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Abstract

Non-contact and low-cost measurements of heart and respiration rates are highly desirable for telemedicine. Here, we
describe a novel technique to extract blood volume pulse and respiratory wave from a single channel images captured by a
video camera for both day and night conditions. The principle of our technique is to uncover the temporal dynamics of
heart beat and breathing rate through delay-coordinate transformation and independent component analysis-based
deconstruction of the single channel images. Our method further achieves robust elimination of false positives via applying
ratio-variation probability distributions filtering approaches. Moreover, it enables a much needed low-cost means for
preventing sudden infant death syndrome in new born infants and detecting stroke and heart attack in elderly population
in home environments. This noncontact-based method can also be applied to a variety of animal model organisms for
biomedical research.
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Introduction

The accurate measurement and monitoring of physiological

parameters, including blood volume pulse (BVP), heart rate (HR),

respiratory wave (RW), and respiration rate (RR), plays an

important role in a wide variety of applications in healthcare,

psycho-physiological (polygraph) examinations, sports training,

and laboratory animal research [1–4]. Dynamic changes in

physiological parameters can reveal changes in the physiological

status and function of a patient or laboratory animals [4]. In

addition, since apnea (abrupt stopping of respiration) and

bradycardia (rapid decrease of heart rate) are parts of the final

pathway resulting sudden infant death syndrome (SIDS), the most

devastating cause of death in infants [5,6], monitoring dynamic

changes of physiological parameters is also important for neonatal

care in home environments.

Traditional techniques for the measurement of physiological

parameters require sensors to be attached to a subject, such as

electrocardiogram (ECG), pulse oximetry, piezoelectric transduc-

er, respiratory-effort belt transducer, and so on. These kinds of

contact-based methods may cause undesirable skin irritation,

discomfort and soreness to the subject to be measured, especially

for neonate [7,8]. In particular, it may be undesirable to affix

sensors to patients during sleep studies (when they may influence a

subject’s sleep patterns) or during sports training (when they may

adversely influence an athlete’s mobility). In some cases, contact-

based measurements have also been shown to influence the

underlying physiological parameters being measured. Currently,

Laser Doppler [9], Microwave Doppler Radar [10], Ultra-

Wideband Radar [11,12] and Thermal Imaging [13] have been

investigated for the contact-free measurement of physiological

parameters with varying success; however, all of these systems

require expensive and specialized hardware. As a result, there is a

great interest in low-cost and convenient non-contact methods of

measuring and monitoring physiological signals.

Recent advances in video technology and machine vision

technology [14–16] have allowed camera/camcorders to become

an indispensable part of both telemedicine/telehealthcare and

laboratory animal research. These cameras have been used for

object detection, fall detection and posture recognition in elderly

healthcare [17,18], dermatology diagnosis in teledermatology

[19,20], or behavior studies in animal research [1–3,21,22]. The

ability to measure physiological parameters, including HR and

RR, using a video camera has been recently reported [23–27].

Though attractive in principle, many of these methods accomplish

noise reduction using linear filters, which are ineffective in the

event that background noise falls within the same frequency band

as the physiological signal of interest. Others have proposed using

blind source separation for noise removal (Poh, et al.) [28,29]. Yet,

blind source separation methods require a multi-channel signal

input, restricting its applicability to process signals collected using

a camera which must provide a multi-channel signal (such as a

color camera that generates a Red, Green, and Blue multiple-

channel signal). As a result, these methods cannot be used to

determine physiological parameters in conditions when ambient

light is insufficient to permit the use of a color camera, such as in a
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darkened room or at night when patients or animals need to sleep.

Moreover, blind source separation does not provide a critical

method to distinguish false positives from actual results. As such, it

will frequently generate false physiological parameters when an

inanimate object, such as a drawing or picture of a human face, is

imaged. These limitations would greatly hamper the application of

blind source separation methods in many healthcare situations

(during the night when the monitoring is most needed), as it

cannot reliably indicate a loss of vital signs in a subject (i.e. sudden

death in infants during the neonatal care period at home).

Therefore, we set out to develop a novel method capable of

non-contact measuring one or more physiological parameters,

including blood volume pulse, heart rate, respiratory wave, and

respiration rate, in a subject, particularly at night. Moreover, we

set a stringent criterion that such a method should be capable of

distinguishing false positives from actual results. In this paper, we

describe this novel method to extract heart rate and respiratory

rate from single channel images, based on a combination of

images-based technologies and a non-linear dynamical systems

framework. We also explain how to use the ratio-variation PDs for

removing false signals. The applications to humans and several

animal models are also presented.

Materials and Methods

Ethics statement
Measurement on humans was approved by the Research Ethics

Board at BanNa Biomedical Research Institute (BBRI) and all

participants provide their written informed consent to participate

in this study. All animal work described in the study was

conducted in accordance with the National Institutes of Health

guidelines, and approved by the Institutional Animal Care and

Use Committee of Georgia Regents University.

System set-up
The image acquisition device is a near-IR enhanced camera

(Aptina Imaging Corporation models MT9V024) that is sensitive

to light in the visible and near infrared region (between about 400–

1,000 nm). Indoor ambient light and a near infrared light emitting

diode (LED, 830 nm) served as a source of illumination for

daytime and nighttime measurements, respectively. The images

are captured in a single channel (8 bits, 0–255) at regular time

intervals by a PC (T7500, Dell) over a period of time between

three seconds and several minutes. Typically, the distance between

camera and subjects is 0.5–3.0 m.

Reconstruction of the dynamic system
The physiological signals of interest in this paper are the

cardiovascular pulse, which is also called the blood volume pulse

(BVP), and respiratory wave (RW). The changes of blood volume

during the cardiac cycle modify the amount of light absorption in

the blood vessel, and thus modulating the reflection amount of the

illumination source. The body surface movements caused by

respiration modify the path length of the illumination light, and

the subsequent changes of the reflected light indicate the timing of

respiration events. By capturing the images with camera, the

image sensors collect the reflected light signal along with noise due

to artifacts. As a result, the corresponding variations in brightness

of the skin area and the chest/abdomen area where moved due to

breathing indicate the cardiovascular events and respiratory

events, respectively. Thus, a single observed signal for each

physiological signal to be measured can be formed over time from

a series of captured images.

The cardiovascular and cardiorespiratory autonomic system is

dynamic in nature. The dynamics of the system are similar to

those of other deterministic systems showing chaotic properties

[30], which have irregular periodicities as well as an exquisite

sensitivity to the initial conditions. To describe the nonlinear

dynamics, the state space needs to be reconstructed based on the

time-delay embedding theorem [31–33], which establishes that it

is possible to reconstruct a state space that is equivalent to the

original (unobservable) state space composed of all the dynamic

variables from only a single observed signal.

Let ts be the sampling time of observation that is equal to the

reciprocal of frame rate of the image acquisition device fs. The

lag/delay vector can be written as follows:

X (t): xt,xtzt,xtz2t,:::,xtz m{1ð Þt
� �

ð1Þ

where t = dts is the time delay, m is the embedding dimension. A

minimal requirement is that m must be as large as the dimension

of the attractor of the system.

An embedding matrix can be constructed out of a number of

consecutive delay vectors as follows:

X~

xt xtzt
::: xtznt

xtzt xtz2t
::: xtz nz1ð Þt

: : :

: : :

: : :

xtz m{1ð Þt xtzmt
::: xtz mzn{1ð Þt

2
666666664

3
777777775

ð2Þ

In practice, the number of delay vectors n is determined by the

length of the observed signal to be analyzed; however, the number

of delay vectors must be at least as large as one physiological

signal.

Physiological signal separation
The embedding matrix contains the physiological information

in a mixed form which therefore needs to be deconstructed. ICA is

utilized to perform on the embedding matrix to uncover the

underlying source signals in the embedding matrix. ICA assumes

that the observed signal is a linear mixture of the underlying

source signals that can be expressed as

X~AY ð3Þ

where Y is an m6n matrix containing the independent source

signals, A is the m6m mixing matrix, X is an m6n matrix

containing the observed signals, which denotes the embedding

matrix herein. The aim of ICA is to find a separating or de-mixing

matrix W such that

Y
^

~WX ð4Þ

is an estimate of the vector Y containing the underlying source

signals.

Any suitable ICA algorithm may be utilized [34–39]. In this

paper, Fast ICA is used because of both its ease and high speed of

implementation [37–39]. Fast ICA attempts to obtain W by

maximize the non-Gaussianity nature of each source. In practice,

the fast iterative methods are undertaken to get projections that

maximize the Kurtosis (fourth order cumulate).
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False signal identification
When an inanimate object, such as a drawing/picture of a

human face or a human being absence of vital signs, is imaged, the

signal recovered from images is a false signal, which needs to be

identified so as not to generate false positive.

The ratio-variation PDs are the probability distributions of the

variation of peak power density ratio for the source signal before

and after smooth filtering, where the peak power density ratio is

the ratio of highest to total power within the power spectrum of the

source signal. The total power in here was calculated by adding up

the power within the frequency range of 0,8 Hz. The variation of

the peak power density ratio is defined as follows:

v~D
highest power

total power

� �
before

{
highest power

total power

� �
after

D

,
highest power

total power

� �
before

ð5Þ

A living being suggests the existence of a dominant peak in the

power spectrum of the source signal that corresponds to the

dominancy of the periodic rhythm of physiological signal within a

short time window. Meanwhile, there is no generator underlying

the observed signal when imaging an inanimate object, thus the

source signal consists of random noise with wideband power

spectrum. It is conceivable that the variation of peak power density

ratio before and after smooth filtering for the true signals should be

much smaller than for the false signals. Therefore, it can be

Figure 1. Remotely obtain physiological parameters from single channel images. Different colors of the rounded rectangles in the figure
denote the procedure of different subjects. (A) A series of video frames of the upper body of a human subject recorded at night over a period of time
(t0–tn). The rectangle superimposed on the subject’s face indicates the region of interest for cardiovascular pulse measurement. The rectangle
superimposed on the subject’s chest indicates the region of interest for respiratory measurement. (B) The observed time series for cardiovascular
pulse measurement (left) and respiratory measurement (right). (C) The separated source signals (independent components (ICs), IC1, IC2, and IC3) for
cardiovascular pulse measurement (left) and respiratory measurement (right). (D) The recovered blood volume pulse (left) and respiratory wave
(right). (E) A plot showing the frequency of the blood volume pulse (left) and respiratory wave (right). Written consent from all individuals whose
photos are in figures 1 had been obtained.
doi:10.1371/journal.pone.0071384.g001

Figure 2. Bland-Altman plots comparing the values obtained for physiological parameters of interest using the presented methods
to values obtained using a contact reference method in nighttime and daytime, respectively. The solid horizontal line indicates the mean
for the data set; the dotted lines indicate the mean 61.96 standard deviations. (A) HR of the subject imaged in night conditions. (B) RR of the subject
imaged in night conditions. (C) HR of the subject imaged in daytime. (D) RR of the subject imaged in daytime.
doi:10.1371/journal.pone.0071384.g002

Remote Measurements of Heart and Respiration Rates

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e71384



supposed that ratio-variation PDs of real and false subjects are

distinguishable.

The ratio-variation PDs of live human subjects and inanimate

human-shaped figures were estimated from a set of measurements,

respectively. Then, the source signal can be identified as true or

false according to which ratio-variation PDs of these two

distributions is bigger. Photographs of humans in magazines,

drawings of a human face and animated characters were used as

fake figures.

Measurement methodology
The general strategy employed for data collection and analysis is

generally described in Figure 1. First, subjects were continuous

filmed to obtain a series of images over time. Next, the images

were analyzed to identify two regions of interest (ROIs) within the

image series: one ROI used to determine blood volume pulse and

heart rate and a second ROI used to determine respiratory wave

and respiration rate (Figure 1A). The ROI can be manually or

automatically identified within the images. When the subject to be

measured is a human being, we utilize face and upper body

detector provided by OpenCV library to automatically find the

face and upper body positions of the subject. The detector used by

OpenCV is based on Haar cascade classifiers presented by Paul

Viloa and Michael Jones [14], as well as Lienhart and Maydt [15].

In our application, the upper body detector is utilized to detect the

upper body within the images. The detected regions are then

passed on to the face detector to detect faces. We select the center

80% height and 60% width of the face region returned by the

detector to be the ROI for cardiovascular pulse measurement, and

the area between the bottom of face region and upper body region

with a width equal to 80% of the width of upper body region as the

ROI for respiratory wave measurement.

Either output channels of the camera can be chosen for

physiological signal recovery. Considering the fact that hemoglo-

bin absorptivity is highest in green/yellow light, the Green channel

should be a better choice. A measurement point for each

physiological signal is obtained from each image within the series

of images by spatially averaging the brightness of the pixels from

green channel in the ROI. The average brightness obtained for

each ROI in a series of images over time are then combined to

yield a single observed time series x(t) (Figure 1B). The obtained

single observed time series is detrended using the smoothness prior

approach [40], where suitable detrending parameters l can be

selected in view of the frequency characteristic and sampling rate

of the physiological parameter being measured, and then

normalized as x
0

tð Þ~ x(t){mð Þ=s, where m and s are the mean

and standard deviation of x(t), respectively.

Using the delay reconstruction, the normalized observed time

series were then constructing an embedding matrix with a delay of

d = 1 and m = 3. Fast independent component analysis (ICA) was

then performed to decompose embedding matrix into three

independent source signals (Figure 1C). The separated component

whose power spectrum contained the highest ratio of peak to total

energy was then selected to obtain a value for the physiological

parameter of interest.

The selected source signal was smoothed using a moving

average filter to obtain cardiovascular pulse wave and respiratory

wave (Figure 1D). Three-layer autocorrelation was then performed

to reduce the residual noise. Finally, a fast Fourier transform (FFT)

was performed on the selected source signal to obtain the

frequency spectrum of each physiological signal. The frequency

of physiological parameters was designated as the frequency that

corresponded to the highest power of the spectrum (Figure 1E).

Figure 3. Dynamic measurement of both HR and RR. (A) A plot of HR measured in a subject as a function of time. (B) A plot of RR measured in a
subject as a function of time. In both cases, physiological parameters were measured in a subject following moderate exercise.
doi:10.1371/journal.pone.0071384.g003

Figure 4. The ratio-variation PDs. Blue points: the ratio-variation
PDs of real subjects. Red points: the ratio-variation PDs of inanimate
subjects.
doi:10.1371/journal.pone.0071384.g004
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The false signal can subsequently be removed using the ratio-

variation PDs of live human subjects and inanimate human-

shaped figures according to which of them is bigger.

Experiment description
Fifteen subjects (7 males, 8 females) with different races and skin

color (Caucasians, African Americans, and Asians) between ages of

27–50 years participated in the experiments. Indoor ambient light

and a near-infrared LED (830 nm) served as a source of

illumination for the daytime and nighttime tests, respectively.

Subjects were seated in front of a night vision camera (model

MT9V024 available from Aptina Imaging Corporation) at a

distance of approximately 1 m to restrict their upper body within

the visual field of the camera. Subjects were continuously filmed

for a period of three minutes at 15 frames per second (fps) with a

pixel resolution of 6406480 and saved in AVI format. During

image capture, subjects were instructed to face the camera,

remaining seated, and breathe normally. Subjects were allowed to

move naturally within a small range, such as looking up/down,

nodding, tilting the head or making some facial expressions, but to

avoid quick or large motions. Real-time human data acquisition

and processing were realized by software written in Visual C++.

During the period of image capture, electrocardiography (ECG)

and respiratory signals were collected using an OmniPlexH data

acquisition system (Plexon, Inc.) via ECG limb electrodes and

polyvinylidene difluoride (PVDF) sensor at a sampling rate of

1 kHz, respectively. During the measurement, subjects kept

wearing limb electrodes (positive electrode on the left arm and

negative electrode on the right foot) to measure the ECG signal,

and the PVDF sensor was put under the subject’s nose to measure

airflow from noise breathing. The ECG and respiratory signals

were recorded using Plexon Sort Client software provided by

Plexon Inc.

In addition, one of the participants first performed moderate

exercise (50 push-ups), and then was seated in front of the camera

at a distance of approximately 1 m to restrict their upper body

within the visual angle of camera. The subject was continuously

filmed for a period of five minutes to measure the dynamic

Figure 5. Examples of false signals recognition. (A) Take a Simpsons cartoon character as an example. (B) The observed time series of the
Simpsons cartoon is decomposed to extract (C) the source signal and (D) its power spectrum. (E) The smoothed source signal and (F) its power
spectrum. (G) Another example is the Mona Lisa painting. (H) The observed time series of the Mona Lisa painting is decomposed to extract (I) the
source signal and (J) its power spectrum. (K) The smoothed source signal and (L) its power spectrum.
doi:10.1371/journal.pone.0071384.g005
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changes of heart rate and respiration rate. During image capture,

the subject was instructed to face the camera, remaining seated,

and breathe normally. During the period of image capture,

electrocardiography (ECG) and respiratory signals were also

collected using an OmniPlexH data acquisition system (Plexon,

Inc.) at a sampling rate of 1 kHz.

Figure 6. Measurement results for different kinds of subjects. (A) Thirty seconds video of a one-month old infant was recorded at 30fps when
he was sleeping. The face area and shoulder area are selected as the ROI for cardiovascular pulse measurement and respiration measurement,
respectively (Figure 7A). In the spectrum of the BVP signal (Figure 7H), a clear peak at 2.15 Hz corresponds to the HR of 129 bpm. In the spectrum of
the breath wave signal (Figure 7I), an obvious peak at 0.73 Hz corresponds to the RR of 44 breaths/min. Written consent from the child’s parents had
been obtained. (B) A high speed camera (Stingray F-033B/C with 80fps) was used to capture images of a mouse at rest over a period of about
10 seconds. Figure 8 demonstrates the procedure of recovering the HR and RR of a mouse from a single channel images. The measurement result of
RR is 230 breaths/min and the measurement result of HR is 686 bpm. (C) For measuring adult zebrafish (roy/roy; alb/alb), we used tricaine to slightly
anesthetize before the images were captured at 15 fps over a period of about 30 seconds in length. The ROI for cardiovascular pulse measurement
and respiration measurement is the heart area and gilles area, respectively (Figure 9A). The measurement result for HR is 78 bpm and for RR is 102
breaths/min (for signal plot, see Figure 9). (D) The face area and abdomen area of the pig are chosen as the ROI for cardiovascular pulse measurement
and respiration measurement, respectively (Figure 10A). The measurement results of HR and RR are 64 bpm and 19 breaths/min, respectively (for
signal plot, see Figure 10). (E) A video of Phelps before 200 M butterfly competition downloaded from YouTube (http://www.youtube.com/
watch?v = ftHlLqamWlM). The recovered HR from 3 seconds time period selected from the video is 49 bpm. (F) Post-race interview of Michael Phelps
(after his 200 Fly meet) downloaded from YouTube (http://www.youtube.com/watch?v = HHy7QKEV310). The interview video was recorded at 29 fps
with pixel resolution of 12806720. Two time periods both about 3 seconds in length were selected from the video to recover the HR of Phelps
(Figure 11). The time interval between two time periods is within one minute. The measurement results of HR for the first and second time periods
are 123bpm and 126bpm, respectively. The RR was also extracted from the video over a period of about 7 seconds. The measurement result of RR is
28 breaths/min (for signal plot, see Figure 12). Reprinted from [43] under a CC BY license, with permission from [Longhorn Network], original
copyright [2012].
doi:10.1371/journal.pone.0071384.g006
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Measurement of heart rates in mice
A high speed camera (Stingray F-033B/C with 80fps) was used

to capture images of a mouse at rest (after running around for

about five minutes) over a period of about 10 seconds. The mouse

was C57BL6/J mice, and aged 6 months. The ambient light was

used as the only source of illumination. During the period of image

capture, ECG of the mouse was recorded simultaneously using an

OmniPlexH data acquisition system (Plexon, Inc.) via a single pair

of insulated electrode wires, which were placed subcutaneously

from the back of the neck to the chest. The tips of electrode wires

were welded to small stainless springs and then tied to chest

muscles. The positive electrode was placed in the lower left part of

the chest, and the negative electrode was placed in the upper right

side of the chest. The electrode wires were then connected to the

OmniPlexH data acquisition system, where ECG signals (filtered at

0.7–300 Hz, digitized at 5 kHz) were recorded using Plexon Sort

Client software.

Measurement of heart rate in zebrafish
Adult zebrafish (roy/roy; alb/alb) were anesthetized using

tricaine (MS-222) at 750uM for about 3 seconds, and then the

images were captured at 15 fps over a period of about 30 seconds

in length. The ambient light was used as illumination source.

Statistical analysis
Comparison of the presented method to the referenced method

was performed using Bland-Altman analysis [41]. The differences

between measurements made via image analysis and measure-

ments made using an OmniPlexH data acquisition system (Plexon,

Inc.) were plotted against the averages of both systems (Fig. 2). We

summarized the degree of agreement by calculating the mean

difference �dd and the standard deviation (SD) of the differences,

95% confidence interval (61.96 SD), the root mean square error

(RMSE), correlation coefficients and the corresponding p-values.

Kolmogorov-Smirnov test [42] was used to estimate the ratio-

variation PDs of live human subjects and inanimate human-

shaped figures from a set of measurements. Moreover, the false

positive rate was calculated as the total number of cases in which

an inanimate human-shaped object was incorrectly identified as a

human subject divided by the total number of inanimate human-

shaped objects measured. The false negative rate was calculated as

the total number of cases in which a human subject was incorrectly

Figure 7. Measurement of neonate. (A) The rectangle superimposed on the neonatal face indicates the ROI for cardiovascular pulse
measurement. The rectangle superimposed on the neonatal shoulder indicates the ROI for respiratory measurement. 30 seconds observed time
series for cardiovascular pulse measurement (B) and respiratory measurement (C). The separated source signals for cardiovascular pulse measurement
(D) and respiratory measurement (E). The recovered blood volume pulse (F) and respiratory wave (G). The spectrums of the blood volume pulse (H)
and respiratory wave (I). Written consent from the child’s parents had been obtained.
doi:10.1371/journal.pone.0071384.g007
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identified as an inanimate human-shaped object divided by the

total number of human subjects measured.

Results

Simultaneous measurement of HR and RR in both
daylight and night conditions

An example of extracting HR and RR from image sequences of

a subject captured at 15 frames per second (fps) with a pixel

resolution of 6406480 was illustrated (Figure 1). The Open

Computer Vision (OpenCV) library was utilized to automatically

identify the region of interest (ROI) for each physiological

parameter. The ROIs are outlined by rectangles (Figure 1A).

The average brightness in the ROI was calculated for each frame

to form a single observed time series over time from recorded

frames (Figure 1B). The processing time window was half a minute

long. The observed time series was then detrended using a

smoothness priors approach [40]. The detrending parameters

l = 20 and l = 300 were selected for cardiovascular pulse

measurement and respiratory measurement, respectively. Each

observed time series was then normalized.

Using the delay reconstruction, the normalized observed time

series were then constructed using an embedding matrix with a

delay of d = 1 and embedding dimension of m = 3. Fast ICA was

then performed to decompose embedding matrix into three

independent source signals (Figure 1C). The separated component

whose power spectrum contained the highest ratio of peak to total

energy was then selected for further analysis. The selected source

signal was smoothed using a moving average filter (five-point for

cardiovascular pulse and thirteen-point for respiration) to obtain

cardiovascular pulse wave and respiratory wave (Figure 1D).

Three-layer autocorrelation and fast Fourier transform (FFT) were

performed on the selected source signal to obtain the frequency

spectrum. The frequency of physiological parameters was desig-

nated as the frequency that corresponded to the highest power of

the spectrum (Figure 1E).

The degree of agreement between 95 pairs of measurements for

HR and RR from 15 subjects, measured by the method described

above and by an OmniPlexH data acquisition system (Plexon,

Inc.), was determined by Bland-Altman analysis [41]. The

differences between measurements made via image analysis and

measurements made using a reference system were plotted against

the averages of both systems (Figure 2). For night measurement,

the mean difference �dd for HR was 20.54 bpm with 95%

confidence interval 26.56 to 5.48 bpm (Figure 2A), the root

mean square error (RMSE) was 3.13 bpm and the correlation

Figure 8. Measurement of a mouse. (A) The triangle and rectangle superimposed on the mouse indicate the ROI for cardiovascular pulse
measurement and respiratory measurement, respectively. 10 seconds observed time series for cardiovascular pulse measurement (B) and respiratory
measurement (C). The separated source signals for cardiovascular pulse measurement (D) and respiratory measurement (E). The recovered blood
volume pulse (F) and respiratory wave (G). The spectrums of the blood volume pulse (H) and respiratory wave (I).
doi:10.1371/journal.pone.0071384.g008
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coefficient r was 0.96 (p,0.001). For night measurement of the

RR, the mean difference �dd was 0.01 breaths/min with 95%

confidence interval 21.12 to 1.13 breaths/min (Figure 2B), the

root mean square error (RMSE) was 0.06 breaths/min and the

correlation coefficient r was 0.99 (p,0.001). For daytime

measurements, the mean difference �dd for HR was 0.68 bpm with

95% confidence interval 24.18 to 5.54bpm (Figure 2C), the root

mean square error (RMSE) was 3.10 bpm and the correlation

coefficient r was 0.95 (p,0.001). For daytime measurements of the

respiratory rate, the mean difference �dd was 20.02 breaths/min

with 95% confidence interval 21.69 to 1.65 breaths/min

(Figure 2D), the root mean square error (RMSE) was 0.09

breaths/min and the correlation coefficient r was 0.98 (p,0.001).

Dynamic measurement of HR and RR in a subject
Some participants first performed moderate exercise, and then

were seated in front of a night vision camera to be continuously

filmed for a period of five minutes. Following image capture, the

images were analyzed, as described in the previous section, to

obtain values for HR and RR. These values were compared to the

reference values for both HR and RR obtained using the

OmniPlexH data acquisition system. Both HR and RR gradually

decrease over time. The curves for both HR over time (Figure 3A)

and RR over time (Figure 3B) produced by image analysis closely

matched values measured by the reference method throughout the

test. The correlation coefficient was r = 0.995 for both HR and

RR. The RMSE for HR and RR were 0.15 and 0.06 respectively.

Elimination of false signals
To assess the ability of our method to distinguish between live

human beings and inanimate human-shaped objects, both human

subjects and inanimate human-shaped figures were imaged as

described above. 1000 measurements were made from the

captured images, with half of the measurements being obtained

from imagery of live human subjects and half of the measurements

being obtained from imagery of inanimate human-shaped figures.

Photographs of humans in magazines, drawings of a human face

and animated characters were used as fake figures.

The ratio-variation PDs of live human subjects and inanimate

human-shaped figures were estimated from 500 measurements of

them, respectively. Kolmogorov-Smirnov test was performed to

verify that true signals are in accord with Gamma distribution with

parameter a = 1.5335 and b = 0.0599, and the probability density

Figure 9. Measurement of a zebrafish. (A) The rose and hyacinthine rectangle superimposed on the zebrafish indicate the ROI for cardiovascular
pulse measurement and respiratory measurement, respectively. 30 seconds observed time series for cardiovascular pulse measurement (B) and
respiratory measurement (C). The separated source signals for cardiovascular pulse measurement (D) and respiratory measurement (E). The recovered
blood volume pulse (F) and respiratory wave (G). The spectrums of the blood volume pulse (H) and respiratory wave (I).
doi:10.1371/journal.pone.0071384.g009
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function (pdf) is given by

fT nð Þ~ 1

0:0133 C 1:5335ð Þ n
0:5335e

{ n
0:0599 ð6Þ

where n represents the variation of peak power density ratio for the

source signal before and after smooth filtering.

Meanwhile, the false signals satisfy with Gaussian distribution

with mean mo = 0.4905 and standard deviation so = 0.1434, and

the pdf is given by

fF nð Þ~ 1

0:3595
e
{

n{0:4905ð Þ2
0:0411 ð7Þ

It can be found that the ratio-variation PDs of real and false

subjects are distinguishable (Figure 4). Examples of false signals

recognition are shown (Figure 5). Take a Simpsons cartoon

character as an example (Figure 5A to F), the variation of peak

power density ratio is n = 0.49. According to Eq. (6) and (7),

fT(n = 0.49) = 0.016 is smaller than fF(n = 0.49) = 2.78, thus the

Simpsons character is correctly recognized as an inanimate

subject. Another example is the Mona Lisa painting (Figure 5G

to L), the variation of peak power density ratio is n = 0.72.

According to Eq. (6) and (7), fT(n = 0.72) = 4.24e–4 is much smaller

than fF(n = 0.72) = 0.77. As a result, the Mona Lisa can be

identified as an inanimate figure.

To evaluate the false positive and false negative rates, other

1000 measurements were made, with half of the measurements

being obtained from imagery of live human subjects and half of the

measurements being obtained from imagery of inanimate human-

shaped figures. Overall, the false positive rate was found to be

9.8%, and the false negative rate was found to be 6.5%.

We utilized the sum of the probability of three successive

measurements (ten seconds in length, taken 5 s apart) to improve

the false rate. The artifacts were rejected by comparing the

accumulate probability of the real and false subjects. If the

accumulate probability of the false cases exceeds that of the true

cases, the subject would be recognized as an inanimate subject,

and vice verses. After using this criterion, the false positive rate was

found to decrease substantially to 2.3%, and the false negative rate

was found to decrease to 0.9%.

Utility on animals and internet videos
We applied this methodology under a wide variety of situations

and the results are shown (Figure 6, for signal processing plot, see

Figure 7, 8, 9, 10, 11, 12). For measuring infant (one-month old)

Figure 10. Measurement of a pig. (A) The rose and hyacinthine rectangle superimposed on the pig indicate the ROI for cardiovascular pulse
measurement and respiratory measurement, respectively. 30 seconds observed time series for cardiovascular pulse measurement (B) and respiratory
measurement (C). The separated source signals for cardiovascular pulse measurement (D) and respiratory measurement (E). The recovered blood
volume pulse (F) and respiratory wave (G). The spectrums of the blood volume pulse (H) and respiratory wave (I).
doi:10.1371/journal.pone.0071384.g010
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(Figure 6A), we can recover the HR and RR of neonate from a

series of images from an infant in sleep. The camera was set above

his crib and the ambient light was used as the only source of

illumination. For obtaining physiological signs from mice in our

laboratory (Figure 6B), we used a high speed camera (Stingray F-

033B/C with 80fps) to capture images of a mouse at rest (after

running around about 5 minutes) over a period of about

10 seconds. Again, only ambient light was used as the illumination

source. We found that for measuring HR, the ROI should be the

mouse tail and the posterior end of the body. This is because the

whole body of the mouse moves as a consequence of respiration

which produces very strong signals as such that the BVP signal is

lost within it. We highpass filtered (5.8 Hz) the single observed

time series formed in ROI of BVP. The HR results measured by

the images and by an OmniPlexH data acquisition system are

almost the same values. For zebra fish and pigs (Figure 6C and D),

we analyzed the images captured at 15 fps over a period of about

30 seconds in length. The cardiovascular pulse measurements

from the zebra fish and the pig were 78 bpm and 64 bpm,

respectively. In addition, we can also apply our method to a video

clip on TV or the internet (i.e. interviews of Michael Phelps after

his swimming competition) to obtain vital signs (Figure 6E).

Discussion

In this present study, we report, for the first time, a novel

method for rapid and remote measurement of HR and RR in both

day and night conditions. A key feature is that an embedding

matrix is taken as a basic description of the cardiovascular and

cardiorespiratory autonomic system. The embedding matrix is

constructed from a series of delay vectors taken from the observed

signal. Judging from the statistical measurements (Table 1), we can

achieve high degrees of agreement between values obtained by our

method and the reference method even in the presence of motion

artifacts. A limitation is that the temporal resolution of the

observed time series recorded by camera is not very high due to

Figure 11. Extracting HR from Michael Phelps video obtained from YouTube. All the red curves correspond to the first time period, and all
the purple curves correspond to the second time period. The rectangles superimposed on his chest indicate the ROI for the first time period (A) and
the second time period (B). 3 seconds observed time series from the first time period (C) and the second time period (D). The separated source
signals for the first time period (E) and the second time period (F). The recovered blood volume pulses for the first time period (G) and the second
time period (H). The spectrum of the blood volume pulses for the first time period (I) and the second time period (J). Reprinted from [43] under a CC
BY license, with permission from [Longhorn Network], original copyright [2012].
doi:10.1371/journal.pone.0071384.g011
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the low frame rate of the conventional commercially available

camera (usually between 15–30fps). Nonetheless, the results

obtained in this study have verified the accuracy and effectiveness

of this method to extract physiological parameters from a single

channel image under such constraint. It is conceivable that various

high-speed cameras can be used for more specialized situations.

Moreover, due to the fact that hemoglobin absorptivity in the

IR band is significantly less than that in the visible band (especially

for green/yellow wavelength), the IR light provides much lower

sensitivity to blood pulsation than ambient light does. Since the

auto gain control (AGC) function in most of the conventional

cameras (which effectively raises the brightness of the image if the

subject becomes darker, and reduces the brightness vice versa)

would decrease the dynamics of the signal, we found that switching

off the AGC function during nighttime measurement could

improve the signal to noise ratio (SNR). As such, the nighttime

measurement exhibited a more reliable agreement with the

reference method (HR �dd~{0:54+3:07and RR
�dd~0:68+2:48). These are comparable with the accuracy

achieved by daytime measurement (HR �dd~0:01+0:57 and RR
�dd~{0:02+0:85).

Although the results demonstrated that our approach can tell

false from true, the error rate was not completely satisfactory. The

errors were caused by the crossover between the pdfs of the real

and inanimate subjects due to random noise. To address this issue,

we utilized the sum of the probability of three successive

measurements (ten seconds in length, taken 5 s apart) to reject

the artifacts by comparing the accumulate probability of the real

and false subjects. After using this criterion, the false positive rate

was found to decrease substantially to 2.3%, and the false negative

rate was found to decrease to 0.9%.

With these approaches, we have shown that it is possible to

remotely extract physiological signals from only a single channel

images recorded by a camera using dynamic embedding technique

followed by ICA. The accuracy and effectiveness of the presented

method in detecting vital signs and removing false signals can be

achieved in a robust manner. Therefore, the presented method

can rapidly indicate changes or a sudden loss of vital signs in an

individual, by reliably removing false positive as well as false

negative. We believe that this novel, real-time measurement

method may have broad applications for remote measurement of

vital signs on laboratory animals for biomedical research, or

ecological research on wild and endangered animal species.

Furthermore, in coupling with emergent sophisticated human

action recognition algorithm [16], our method may enable a

crucial and low-cost means for early-preventing SIDS in new born

infants at home or for detecting stroke or heart attacks in elderly

patients at home or nursing homes.
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Figure 12. Extracting RR from Michael Phelps post-race interview video obtained from YouTube (http://www.youtube.com/
watch?v = HHy7QKEV310). (A) the rectangle superimposed on his chest indicates the ROI. (B) 7 seconds observed time series for respiratory
measurement. (C) the separated source signals for respiratory measurement. (D) the recovered breath wave. (E) the frequency of the breath wave.
Reprinted from [43] under a CC BY license, with permission from [Longhorn Network], original copyright [2012].
doi:10.1371/journal.pone.0071384.g012

Table 1. Bland-Altman results of HR and RR measurements
using presented method and reference method.

Statistic parameters HR (bpm) RR (breaths/min)

Daytime Nighttime Daytime Nighttime

Measurement pairs 95 95 95 95

Mean difference 0.68 20.54 20.02 0.01

Standard deviation of
difference

2.48 3.07 0.85 0.57

Upper limit 5.54 5.48 1.65 1.12

Lower limit 24.18 26.56 21.69 21.13

RMSE 3.10 3.13 0.09 0.06

Correlation
coefficient

0.95 0.96 0.98 0.99

doi:10.1371/journal.pone.0071384.t001
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