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Abstract

Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally,
biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated
using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a
preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and
empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular
cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159
trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root
biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from
the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values
measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error
distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR
for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate
stand biomass estimates, especially for stands dominated by smaller trees.
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Introduction

Accurate estimates of the belowground carbon stocks of forests

are critically important for effectively evaluating how climatic

change will influence global carbon dynamics [1]. Coarse roots,

comprised of the larger, structural roots that provide support for

the aboveground biomass, account for most of total belowground

biomass carbon in forest ecosystems [2,3,4,5,6,7]. Traditionally,

belowground forest carbon stocks are estimated from forest

inventories and allometric scaling relationships between the trunk

diameter and coarse root biomass of a tree [8,9,10]. Because of the

difficulty associated with excavating the entire root systems of

trees, local, site-based allometric equations are uncommon, and

estimates are often extrapolated from compositionally or structur-

ally similar sites [8].

The relationship between tree diameter and biomass is highly

conserved, with idealized trees exhibiting a power-law relationship

[11]. Usually, the relationship is described using a two-parameter

power function to fit allometric relationships between stem

diameter and coarse root biomass as [2,12,13,14,15,16,17]:

Y~aX b ð1Þ

where Y is coarse root biomass (kg), X usually is diameter at breast

height (DBH, cm), a and b are fitted parameters known as the

allometric coefficient and allometric exponent, respectively.

Logarithmic transformations are used routinely to fit allometric

equations, resulting in a linear model:

logY~logazblogX ð2Þ

Log-transformation thus simplifies parameter estimation because

simple linear regression procedures can be used.

The use of log-transformation has recently been criticized in a

variety of applications by Packard and colleagues [18,19,20,

21,22]. Packard et al. point out that log-transformed models

predict the geometric mean for the response variable instead of

arithmetic mean. While arithmetic mean estimates can be

obtained from log-transformed models using mathematically

simple correction factors [23], Packard et al. claim that log-

transformation inherently distorts the relationship between vari-

ables and they recommend that allometric analyses should be

performed on the arithmetic scale via nonlinear regression.

The choice between linear regression on log-transformed data

(hereafter, LR) or nonlinear regression on original data (hereafter,

NLR) depends on the distribution of statistical error [24]. NLR

fitted to the original data by least squares invokes a statistical

model with normally distributed and additive error [24,25,26]:
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Y~aXbze,e*N(0,s2) ð3Þ

In contrast, LR fitted to logarithmic transformations of the data

by least squares invokes an underlying model with multiplicative

log-normally distributed error:

Y~aX bee,e*N(0,s2) ð4Þ

In cases where the error is approximately multiplicative

(lognormal), LR should be used, while NLR should be applied

to those data sets with additive normal error [24]. Violation of

statistical assumptions of error can lead to biased point estimates as

well as inaccurate confidence intervals. Despite its importance in

statistical model fitting, error distributions commonly have been

omitted from discussions about best practices for fitting allometric

equations to biomass data.

Of course, the choice between the two approaches should take

the objective of the study into account, as well as the underlying

statistical assumptions. One of the most important applications of

allometric biomass equations is to convert forest inventory data

into stand-level biomass estimates [8]. In general, small values for

the response variable have much greater influence on LR

parameter estimates, whereas large values for the response variable

have much greater influence on NLR, because allometric

relationships usually exhibit increasing error variance at larger

magnitudes (heteroscedasticity) [21,22,27,28,29,30]. As a result, in

the context of diameter-biomass allometries, NLR may be a better

predictor for the biomass of large trees, while LR is likely to be

superior for small trees [21,22,31,32]. In the natural forests, large

trees often dominate stand biomass estimates, so NLR should be

considered for the estimation of stand-level biomass. Here, we

compare LR and NLR models of the allometry between coarse

root biomass and diameter and evaluate how the different fitting

approaches affect estimates of stand-level belowground biomass.

First, we determine the biomass of coarse root (diame-

ter.2 mm) of 159 trees of three dominant species in a typical

subtropical evergreen broad-leaved forest in east China, based on

whole-tree excavation. Second, we evaluate the appropriateness of

LR and NLR allometric models based on the error distributions in

the tree excavation data. Finally, we compare estimates of stand-

level belowground biomass from the two allometric models in two

different contexts. Locally, we use census data for a nearby 24-ha

subtropical forest dynamics plot to contrast LR and NLR estimates

in stands dominated by the measured species. Then, to examine

how inappropriate models impact biomass estimates when

extrapolating to a more remote system, we compare the accuracy

of our LR and NLR predictions using known coarse root biomass

values for trees from a distant tropical forest.

Materials and Methods

Study area
The excavation and forest dynamics studies were conducted in

Gutianshan forest area (29u159N, 118u079E), Kaihua County,

Zhejiang Province in east China. The site is characterized by

subtropical monsoon climate, with a mean annual temperature of

15.3uC and the mean annual precipitation of 1964 mm. The

substrate consists mainly of granite. The dominant soils can be

classified into four types: red soil, red-yellow soil, yellow-red soil

and marsh soil. The dominant vegetation type in the Gutianshan is

subtropical evergreen broad-leaved forest dominated by Castanopsis

spp.

No specific permits were required for the described field studies

in and outside of Gutianshan forest area. The area is owned and

managed by the state and its government and the location

including the site for our sampling are not privately-owned or

protected in any way. The field studies did not involve any

endangered or protected species in this area.

Data collection
We selected 159 sample trees from three dominant species

(Castanopsis eyrei, Schima superba, Pinus massoniana,) with DBH ranging

from 1.1 to 56.5 cm (Table 1 and Appendix S1) and excavated

their root systems in the study area in 2008. The DBH of each

sampled tree was measured and recorded before being removed by

motor chain saw. A back-hoe excavator was then used for whole

root system extraction, exercising care to retain lateral roots. They

were washed using water and brushes, then weighed after oven-

drying at 85uC to constant weight for 7 d or more. The weight of

lateral roots that broke off during excavation was approximated

using intact lateral roots. The approximation involved measuring

Table 1. Characteristics of the 159 sample trees.

Species No.trees DBH (cm)

Mean Range

Castanopsis eyrei 41 20.2 1.1–40.3

Schima superba 60 17.0 1.2–38.3

Pinus massoniana 58 20.3 1.3–56.5

doi:10.1371/journal.pone.0077007.t001

Table 2. Comparison of two methods for fitting the power-law allometric relationship between stem diameter and coarse roots
biomass for three dominant species and mixed species in subtropical evergreen broad-leaved forest in east China.

Species LR NLR

AICc a (95% CI) b (95% CI) CF AICc a (95% CI) b (95% CI)

Castanopsis eyrei 285.1 0.064 (0.046, 0.089) 2.15 (2.03, 2.26) 1.06 348.8 0.462 (0.072, 0.852) 1.57 (1.33, 1.82)

Schima superba 420.1 0.051 (0.036, 0.070) 2.32 (2.19, 2.44) 1.09 586.3 0.213 (20.056, 0.482) 1.91 (1.54, 2.28)

Pinus massoniana 338.2 0.009(0.007, 0.012) 2.69(2.60,2.79) 1.05 547.9 0.303 (0.054, 0.552) 1.70 (1.48, 1.92)

Mixed species 1147.9 0.031(0.024, 0.040) 2.38 (2.29, 2.48) 1.15 1530.7 0.487 (0.212, 0.763) 1.59 (1.43, 1.75)

doi:10.1371/journal.pone.0077007.t002
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the diameter at the point of breakage, removing a randomly

selected intact lateral root from the same tree at an equivalent

diameter, and adding the weight of this section to the measured

weight for the entire root system.

Statistical analysis and model selection
We used likelihood analysis to compare the appropriateness of

the two error models (additive and multiplicative error) for each of

the three species separately, as well as for 159 sample trees

combined, following the method of Xiao et al.[24]. For each

species and mixed-species data set, we first fit the power-law

models using LR and NLR, respectively, to estimate the

parameters a, b, and s2 for each model. We then calculated the

likelihood that the data are generated from a normal distribution

with additive error:

Lnorm~P
n

i~1
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and the likelihood that the data are generated from a lognormal

distribution with multiplicative error,

Llogn~P
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where n is sample size. To select between models, the Akaike

information criterion (AICc) for each model was then computed

as:

AICc~2k{2 log (L)z 2k(kz1)
n{k{1

ð7Þ

where k is the number of parameters (three in both models) and L

is the corresponding likelihood [33]. If AICc-norm –AICc-

logn,22, the assumption of normal error (i.e., NLR) is favored,

whereas AICc-norm –AICc-logn.2 indicates that lognormal error

(and thus LR) is more reasonable. If |AICc-norm –AICc-logn|

#2, neither assumption is favored and model averaging is

suggested [24].

Local stand-level belowground biomass estimates
We compared stand level model estimates for LR and NLR

using survey data from the Gutianshan forest dynamics plot [34].

In December 2004, a permanent plot covering 24-ha

(4006600 m, horizontal distance) was established within the

evergreen broad-leaved forest in Gutianshan [35]. The plot was

established and data were collected following the plot standards of

the Center for Tropical Forest Science network [36]. The first tree

census was completed in 2005. All woody stems $1 cm DBH were

mapped, measured, identified, and tagged. Approximately

140,000 individuals $1 cm DBH, belonging to 49 families, 103

genera and 159 species were surveyed, including 26 shrub species,

70 under-story tree species and 63 canopy tree species [35].

Although only three species-specific allometric equations

(Castanopsis eyrei, Schima superba, Pinus massoniana) were available

for our plot, these three species accounted for about 63.3% of the

total basal area, and approximately 2/3 of the total aboveground

biomass [34]. Thus, if biomass partitioning in forest ecosystem is

isometric, as hypothesized [37,38], these three species should also

contribute a similar proportion of the total belowground biomass.

The range of diameters present in the study plot encompassed

those used to estimate the allometric equations. We used the

species-specific models to estimate the belowground biomass for

each individual tree of the three dominant species, then used the

mixed-species allometric equations to estimate the contribution of

each individual tree in all of the remaining species. To make all

estimates comparable arithmetic means, we multiplied all of the

LR estimates by a correction factor, CF = exp(SEE2/2), where

SEE is the standard error of the estimate [23,39]. Stand level

belowground biomass was then estimated by summation of all

individual trees in the plot. To explore how differences between

the two models depend on local scale heterogeneity in forest

structure, we also subdivided the 24-ha plot into 96, 50 m650 m

(0.25 ha), subplots and conducted separate belowground biomass

estimates for each subplot.

Comparison to remote biomass estimates
Belowground biomass equations are often applied to distant but

structurally similar forests because local excavation data are rare

and difficult or impossible to obtain. To evaluate the impacts of

extrapolating inappropriate models in this way, we compared

NLR and LR estimates of belowground biomass to known values

for 107 destructively sampled trees from the Pasoh Forest Reserve,

Negeri Sembilan, Peninsular Malaysia (2u599 N, 102u 189 E) (Data

are available from Niiyama et al. 2010 in Journal of Tropical Ecology

[17]). This primary tropical lowland forest differs substantially

from the subtropical Gutianshan forest, though both are evergreen

and share similar average annual precipitation levels (Pasoh:

2000 mm/y, Gutianshan: 1964 mm/y). The sampled trees were

drawn from 73 species (55 genera) and ranged from 0.4 to 116 cm

DBH exceeding the range of the data collected in our study. Using

the mixed-species LR and NLR models from the current

Gutianshan study, we compared predicted belowground biomass

values to the actual, measured values from Pasoh. Since allometric

equations are most frequently used to estimate stand biomass, we

examined not only the predictions for each individual tree, but also

for their sum.

All calculations in this paper were conducted using R statistical

language[40].

Results

The assumption of multiplicative lognormal error was strongly

supported for each of the three individual species models as well as

the mixed-species model. Likelihood analysis of the error structure

yielded lower AICc for the LR models compared to NLR (Table 2);

DAICc values (the difference in AICc between the two models)

were large (C.eyrei = 63.7, S.superba = 166.2, P.massoniana = 209.7,

mixed-species = 382.8). Residual plots also supported the lognor-

mal assumption (see Appendix S2). Plotted against DBH, residuals

for the log-transformed model were more homoscedastic across

orders of magnitude in diameter (see Appendix S2).Thus, at least

for the Gutianshan data, LR should be favored over NLR to fit

diameter-root biomass scaling models. While the fit of the LR and

Figure 1. An illustration of NLR (black line) and LR (red line) to fit power-law allometric relationship of diameter-root biomass on
both arithmetic (A,C,E.G) and logarithmic scales (B,D,F,H) for three species and mixed species (A,B for Castanopsis eyrei, C and D for
Schima superba, E and F for Pinus massoniana, G and H for mixed species).
doi:10.1371/journal.pone.0077007.g001
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NLR models appear fairly comparable on an arithmetic scale, on a

log-scale, the NLR models show a consistent bias, overestimating

(often substantially) the coarse root biomass of smaller trees

(Fig. 1).This bias resulted from the fact that the allometric

exponents (b values) estimated by NLR were smaller than those

derived from LR, and the NLR allometric coefficients (a values)

were substantially larger (Table 2).Visualizing the relationship on

both arithmetic and log-scales also reinforced the fact that even

though absolute deviations in coarse root biomass were largest for

the large trees, the proportional deviations are relatively constant

across orders of magnitude in DBH (Fig. 1), which is consistent

with the likelihood analysis favoring the lognormal error model.

The additive, normal error model yielded unrealistically shallow

scaling exponents, because the NLR fit was overly sensitive to the

absolute residuals of the largest trees. In contrast, the linear model

fitted to log-transformed data (the lognormal error model) is

clearly superior for describing coarse root biomass over the full

Figure 2. Comparison of estimated belowground biomass based on two types of allometric equations from LR and NLR in
Gutianshan 24-ha plot. Error bars show 95% confidence intervals based on 10000 bootstraps over 50650-m subplots.
doi:10.1371/journal.pone.0077007.g002

Figure 3. The relationship between estimation bias and tree density and mean DBH over 50650-m subplots in Gutianshan 24-ha
plot. The estimation bias is the percentage overestimate of the NLR coarse root biomass model, compared to the LR model estimate.
doi:10.1371/journal.pone.0077007.g003
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range of diameters for each species individually and for the mixed-

species (Fig.1).

When applied to estimate stand-level belowground biomass of

the 24-ha Gutianshan plot, the stand-level belowground biomass

estimate based on the NLR models was 28% larger than that of

the LR models (86.20 61.87 Mg ha-1 vs. 67.1862.27 Mg ha-1,

respectively, Fig. 2). The estimates of the two models were similar

for trees with DBH .20 cm (48.8062.84 Mg ha-1for NLR vs.

44.6062.57 Mg ha-1for LR, Fig. 2), but for smaller individuals

(DBH #20 cm), NLR estimate were 2.3 times higher than LR

(41.6062.32 Mg ha-1 for NLR vs. 18.3960.93 for LR, Fig. 2).

Across the 96 0.25 ha subplots, we found that the NLR model

could overestimate local belowground biomass by up to 116%,

with an average overestimate of 43%. Moreover, the magnitude of

the bias was positively correlated with tree density (n = 96,

r = 0.76,p,0.0001) and negatively correlated with mean DBH of

subplots (n = 96, r = 20.68, p,0.0001, Fig. 3). Thus, the fact that

NLR substantially overestimated the coarse root biomass of small

trees can strongly bias stand-level belowground biomass estimates,

even though large trees contribute a large fraction of stand

biomass. These biases result in especially substantial errors in

forests dominated by small trees (e.g., young, regenerating stands).

The same biased overestimate of coarse root biomass occurs

when the models are extrapolated to predict the known biomass

values from the tropical forest of Pasoh Forest Reserve. The NLR

model systematically overestimated the coarse root biomass of

small trees, even though many small trees in the Pasoh dataset

appear to have relatively large root systems (Fig.4). Interestingly,

the NLR model also systematically underestimated the coarse root

biomass of the largest trees, perhaps because the parameter

estimates were overly sensitive to the particular properties of large

trees of the Gutianshan data (Fig. 4). As a result, when summed

over all of the trees, the NLR model estimate of total coarse root

biomass for all 107 trees (4351.6 kg) was 48% lower than the

actual measured total (8322.7 kg). In contrast, the LR model

estimates fit the Pasoh data remarkably well, given the environ-

mental and taxonomic differences between the two forests (Fig.4),

and the total coarse root biomass estimate (7638.6 kg including the

correction factor) was within 9% of the actual value. Thus, the bias

introduced by erroneously using NLR to parameterize a locally

calibrated allometric model will be maintained or exacerbated by

extrapolating the model into a new environment.

Discussion

Our likelihood analysis shows that data on the scaling of coarse

root biomass and diameter in trees support a multiplicative,

lognormal error model, as is typically found in studies of allometry

Figure 4. Comparison of LR (red line) and NLR (black line) models parameterized with the Gutianshan data when extrapolated to
predict known coarse root biomass values from the Pasoh Forest Reserve (circles).
doi:10.1371/journal.pone.0077007.g004
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[41,42]. Using nonlinear regression with these data on an

arithmetic scale yields residuals that are strongly heteroscedastic,

exhibiting increasing variation with increasing diameter, as

observed in many other studies [8]. Therefore, our results are

consistent with previous suggestions that multiplicative log-normal

error is the norm for allometric relationships in biology

[24,25,26,43,44] and demonstrates the utility of likelihood

methods for selecting the appropriate error model.

The recent spate of publications criticizing log-transformation

and recommending NLR [18,19,20,21,22,45] are all based on the

assumption that the arithmetic scale is somehow more natural and

that additive variation should be the default standard for

parameter estimation. The use of nonlinear model fitting in

biomass estimation is also facilitated by the availability of easy-to-

use advanced statistical packages [46,47,48,49]. But as we have

shown, NLR parameter estimates are highly sensitive to the largest

observations, because large trees display substantially larger

absolute variation in root biomass on an arithmetic scale. Log-

transformation works for these data precisely because the

proportional variation in coarse root biomass is relatively constant

across orders of magnitude in tree diameter. With validated

statistical methods in place to choose among the different error

models, the time for blanket criticism (or defense) of log-

transformation is clearly past.

Two ecological factors may in fact compound the bias of NLR

root biomass models. First, the development of the root systems of

the large trees may be limited by environmental condition and

competition [50,51]. For example, in our study, root biomass

shows a tendency to level off for the largest individuals, especially

in Pinus massoniana (Fig.1F). Since NLR parameter estimates are

overly sensitive to large individuals, the resulting exponent is much

too shallow. Second, stand level biomass estimates depend not

only on the underlying scaling model, but also on stand structure.

And although smaller trees may contribute a relatively small

proportion of total biomass in forests, the NLR bias will be

magnified by the right-skewed size distribution of most forest

stands, in which there are many more small saplings than large

trees [52,53,54,55]. Thus, as we found here, the NLR models

substantially overestimate stand-level biomass in forests that

contain many small trees, as would be found early in regeneration

or succession. But finding support for these traditional allometric

methods has implications well beyond statistical arguments about

the mathematical effects of log-transformation and model selection

procedures.

Allometric scaling models are one of the key techniques for the

estimation of forest carbon stocks, and accurate estimates require

careful model development and calibration. If researchers were to

follow the advice of Packard et al., and erroneously use NLR-

based allometric models, the resulting estimates of the contribution

of coarse roots to belowground carbon stock could exhibit

systematic errors average 43%, even more than 115%. Easily

avoidable biases of this magnitude should concern researchers

seeking to estimate local carbon budgets. But more importantly,

compounded over national or even heterogeneous continental

regions, these errors could bias calculations of both the costs and

benefits of climate change mitigation strategies that take into

account reforestation and reductions in deforestation, such as

REDD+ [56,57]. These policy concerns are critically important

and should not be influenced by misguided statistical debate.
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