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This study aimed to evaluate the predictive performance of genetic risk models based on risk loci identified and/

or confirmed in genome-wide association studies for type 2 diabetes mellitus. A systematic literature search was

conducted in the PubMed/MEDLINE and EMBASE databases through April 13, 2012, and published data relevant

to the prediction of type 2 diabetes based on genome-wide association marker–based risk models (GRMs) were

included. Of the 1,234 potentially relevant articles, 21 articles representing 23 studies were eligible for inclusion.

The median area under the receiver operating characteristic curve (AUC) among eligible studies was 0.60 (range,

0.55–0.68), which did not differ appreciably by study design, sample size, participants’ race/ethnicity, or the number

of genetic markers included in the GRMs. In addition, the AUCs for type 2 diabetes did not improve appreciably

with the addition of genetic markers into conventional risk factor–based models (median AUC, 0.79 (range, 0.63–

0.91) vs. median AUC, 0.78 (range, 0.63–0.90), respectively). A limited number of included studies used reclassifi-

cation measures and yielded inconsistent results. In conclusion, GRMs showed a low predictive performance for

risk of type 2 diabetes, irrespective of study design, participants’ race/ethnicity, and the number of genetic markers

included. Moreover, the addition of genome-wide association markers into conventional risk models produced

little improvement in predictive performance.

area under the curve; receiver operating characteristic curve; single nucleotide polymorphism; type 2 diabetes mellitus

Abbreviations: AUC, area under the receiver operating characteristic curve; CRM, conventional risk factors–based model; GRM,

genome-wide association marker–based risk model; GWA, genome-wide association; IDI, integrated discrimination improvement;

NRI, net reclassification improvement; SNP, single nucleotide polymorphism; T2DM, type 2 diabetes mellitus.

The global prevalence and burden of type 2 diabetes mel-
litus (T2DM) have been rising at an alarming rate, creating
one of the most important clinical and public health chal-
lenges worldwide (1, 2). According to the latest estimate by
the International Diabetes Federation (3), the number of dia-
betes cases worldwide is approximately 366 million, or 8.3%,
among adults aged 20–79 years in 2011, and it is projected
to reach 552million, or 9.9%, among adults aged 20–79 years
by 2030 (3). T2DM constitutes about 90%–95% of diabetes
cases (2). Given the availability of effective lifestyle modifica-
tions for preventing or delaying the onset of T2DM in individ-
uals at high risk (4), it is particularly crucial to develop risk

prediction tools for use in population-based screening and pre-
vention programs.

Although the pathogenesis of T2DM is not completely under-
stood, the epidemic is widely believed to result from multiple
genetic and environmental risk factors and their complex
interactions (5, 6). Advanced age, greater body mass index
(weight (kg)/height (m)2), smoking, family history of diabe-
tes, high blood pressure, unhealthy diet, and physical inac-
tivity have been identified as important T2DM risk factors.
During the past decade, several diabetes risk prediction models
and diabetes risk scores incorporating these established risk
factors, with and without biochemical markers, have been
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developed andvalidated (7, 8).Recently, the advent of genome-
wide association (GWA) studies has presented an exciting
opportunity to incorporate novel genetic variants into the risk
prediction models for T2DM (9). So far, 59 loci associated
with T2DM susceptibility (herein called GWAmarkers) have
been identified and/or confirmed at the genome-wide signifi-
cance level (P < 5 × 10−8) in GWA studies or meta-analyses
of GWA studies (10). To translate emerging genomic knowl-
edge into clinical applications, GWA marker–based genetic
risk scores or genotype scores have been developed for the
prediction of T2DM risk (7, 8, 11). Meanwhile, the “direct-
to-consumer” genetic profiling for the prediction of T2DM
risk has been offered by commercial companies (12). Studies
based on simulated data have also demonstrated that combined
information from multiple common genetic variants could
improve the prediction of complex diseases (13, 14). However,
empirical studies have not provided clear evidence to support
the utility of incorporating genomic information into T2DM
risk prediction (15–18).
The primaryobjective of this systematic reviewwas to sum-

marize the predictive performance of genome-wide associa-
tion marker–based risk models (GRMs) for T2DM risk. The
secondary objective was to evaluate whether adding GWA
markers to conventional risk factor–based models (CRMs)
improves the prediction of T2DM risk.

MATERIALS ANDMETHODS

Eligibility criteria

We adhered to guidelines of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses statement (19)
when undertaking this study. The C statistic or area under
the receiver operating characteristic curve (AUC) (20–22), the
most widely used metric in genetic prediction studies, was
the main parameter of the population discriminative ability in
this systematic review. The AUC allows comparison of the dis-
criminative accuracy of diverse prediction models indepen-
dent of the choice of cutoff value in different studies. When
the sensitivity and specificity of a test are calculated for each
possible cutoff value and plotted as receiver operating char-
acteristic curves, the AUCs, which may vary from 0.5 (no
discrimination) to 1 (perfect discrimination), measure the
discriminative ability of the test. Recently, reclassification
measures (20), including the net reclassification improve-
ment (NRI) and integrated discrimination improvement (IDI),
have been used as alternatives to the increase of the AUC
for evaluating the incremental predictive performance of GWA
markers. Thus, studies were eligible if they reported the AUC
or these reclassification measures of GRMs for the prediction
of T2DM risk. We did not use odds ratios or risk ratios because
the magnitude of genetic associations or effect size does not
closely correspond to predictive performance (23, 24).

Data sources and searches

Genetic association studies regarding T2DM prediction
were searched in the PubMed/MEDLINE and EMBASE
databases through April 13, 2012, by using a combination of
free text and subheadings from MeSH and EMTREE terms.

The following terms were used for the PubMed/MEDLINE
search: (“diabetes mellitus, type 2/genetics”[MeSH] or type
2 diabetes[tiab]) and (“polymorphism, single nucleotide”
[MeSH] or “genotype”[MeSH] or “alleles”[MeSH] or “genetic
variation”[MeSH] or (“genetic risk score*”) or (“genetic
score*”) or (“genotype score*”) or (“genetic variant*”) or
genotype*[tiab] or allele*[tiab]) and (“ROC curve”[MeSH]
or “area under curve”[MeSH] or “area under the curve”
or “AUC” or “AUCs” or “AROC” or (“C statistic*”) or
predict*[tiab] or discriminat*[tiab] or reclassification or net
reclassification improvement or integrated discrimination
improvement), not (review[pt] or editorial[pt]). Similar
search terms were used for the EMBASE database. In addi-
tion, the references listed in relevant articles were screened.
No restrictions on language, geographical location, or study
design (e.g., cross-sectional, case-control, cohort study) were
applied in the literature search process; however, conference
abstracts without sufficient data were not included.

Study selection

All of the indexed articles were evaluated independently by
2 reviewers (S.R. and Y.R.), and disagreements regarding
eligibility were solved in consultation with a third reviewer
(W.B.). The process of study selection is depicted in Figure 1.
During the screening steps, we excluded review articles, edito-
rials, and protocols, as well as the following study types: non-
human studies (cell culture or animal studies); studies that did
not assess genetic associations; studies with outcomes of obe-
sity, prediabetes, metabolic syndrome, or other diseases but not
T2DM; studies on quantitative traits for T2DM (e.g., glucose,
insulin, hemoglobin A1c, lipid parameters, insulin sensitivity,
β cell function); and studies on T2DM complications or con-
comitant diseases. In addition, pharmacogenetic or pharmaco-
genomic studies for antidiabetic drugs and genetic association
studies that did not report the predictive performance of GWA
markers for T2DM were also excluded. Three additional arti-
cles (16, 25, 26) were excluded because either their results
(16, 25) were updated by the same group inmore recent reports
(15, 27), or the results (26) were previously reported in the
same population (28). Another article was excluded because it
did not report data separately for prediabetes and T2DM (29).

Data extraction and quality assessment

Two reviewers (W.B. and S.R.) independently extracted data
and evaluated study quality, and disagreements were solved by
consensus. The following data were extracted from each pub-
lished article: author’s name, year of publication, characteris-
tics of study subjects (e.g., age, sex, body mass index), sample
size, genetic variants, AUC or reclassification measures, and
consistency of genotype frequencies with Hardy-Weinberg
equilibrium, if available. In studies that reported combined
effects in prediction models incorporating both GWA markers
and nongenetic risk factors, information about the nongenetic
risk model was also extracted.
To assess study quality, we considered items in the Strength-

ening the Reporting of Genetic Risk Prediction Studies state-
ment (30). We particularly evaluated the following items:
study design (cross-sectional, case-control or prospective
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cohort), selection criteria and basic characteristics for partic-
ipants in the study, genetic variants definition, measurement,
coding, and risk model construction.

Data synthesis and analysis

AUCs for T2DM were the main measures in this systematic
review because they were reported in almost all of the included
studies. In addition, we reviewed the studies in which reclassi-
fication measures (i.e., NRI and/or IDI) were reported.

For studies that reported multiple AUCs for different genetic
models, the model with the most comprehensive information
was used. Statistical meta-analysis of theAUCs and their 95%
confidence intervals was conducted to quantitatively sum-
marize the findings in the included studies, and the detailed
methods and results are shown in the Web Appendix and in
Web Figures 1–4 available at http://aje.oxfordjournals.org/.
Because of the various components included in the risk

prediction models and the large heterogeneity of data, a
descriptive summary (i.e., median) of AUCs and their ranges
(minimum to maximum) were used in the main text. Stratifi-
cation analyses were conducted according to study design
(cross-sectional, case-control, and prospective cohort); sample
size (i.e., number of T2DM cases); race/ethnicity (Caucasian,
Asian, or other); the number of genetic variants included in
the GRMs (<10, 10–19, or ≥20); and the average age at
diagnosis of T2DM (<50 years or ≥50 years).

For our primary objective, cross-sectional, case-control, and
cohort studies were all eligible for inclusion because there
was no concern about the temporal causality between expo-
sure (i.e., genotypes that were predetermined during gamete
formation and conception) and outcome (i.e., T2DM). For
the secondary objective, we restricted the analysis to cohort
studies because of the possibility of reverse causality between
conventional risk factors and T2DM (e.g., individuals with
T2DMmay change their lifestyles after diagnosis) that might
arise in cross-sectional and case-control studies.

452 Duplicates removed 

782 Potentially relevant articles screened 

523 Articles excluded 

      77 Not genetic association studies 

    353 Did not study T2DM as outcome 

      72 Reviews, editorials, protocols 

       21 Nonhuman studies (animal,  
             cell line studies) 

259 Articles evaluated in detail 

238 Articles excluded 

   206 No AUCs or reclassification  
           measures for T2DM prediction 

     28 Pharmacogenetic studies for  
           antidiabetic drugs 

       3 Results updated by later study or 
           duplicate reports 

         1 Not genetic risk model with  
            multiple variants  

21 Articles (23 studies) included in the systematic review  

 1,234 Potentially relevant articles identified   
   through PubMed/MEDLINE and EMBASE 
   databases 

Figure 1. Flow chart for study selection. AUC, area under the receiver operating characteristic curve; T2DM, type 2 diabetes mellitus.
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RESULTS

Study characteristics

We identified 1,234 potentially relevant articles from the
PubMed/MEDLINE and EMBASE databases. After screen-
ing, we evaluated 259 articles in detail. Finally, 21 articles
representing 23 studies (15, 27, 28, 31–49) published through
April 13, 2012, were eligible for this systematic review
(Figure 1). The studies by Lyssenko et al. (15) and Xu et al.
(47) comprised 2 independent populations; therefore, theywere
treated as 2 studies in each of the articles. The study design,
participants’ characteristics, and predictive performance for
T2DM by using genetic risk models, conventional risk mod-
els, and combined models in the individual studies are shown
in Tables 1 and 2. Of these eligible studies, 13 were con-
ducted in Europe, 6 in Asia, 3 in the United States, and 1 in
NorthAfrica; 11were prospective cohort studies, 9were case-
control studies, and 3 were cross-sectional studies. Most
studies, but not all (33, 40, 41, 44), reported sufficient detail
about selection criteria and basic characteristics for partic-
ipants in the study population. All studies described the
selection and measurement of genetic variants and the con-
struction of GRMs. The number of genetic variants in the
GRMs ranged from 3 to 40. Themost commonGWAmarkers
included in the GRMs were solute carrier family 30 (zinc trans-
porter), member 8 (SLC30A8) rs13266634; cyclin-dependent
kinase inhibitor 2A/2B (CDKN2A/2B) rs10811661; tran-
scription factor 7-like 2 (TCF7L2) rs7903146; hematopoiet-
ically expressed homeobox (HHEX) insulin-degrading enzyme
(IDE) rs1111875; insulin-like growth factor 2 mRNA binding
protein 2 (IGF2BP2) rs4402960; JAZF zinc finger 1 (JAZF1)
rs864745; thyroid adenoma-associated (THADA) rs7578597;
and ADAM metallopeptidase with thrombospondin type 1
motif, 9 (ADAMTS9) rs4607103. The most common compo-
nents in the CRMs were age, sex, and body mass index.
Additional components included blood pressure, waist cir-
cumference, family history of diabetes, and biochemical mark-
ers (e.g., fasting plasma glucose, triglycerides, high-density
lipoprotein cholesterol). In addition, 3 studies included estab-
lished diabetes risk scores as the CRMs, such as the Finnish
Diabetes Risk Score (41), the German Diabetes Risk Score
(37), the Cambridge Diabetes Risk Score (40), and the Fra-
mingham Offspring Diabetes Risk Score (40) (Web Table 1).

Predictive performance of GRMs

The predictive performance ofGRMs for T2DMwas reported
in 19 of the 23 eligible studies. In general, GRMs showed a rel-
atively poor discrimination for T2DM in all studies (Table 2).
The AUCs ranged from 0.55 to 0.68 with a median of 0.60.
In our subgroup analyses stratified by study design,

sample size (i.e., number of T2DM cases) and race/ethnicity
(Table 3), the median AUCs were as follows: for case-control
studies, 0.62 (range, 0.58–0.63); for cohort studies, 0.60
(range, 0.55–0.68); for cross-sectional studies, 0.57 (range,
0.55–0.59); for studies with fewer than 1,000 T2DM cases,
0.57 (range, 0.55–0.68); for studies with 1,000–1,999 T2DM
cases, 0.61 (range, 0.59–0.63); for studies with 2,000 or
more T2DM cases, 0.60 (range, 0.58–0.63); for studies of

Caucasians, 0.59 (range, 0.55–0.68); and for studies of Asians,
0.63 (range, 0.62–0.63).
We also examined whether the AUCs for T2DM varied by

the number of genetic variants included in the GRMs, because
the Framingham Offspring Study showed that increasing the
number of GWA markers in the GRMs from 18 in a previous
report (16) to 40 in a recent report (27) improved the AUC for
T2DM risk prediction, although the predictive performance of
the updated model was still limited, and the magnitude of the
change between the median AUCs was small (0.58 (range,
0.55–0.62) vs. 0.63 (range, 0.61–0.66)). In a subgroup study
stratifiedby the numberof genetic variants included in theGRMs,
the median AUCs for T2DMwere 0.57 (range, 0.56–0.58), 0.60
(range, 0.55–0.68), and 0.59 (range, 0.55–0.63) for GRMs
including <10, 10–19, and≥20 genetic variants, respectively.
In addition, a recent report suggested that the predictive per-

formance of GRMs may vary by participant age (27). There-
fore, we performed a subgroup analysis of cases by age (mean
or median) at diagnosis or testing. We found a slightly higher
AUC for studies with an average age of study participants
younger than 50 years compared with those that included older
study participants (with median AUCs of 0.62 (range, 0.55–
0.68) and 0.60 (range, 0.55–0.63), respectively).

Predictive performance of GWAmarkers versus CRMs

To assess the incremental improvement in predictive per-
formance of GWA markers beyond that of CRMs for T2DM
risk, we included prospective cohort studies in which AUCs
and 95% confidence intervals for CRMs with and without
the addition of GRMs were reported. Among the 11 prospec-
tive cohort studies, the median AUCs were 0.78 (range, 0.63–
0.90) for the CRMs and 0.79 (range, 0.63–0.91) for combined
models that included both conventional risk factors and
GWA markers.
In addition to reporting AUCs, several studies (15, 27, 36,

37, 40, 48) also reported reclassification measures as metrics
for incremental predictive performance (Table 4). The categor-
ical NRI is a cutoff point–dependent measure; however, the
cutoff points were quite different among studies that reported
NRI (15, 27, 40). Among studies that reported IDI (36, 37,
48), only 1 provided sufficient information on IDI and its 95%
confidence interval (37). The results reported in the included
studies were inconsistent; some studies found statistically sig-
nificant improvement in NRI and/or IDI (15, 27, 36), whereas
others did not (40, 48). However, even in studies that reported
statistically significant improvement, the magnitude of NRI
and/or IDI was modest (∼4.5% for NRI (15, 27) and 1.2% for
relative IDI (36)) compared with results (NRI of ≤39% and
IDI of ≤7.8%) from an empirical evaluation of the use of
reclassification for assessment of improved prediction (50).
This is consistent with the results of an ad hoc study showing
that reclassification observed in the absence of an increase of
AUC is unlikely to improve clinical utility (21).

DISCUSSION

In the current systematic review, we found that GRMs
showed a relatively low predictive performance for T2DM
risk irrespective of study design, participants’ race/ethnicity
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Table 1. Study Design and Participant Characteristics for the Studies Included in the Systematic Review

First Author, Year
(Reference No.)

Study Location Ethnic Origin Study Design
No. of Participants Age, yearsa Male Sex, % BMIb

Cases Controls Cases Controls Cases Controls Cases Controls

Weedon, 2006 (31) United Kingdom Caucasian Case-control 2,409 3,668 48.7 31.8 58 50 31.4 27.2

Cauchi, 2008 (43) France Caucasian Case-control 3,295 3,595 62 56 61.8 42.3 28.3 24.9

Cauchi, 2008 (43) France Caucasian Case-control 937 1,000 66 50 61.7 42.8 31.1 24.1

Lango, 2008 (32) United Kingdom Caucasian Cohort 2,309 2,598 55.7 NA 56 51 31.5 26.9

Lyssenko, 2008 (15) Sweden Caucasian Cohort 2,063 13,998 45.5c 64.9c 24.3c

Lyssenko, 2008 (15) Finland Caucasian Cohort 138 2,632 44.9c 45.5c 25.6c

van Hoek, 2008 (28) The Netherlands Caucasian Cohort 601 5,221 68.2 69.0 44.3 40.4 28.0 26.0

Vaxillaire, 2008 (33) France Caucasian Cohort 523 2,919 NA NA NA NA NA NA

Cornelis, 2009 (34) United States Caucasian Cohort (men) 1,197 1,338 55.7 55.4 100 100 27.8 25.1

Cornelis, 2009 (34) United States Caucasian Cohort (women) 1,612 2,163 44.1 43.6 0 0 27.7 23.9

Hu, 2009 (35) China Asian Case-control 1,849 1,785 61.2 57.4 52.5 41.2 24.0 23.6

Lin, 2009 (36) Switzerland Caucasian Cross-sectional 356 5,004 60.7 52.8 67.4 46.0 30.4 25.5

Miyake, 2009 (45) Japan Asian Case-control 2,316 2,370 61.3 67.5 58.2 45.9 23.6 23.3

Schulze, 2009 (37) Germany Caucasian Cohort 579 1,962 54.6 49.4 58.7 36.9 30.4 25.9

Sparsø, 2009 (38) Denmark Caucasian Case-control 4,093 5,302 60 47 59.3 46.3 30.6 25.6

Fontaine-Bisson, 2010 (46) Sweden Caucasian Cross-sectional 1,327 1,424 53.6 53.1 58.4 50.2 29.5 25.8

Qi, 2010 (39) China Asian Case-control 424 1,908 58.6 58.8 51.2 58.5 25.8 23.8

Talmud, 2010 (40) United Kingdom Caucasian Cohort 302 5,233 49c 67c NA NA

Wang, 2010 (41) Finland Caucasian Cross-sectional 518 6,714 45–74d NA NA NA NA

Xu, 2010 (47) China Asian Case-control 1,825 2,200 63.3 59.3 43.9 38.4 26.3 24.3

Xu, 2010 (47) China Asian Cohort 67 667 61.5 61.0 35.8 36.7 26.1 24.8

de Miguel-Yanes, 2011 (27) United States Caucasian Cohort 446 3,025 46c 46.5c 26.0c

Hivert, 2011 (48) United States Mixed Cohort 2,843c 50.6c 33.2c 34.0c

Cauchi, 2012 (49) Morocco Arab Case-control 1,193 1,055 58 54 65.6 69.7 28.4 27.7

Cauchi, 2012 (49) Tunisia Arab Case-control 1,446 942 61 61 54.2 55.7 27.6 24.4

Janipalli, 2012 (42) India Asian Case-control 1,808 1,549 47.7 NA 55.8 53.2 25.7 19.4

Abbreviations: BMI, body mass index; NA, not available.
a Age indicates average age at diagnosis or testing.
b Calculated as weight (kg)/height (m)2.
c Values represent the entire cohort.
d Age range for the entire cohort.
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(i.e., Caucasian or Asian), and the number of genetic markers
included, despite the fact that the associations of the included
GWA markers with T2DM risk have been well established
and replicated in previous studies (51–54). The risk predic-
tion models for T2DM have been previously reviewed (7, 8,
11, 55); however, all of these reviews except Mihaescu et al.
(11) focused mainly on the conventional risk factor–based
models. Our results support the notion that known T2DM
GWA markers add minimally to the predictive performance
for T2DM beyond that of conventional risk factors (15, 16).
Genetic testing has been suggested for identifying indi-

viduals at risk of developing T2DM (25). Indeed, compared
with nongenetic risk factors, genetic variants, such as single
nucleotide polymorphisms (SNPs), have some unique fea-
tures in that they are predetermined during gamete formation

and conception, they do not change over time, and the tem-
poral sequence of genotype-phenotype can be clearly estab-
lished for outcome predictions (56). However, the predictive
performance of genetic variants for T2DM may have been
overestimated (57). Although an early study indicated an
impressive 20-fold increased risk of T2DM by using the
combination of 3 genetic variants among individuals whowere
obese and who had elevated fasting plasma glucose values
(25), the discriminative accuracy for T2DM risk prediction
did not significantly improve in a reexamination of the same
study (23). In the present study, we found that the AUCs of
GRMs for T2DM was relatively low, and CRMs, which incor-
porate age, BMI, and other factors, demonstrated appreciably
higher AUCs than did GRMs. One may speculate that genetic
profiling, theoretically, could be more useful for predicting

Table 2. AUCs for Genetic Risk Models, Conventional Risk Models, and Combined Models for Predicting Risk of Type 2 Diabetes in the Studies

Included in the Systematic Review

First Author, Year
(Reference No.)

Study Location
Genetic Risk Modela

Conventional Risk
Modelb

Combined Modelc

P Valued

AUC 95% CI AUC 95% CI AUC 95% CI

Weedon, 2006 (31) United Kingdom 0.58 0.57, 0.59 NA NA NA NA NA

Cauchi, 2008 (43) France NA NA NA NA 0.86 NA NA

Lango, 2008 (32) United Kingdom 0.60 0.58, 0.62 0.78 0.77, 0.79 0.80 0.79, 0.81 2.9 × 10−12

Lyssenko, 2008 (15) Sweden 0.62 0.61, 0.63 0.74 0.73, 0.75 0.75 0.74, 0.76 1.0 × 10−4

Lyssenko, 2008 (15) Finland 0.68 0.63, 0.73 0.79 0.74, 0.84 0.80 0.76, 0.84 NA

van Hoek, 2008 (28) The Netherlands 0.60 0.57, 0.63 0.66 0.63, 0.68 0.68 0.66, 0.71 <0.0001

Vaxillaire, 2008 (33) France 0.56 0.53, 0.59 0.82 0.82, 0.83 0.83 0.82, 0.83 0.26

Cornelis, 2009 (34) United States 0.59 0.57, 0.60 0.78 0.77, 0.79 0.79 0.78, 0.80 <0.001

Hu, 2009 (35) China 0.62 0.60, 0.64 0.61 0.60, 0.63 0.67 0.65, 0.69 0.0002

Lin, 2009 (36) Switzerland 0.57 0.54, 0.60 0.86 0.84, 0.88 0.87 0.85, 0.89 0.002

Miyake, 2009 (45) Japan 0.63 NA 0.68 NA 0.72 NA NA

Schulze, 2009 (37) Germany 0.55 0.53, 0.58 0.90 0.89, 0.91 0.90 0.89, 0.91 0.6868

Sparsø, 2009 (38) Denmark 0.60 0.59, 0.61 0.92 0.91, 0.93 0.93 0.92, 0.94 NA

Fontaine-Bisson,
2010 (46)

Sweden 0.59 NA NA NA NA NA NA

Qi, 2010 (39) China 0.62 0.59, 0.65 0.77 0.74, 0.80 0.79 0.76, 0.81 0.007

Talmud, 2010 (40) United Kingdom 0.55 0.51, 0.59 0.78 0.75, 0.82 0.78 0.74, 0.81 0.10

Wang, 2010 (41) Finland 0.55 0.53, 0.58 0.77 0.75, 0.79 0.77 0.75, 0.79 NA

Xu, 2010 (47) China NA NA 0.71 NA 0.73 NA NA

Xu, 2010 (47) China NA NA 0.63 NA 0.66 NA NA

de Miguel-Yanes,
2011 (27)

United States 0.63 0.61, 0.66 0.90 0.89, 0.92 0.91 0.89, 0.92 0.01

Hivert, 2011 (48) United States NA NA 0.63 NA 0.63 NA 0.34

Cauchi, 2012 (49) Morocco and Tunisia 0.60 NA 0.64 NA 0.67 NA 0.004

Janipalli, 2012 (42) India 0.63 0.62, 0.65 0.96 0.95, 0.97 0.96 0.96, 0.97 0.001

Abbreviations: AUC, area under the curve; CI, confidence interval; GWA, genome-wide association; NA, not available; T2DM, type 2 diabetes

mellitus.
a Risk prediction model based on genetic variants identified and/or confirmed in GWA studies of T2DM.
b Risk prediction model based on conventional risk factors of T2DM (e.g., age, sex, body mass index (weight (kg)/height (m)2), family history of

diabetes).
c Risk prediction model based on both genetic variants identified or confirmed in GWA studies of T2DM and conventional risk factors of T2DM.
d P value for difference between the AUC for type 2 diabetes with a conventional risk factor–based model and with a combined model,

indicating the incremental value when adding GWAmarkers into the conventional risk factor–based model.
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T2DM risk among younger individuals who have not yet
developed conventional risk factors. This hypothesis was
tested recently among white and black adolescents (58) and
young adults (59); both studies found that GRMs did not
improve the predictive performance of T2DM compared with
assessment of clinical risk factors.

The predictive performance of genetic markers for T2DM
risk could be improved in future studies through several
approaches. First, simulation studies suggest that the cumu-
lative effect of a large number of common genetic variants
could lead to an increased AUC for complex disease predic-
tion (13, 14). According to mathematical modeling by Janssens
et al. (60), to increase the AUC of genetic profiling to 0.80
or greater, 400 genetic variants with minor allele frequencies
of 10% and odds ratios of the heterozygous genotypes for
each variant greater than 1.25 are needed. Currently identified
and/or confirmed GWA markers for T2DM are still limited,
and the majority of them have a modest association with
T2DM (odds ratios of heterozygous genotypes are less than
1.15 for most GWA markers); thus, it is not surprising that
the AUC values for T2DM did not vary substantially accord-

ing to the number of GWA markers (n ≤ 40) in this study.
Although it has been found that known GWA markers explain
only a limited proportion of the estimated genetic variation
for T2DM, which suggests the existence of “missing” herita-
bility (61), whether hundreds of common genetic variants for
T2DM will be identified through GWA studies is unknown.
Second, with the application of large-scale exon resequencing
and next-generation sequencing technologies (62), rare vari-
ants for T2DM are likely to be uncovered (63). An empirical
analysis suggested that the inclusion of rare variants might
have appreciable effects on disease risk prediction (64). How-
ever, whether adding rare variants will improve the predic-
tive performance for T2DM remains to be evaluated. Third,
whether the incorporation of additional susceptibility loci
discovered through novel liability methods (65) and obesity-
predisposing SNPs (66) will improve the predictive perfor-
mance for T2DM warrants further investigation.

It has been speculated that genetic profiling of GWAmarkers
might motivate people who carry the risk variants to change
their dietary and lifestyle habits that lead to T2DM (57); how-
ever, emerging evidence, although still limited, does not support
this notion (67). A recent observational study showed that
genome-wide profiling did not result in any measurable short-
term changes in diet or exercise behavior (68), although long-
term effects remain unknown. Moreover, a randomized trial
also showed that diabetes genetic risk counseling with currently
available variants does not significantly alter self-reported moti-
vation or prevention program adherence for overweight individ-
uals at risk for diabetes (67). Although it has been demonstrated
that broad, population-based lifestyle interventions are effective
at reducing the risk of T2DM in high-risk individuals (4),
whether personalized interventions based on individual genetic
backgrounds may increase the effectiveness warrants further
evaluation (69, 70).

It should be noted that the ideal statistical measure of the
incremental predictive performance of novel risk markers has
been controversial. Most previous studies about the effect of
GWA markers on T2DM risk prediction have focused on the
AUC, which has been regarded as a standard measure of
the effect of a new marker in risk prediction (71). However, the
AUC is relatively insensitive to change if a few risk factors
with strong associations with T2DM are already included in
the model (20, 71). In addition, statistical issues regarding
hypothesis testing of changes in AUCs have been docu-
mented (72–74). For example, under the null hypothesis, the
DeLong test (75), the widely used nonparametric test for eval-
uating incremental AUCs in prediction models, has an excep-
tionally conservative test size and much lower power than the
likelihood ratio and Wald tests (73). In addition, AUCs may
also lack applicability to an individual patient in a clinical set-
ting. As noted by Cook (76), a biomarker with an odds ratio
of 3 may have little effect on the AUC, yet an increased level
could shift an individual patient’s risk from 8% to 24%, leading
to different treatment recommendations. Recently, several new
measures have been proposed as alternatives to discrimina-
tion measures, including reclassification measures (e.g., NRI
and IDI) and decision-analytical measures (77). Among them,
the classical NRI, also called categorical NRI, is highly
dependent on the cutoff points of risk categories; thus, it is
not appropriate formeta-analysis. IDI is category free and seems

Table 3. Predictive Performance of GWAMarker–Based Genetic

Risk Models for T2DM by Study Characteristics in the Included

Studies

Study Characteristic
No. of
Studies

AUC

Median Range

Study design

Case-control 7 0.62 0.58–0.63

Cohort 9 0.60 0.55–0.68

Cross-sectional 3 0.57 0.55–0.59

No. of T2DM
cases

<1,000 9 0.57 0.55–0.68

1,000–1,999 4 0.61 0.59–0.63

≥2,000 6 0.60 0.58–0.63

Race/ethnicity

Caucasian 14 0.59 0.55–0.68

Asian 4 0.63 0.62–0.63

Arab-African 1 0.60

No. of variants

<10 2 0.57 0.56–0.58

10–19 13 0.60 0.55–0.68

≥20 4 0.59 0.55–0.63

Average age at
diagnosis of
T2DM, years

<50 5 0.62 0.55–0.68

≥50 10 0.60 0.55–0.63

Mixeda 3 0.59 0.55–0.63

Abbreviations: AUC, area under the receiver operating characteris-

tic curve; GWA, genome-wide association; T2DM, type 2 diabetes

mellitus.
a Indicates studies that had multiple groups of participants with

varying mean ages of below or above 50 years.
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Table 4. Reclassification of GWA Study–Derived Genetic Risk Variants for T2DM Added to Conventional Risk Factor–Based Models in the Included Studies

First Author, Year
(Reference No.)

Study
Location

Ethnic
Origin

Study Type
No. of

Variants
Conventional T2DM Risk Factors

Cutoff
Points, %a

NRI IDI

% P Value % P Value

Lyssenko, 2008 (15) Sweden Caucasian Cohort 11 Age, sex, BMIb, FH, FPG, BP, TG 10 and 20 4.5 2.5 × 10−5 NA 3.7 × 10−14

Finland Caucasian Cohort 11 Age, sex, BMI, FH, FPG, BP, TG, HDL-C,
waist circumference

10 and 20 8.79 0.13 NA 0.001

Lin, 2009 (36) Switzerland Caucasian Cross-
sectional

15 Age, BMI, FH, WHR, TG/HDL-C NA NA NA 1.2 0.0003

Schulze, 2009 (37) Germany Caucasian Cohort 20 German Diabetes Risk Scorec, FPG,
HbA1c, TG, HDL-C, GGT, ALT

NA NA NA 0.34 NA

Talmud, 2010 (40) United
Kingdom

Caucasian Cohort 20 Cambridge Diabetes Risk Scored 5, 10, and
15

4.6 0.17 NA NA

Talmud, 2010 (40) United
Kingdom

Caucasian Cohort 20 Framingham Offspring Study T2DM Risk
Scoree

5, 10, and
15

−3.2 0.35 NA NA

de Miguel-Yanes,
2011 (27)

United States Caucasian Cohort 40 Age, sex, BMI, FH, FPG, SBP, HDL-C, TG 2 and 8 4.3 0.004 NA NA

Hivert, 2011 (48) United States Mixed Cohort 34 Age, sex, ethnic background, treatment
arm, and waist circumference

NA NA NA −0.007 0.10

Abbreviations: ALT, alanine transaminase; BMI, body mass index; BP, blood pressure; FH, family history of diabetes; FPG, fasting plasma glucose; GGT, γ-glutamyltransferase; GWA,

genome-wide association; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; IDI, integrated discrimination improvement; NA, not applicable or not available; NRI, net

reclassification improvement; T2DM, type 2 diabetes mellitus; TG, triglycerides; WHR, waist-hip ratio.
a Predefined cutoff point for reclassification based on the likelihood of developing T2DM.
b Calculated as weight (kg)/height (m)2.
c The German Diabetes Risk Score includes age, waist circumference, height, history of hypertension, physical activity, smoking, and consumption of red meat, whole-grain bread, coffee,

and alcohol.
d The Cambridge Diabetes Risk Score includes age, sex, drug treatment, FH, BMI, and smoking status.
e The Framingham Offspring Study Type 2 Diabetes Risk Score includes age, sex, parental history of T2DM, BMI, HDL-C, TG, and FPG.
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to be a promising complement to the AUC; however, a recent
study showed that current methods for hypothesis testing with
the IDI are invalid (78). Other novel measures, such as the con-
tinuous NRI (79) and the net benefit plotted by the “decision
curves” (80), have not yet widely been used in practice. Thus,
an empirical evaluation of the utility of these novel measures
for assessing the incremental predictive performance of GWA
markers in T2DM prediction is warranted.

Some limitations should be acknowledged. First, current
GRMs are based on common SNPs, which represent only part
of the genetic variation in the human genome (81). Whether
the addition of rare SNPs and other genetic variants, such as
copy number variations, which account for more than 12%
of the assembled human genome sequence (82), will improve
the predictive performance for risk of T2DM remains unan-
swered. It should be noted that a recent GWA study showed
that common copy number variants that can be genotyped
on existing platforms are unlikely to contribute substantially
to the genetic basis of T2DM, and most of them are well
tagged by SNPs (83). Second, most of the available studies
were performed among Caucasians and Asians. Whether
these results can be generalized to other ethnic groups war-
rants further investigation. Third, the role of gene-environment
interactions in the prediction of T2DM was not addressed in
this review because of limited available data. Both genetic and
environmental factors (e.g., diet, lifestyle) and their complex
interactions are implicated in the development of T2DM
(5, 6), and available evidence suggests that individuals with
higher genetic susceptibility of T2DMmay benefit more from
dietary and lifestyle changes. For instance, in the US Health
Professionals Follow-up Study, the positive association between
the Western dietary pattern and the risk of T2DM was more
pronounced among men with a higher genetic risk score (≥12)
than in those with a lower score (84). Moreover, the Diabetes
Prevention Program suggested that lifestyle intervention might
mitigate the elevated risk of T2DM conferred by variants of
the TCF7L2 gene (85). However, a recent study showed that the
inclusion of gene-environment interactions was unlikely to dra-
matically improve risk prediction for several types of complex
diseases, including T2DM (86).

In summary, GRMs showed a relatively low predictive per-
formance for T2DM risk regardless of study design, sample
size, participants’ race/ethnicity (i.e., Caucasian, Asian), and
the number of genetic markers included. Moreover, the addi-
tion of GWA markers to CRMs produced a minor improve-
ment in predictive performance. Therefore, although the
identification of GWA markers could help improve our under-
standing of the pathophysiology of T2DM, its clinical utility
in improving the prediction of T2DM beyond that of con-
ventional risk factors may be limited. Further investigation
of the predictive performance of the genetic factors and their
interactions with environmental factors is warranted.
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