using a
nearly incompressible material with uncoupled strain energy con-
tributions from the dilatational and distortional components of the
deformation [57,65,66], because the initial large disparity in

Fig. 8 Effect of cation charge on the creep response of carti-
lage: The compressive engineering strain is reported for three
solutions corresponding to a monovalent (NaCl), divalent
(CaCl2), and trivalent (AlCl3) cation
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osmolarity between the extracellular and intracellular environ-
ments would otherwise produce excessive volumetric changes to
the membrane that would lead to analysis failure; by using a large
modulus for the dilatational response, volumetric changes could
be kept sufficiently small, while using a small modulus for the
distortional response ensured that the membrane had negligible re-
sistance to area changes, consistent with the idealized assumptions
of the K–K model. These modeling assumptions are consistent
with the well-recognized behavior of cell plasma membranes as
two-dimensional liquids. Similarly, in the electrolyte current flow
analysis (Fig. 5), it was necessary to “ground” the electric poten-
tial to produce stable numerical results; this grounding is identical
to the requirement in real electrical circuits, making it easier to
understand intuitively.

The finite element implementation of multiphasic material
behavior requires the identification of variables that are continu-
ous across multiphasic boundaries. For the solvent and solutes,
neither the pressure p nor the concentration ca satisfy this continu-
ity requirement under general conditions. To identify such contin-
uous variables, it is necessary to adopt a general form for the
constitutive relations relating the mechanoelectrochemical poten-
tial to p and the ca. From these relations, the effective fluid pres-
sure ~p and solute concentrations ~ca emerge as suitable nodal
variables. The material functions U and ĵa emerging from these
relations must be described by explicit constitutive relations that
accurately model the physicochemical behavior of the mixture.
Assuming that the interstitial fluid is an ideal solution (U¼ 1 and
ĵa ¼ 1), as commonly done in introductory chemistry textbooks,
is strictly an oversimplification that would be equivalent to assum-
ing that, for example, all elastic solids may be described by
Hooke’s law. This ideal physicochemical behavior may not accu-
rately describe the results of real experiments, except for special-
ized conditions. Nonideal responses may be characterized from
direct experimental measurements of the osmotic pressure of solu-
tions, such as proteoglycan or chondroitin sulfate solutions, which
may be used to formulate suitable constitutive relations for U
[67–70]. Alternatively, microscopically based models of electro-
static interactions between charged macromolecules and electro-
lytes in aqueous solutions may be used to formulate such relations
for U and ca (and thus ĵa), as proposed by Buschmann and Grod-
zinsky [71]. Similarly, the ability to model phenomena, such as
partitioning of interstitial water between the intrafibrillar and
extrafibrillar space of a fibrillar matrix [72], may be modeled by
choosing suitable relations for U and formulating the fixed charge
density on an extrafibrillar water volume basis, as shown by Wil-
son et al. [73]. The multiphasic finite element implementation in
the open-source FEBio code is designed to accommodate any such
implementation, thereby allowing deviations from ideal physico-
chemical behavior.

Finally, in order to properly model evolving conditions in mate-
rials and living tissues, it is necessary to account for the chemical
reactions that form the basis for growth, remodeling, as well as
other phenomena, such as phase transformations in charged gels
and cells [74]. Having established a finite element framework for
nonreactive multiphasic materials, it now becomes possible to
extend this framework to include chemical reactions between any
and all of the mixture constituents [52,75–77].

A driving need for developing this framework in open source is
the absence of commercial codes that currently reproduce these
capabilities. Commercial finite element programs generally pro-
vide separate modules for poroelastic analyses and mass transport.
They do not offer modules where the governing equations for
solid deformation, solvent flux, and solute transport are fully
coupled, such as allowing the solid matrix and solutes to be
charged, allowing momentum exchanges between the deforming
solid and the solutes, or allowing solutes to be partially excluded
from the pore space of the solid. An open source implementation
implies that all users have unfettered access to the code and may
freely extend and modify it, either for using it directly or for veri-
fying other custom or commercial implementations.
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