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During calcium (Ca2+) signaling, decoding the stimulus-
response coupling involves a set of Ca2+ sensor proteins or
Ca2+-binding proteins (DeFalco et al., 2010a; Kudla et al.,
2010). These proteins usually possess one or more classical
helix-loop-helix elongation factor (EF) hand motifs. Three
major types of Ca2+-sensor proteins in plants are cal-
modulin (CaM)/CaM-like proteins, calcium-dependent
protein kinases (CDPKs), and calcineurin B-like proteins.
As compared with animals, plant genomes encode more
diversified Ca2+ sensors; with the exception of canonic
CaM, all other types of Ca2+ sensors (CaM-like pro-
teins, CDPKs, and calcineurin B-like proteins) are plant
specific. The large population and unique structural
composition of Ca2+-binding proteins and the diversity
of the target proteins regulated by the Ca2+ sensors
reflect the complexity of Ca2+ signaling, which helps
plants adapt to the changing environment. This update
will be limited primarily to discussions on CaM and
CaM-binding proteins and the recent advances in
Ca2+/CaM-mediated signaling.

CaM is a conserved Ca2+-binding protein found in
all eukaryotes. The discovery of CaM can be traced
back to the 1970s. An activator of cyclic nucleotide
phosphodiesterase was shown to be involved in the
regulation of cAMP concentration, which was stimu-
lated by Ca2+ (Kakiuchi and Yamazaki, 1970; Cheung,
1971). The activator was found to bind Ca2+ and was
eventually named “calmodulin,” an abbreviation of
Ca2+-modulated protein. Since its discovery over 40 years
ago, CaM has been regarded as a model Ca2+-binding
protein and has been subjected to intensive studies in

biochemistry, cell biology, and molecular biology be-
cause of its importance in almost all aspects of cellular
regulation (Poovaiah and Reddy, 1987, 1993; Bouche
et al., 2005; DeFalco et al., 2010a; Du et al., 2011; Reddy
et al., 2011b). Disruption or depletion of the single copy
of the CaM gene in yeast (Saccharomyces cerevisiae) results
in a recessive lethal mutation (Davis et al., 1986), sug-
gesting that CaM has a critical role in eukaryotic cells.

The structure of CaM has been well studied, and the
prototype of CaM found in all eukaryotes has 149 amino
acids with two globular domains, each containing two
EF hands connected by a long flexible helix (Meador
et al., 1993; Zhang et al., 1995; Yun et al., 2004; Ishida
et al., 2009). As more and more genomes are sequenced,
it is becoming clear that CaM belongs to a small gene
family in plants. In the model plant Arabidopsis (Arab-
idopsis thaliana), seven CaM genes encode for four highly
conserved isoforms (CaM1/4, CaM2/3/5, CaM6, and
CaM7) that differ in only one to five amino acid resi-
dues. Loss-of-function mutations of individual CaMs
indicate that the different CaMs may have overlapping
yet different functions. For example, a loss of function in
Arabidopsis AtCaM2 affects pollen germination (Landoni
et al., 2010). Phenotypic analysis showed that in normal
growth conditions, atcam2-2 plants were indistinguish-
able from the wild type, while genetic analysis showed a
reduced transmission of the atcam2-2 allele through the
male gametophyte, and in vitro pollen germination
revealed a reduced level of germination in comparison
with the wild type. However, the atcam3 knockout
mutant showed a clear reduction in thermotolerance
after heat treatment at 45°C for 50 min (Zhang et al.,
2009). Overexpression of AtCaM3 in either the atcam3
knockout or wild-type background significantly res-
cued or increased the thermotolerance, respectively.
Further analysis of individual CaM mutants under
different stress conditions should reveal more on the
functional significance of individual CaM genes.

STRATEGIES TO IDENTIFY
CaM-BINDING PROTEINS

CaM has no inherent catalytic activity, but its ac-
tivity is reflected in modulating the function of the
target proteins by physically interacting with them
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(Rhoads and Friedberg, 1997; Hoeflich and Ikura, 2002).
The CaM-binding domain (CaMBD)/motifs in the target
proteins are not conserved. However, the target peptides
usually form a basic amphipathic a-helix, which contains
hydrophobic residues on one side and basic residues on
the other side. The hydrophobic portion of the target
peptide is often held in the hydrophobic pocket of CaM to
anchor the target peptide, and the acidic clusters of CaM
then interact with the basic portion of the target peptide.
The remarkable flexibility of the central linker and the
exceptionally large numbers of Met residues in the hy-
drophobic pocket give CaM conformational plasticity to
adjust to a variety of target peptides (Ikura and Ames,
2006). However, the variation in the primary structure of
CaMBDs makes it very difficult to identify CaM targets
just based on the amino acid sequences of proteins.

Yeast hybrid systems, based on the reconstitution of
functional transcription factors, are the most commonly
used approaches to isolate interacting proteins. How-
ever, these approaches are not effective for obtaining
CaM-binding proteins, possibly because CaM does
not undergo Ca2+-induced conformational changes in
yeast cells under normal conditions. Coimmunoprecipitation
and purification with a CaM-Sepharose column are also
not very effective. So far, the majority of CaM-binding
proteins in plants have been identified by screening
complementary DNA (cDNA) expression libraries with
radiolabeled or biotinylated CaM. The most useful probe
is 35S-labeled CaM (Fromm and Chua, 1992; Reddy et al.,
1993; Yang and Poovaiah, 2000b), and a general scheme
for this strategy is shown in Figure 1. The cDNA ex-
pression libraries are grown on plates until the plaques
appear. The isopropyl b-D-1-thiogalactopyranoside-
absorbed nitrocellulose membranes are overlaid onto
the plaques to induce the expression of protein. Then,
those membranes are incubated with the labeled CaM.
The positive plaques are picked up and verified.

Screening cDNA libraries is easy and straightforward.
However, many false-positive clones can be picked up,
and researchers could miss the real targets because
eukaryotic proteins expressed in bacteria are often
misfolded. Popescu et al. (2007) developed a protein
microarray approach in which proteins expressed in
plants were purified and used to make protein chips.
The initial cost for preparing the protein chips with a
large collection is high, because each protein needs to
be expressed and purified from plants. However, once
the system is established, this could be used as a high-
throughput approach to find the targets for different
CaM isoforms in an entire genome (Fig. 1). So far, over
80 plant CaM-target proteins have been characterized
using these approaches. However, it is believed that
there are many more putative CaM-target proteins yet
to be discovered. The current estimate of CaM targets
in the Arabidopsis genome is about 500 (T. Yang and
B.W. Poovaiah, unpublished data). These target pro-
teins are involved in almost all aspects of plant growth
and development as well as in responses to abiotic and
biotic stresses. Table I summarizes the characterized
CaM-binding proteins and their CaM-binding motifs.

Recently, an mRNA display technique and a
CaM-modified nanowire transistor method have been
developed for isolating CaM-binding proteins in humans
(Shen et al., 2005; Lin et al., 2010). The mRNA display
technique to identify Ca2+/CaM-binding proteins is to
screen the mRNA-displayed proteome libraries with
biotinylated CaM. Covalent fusions between an mRNA
and the peptide or protein that it encodes can be gen-
erated by in vitro translation of synthetic mRNAs that
carry puromycin. The mRNA display provides a pow-
erful means for reading and amplifying a protein se-
quence after it has been selected from large libraries
(Shen et al., 2005). The CaM-modified nanowire tran-
sistor (biosensor) approach is to use a highly sensitive
and reusable silicon nanowire field-effect transistor for
the detection of protein-protein interactions (Fig. 1). The
reusable device is made possible by the reversible as-
sociation of glutathione S-transferase-tagged CaM with
a glutathione-modified transistor (Lin et al., 2010). The
minimum concentration of Ca2+ required to activate
CaM is 1 mM, and this sensitive nanowire transistor can
serve as a high-throughput biosensor and substitute for
immunoprecipitation methods used in the identification
of interacting proteins. These approaches will be useful
for the further identification and characterization of true
plant CaM-target proteins, especially those proteins
triggered by different stimuli.

Ca2+/CaM-MEDIATED REGULATION OF
PROTEIN PHOSPHORYLATION

Ca2+/CaM-stimulated phosphorylation in plants was
first observed in the 1980s (Veluthambi and Poovaiah,
1984), long before the cloning of the first CaM-binding
kinase from apple (Malus domestica; Watillon et al.,

Figure 1. Illustration of the three main approaches used to identify
CaM-binding proteins. IPTG, Isopropyl b-D-1-thiogalactopyranoside;
SINW-FET, silicon nanowire field-effect transmitter.
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1993). Plant CaM-binding kinases can be classified into
four distinct subgroups based on their structural fea-
tures (Fig. 2). The first subgroup is the CaM-binding
protein kinases similar to mammalian CaMK, such as
apple calmodulin-binding peptide 1, Nicotiana tobacum
Ca2+/calmodulin-dependent protein kinase, maize
Ca2+/calmodulin-dependent protein kinase, and Arabi-
dopsis calmodulin binding protein kinase 1 (AtCBK1) to
AtCBK3. These kinases are sometimes called CDPK-
related kinases (CRKs, also called CBKs) because they
carry a kinase domain in the N terminus and degen-
erated, nonfunctional EF hands in their C terminus
(Zhang et al., 2002; Zhang and Lu, 2003; Hua et al.,
2004; Wang et al., 2004). The second subgroup is Ca2+

and calcium/calmodulin-dependent protein kinases
(CCaMKs), found in most of the higher plants (Patil
et al., 1995). CCaMK is a plant-specific protein kinase
that carries a Ser/Thr kinase domain in the N-terminal

portion, a CaM-binding autoinhibitory domain, and a
visinin-like domain (VLD) with three distinct Ca2+-binding
EF hands in the C terminus. The third subgroup belongs
to receptor-like kinases (RLKs); hence, they are called
CaM-binding receptor-like kinases. Plant genomes carry
a relatively large RLK family that shares homology with
animal receptor kinases, with an extracellular domain, a
transmembrane domain, and a kinase domain. Some
RLKs from plants contain only a kinase domain and
thus are named receptor-like cytoplasmic kinases. Some
receptor-like cytoplasmic kinases, such as CRCK1 and
homologs (Yang et al., 2004), and RLKs, such as SRK,
CaM-binding receptor-like kinase, AtCaMRLK, AtCRLK1,
and BRI1, are CaM-binding proteins (Vanoosthuyse
et al., 2003; Charpenteau et al., 2004; Kim et al., 2009a;
DeFalco et al., 2010b; Yang et al., 2010; Oh et al., 2012).
Last but not least, some of the mitogen-activated
protein kinases (MAPKs), specifically members of

Table I. Plant CaM-binding proteins with defined CaMBDs

CaM-Binding Proteins References

Protein phosphorylation/dephosphorylation
Chimeric Ca2+/CaM-dependent protein kinase (CCaMK) Patil et al. (1995); Takezawa et al. (1996)
Diacylglycerol kinase (LeCBDGK) Snedden and Blumwald (2000)
NAD kinase (NAD2) Turner et al. (2004)
Cytoplasmic receptor-like kinase (CRCK1) Yang et al. (2004)
Nicotiana tobacum Ca2+/calmodulin-dependent protein

kinase 1 (NtCaMK1)
Ma et al. (2004)

PP2C-like phosphatase Takezawa (2003)
NPK phosphatase (NtMKP1) Yamakawa et al. (2004); Ishida et al. (2009)
Receptor-like kinase (CRLK1) Yang et al. (2010)

Nuclear proteins/transcription regulators
SRs/CaMTAs Yang and Poovaiah (2002a); Du et al. (2009)
AtBT Du and Poovaiah (2004)
Auxin-induced protein ZmSAUR1 Yang and Poovaiah (2000)
IQD1 Levy et al. (2005)
AtMYB2 Yoo et al. (2005)
CBP60g Wang et al. (2009)
AtGT2L Xi et al. (2012)
Nuclear protein PCBP Reddy et al. (2002)
WRKY group IId AtWRKY7 Park et al. (2005)
ASYMMETRIC LEAVES1 (AS1) Han et al. (2012)

Metabolism
Glu decarboxylase Baum et al. (1993, 1996)
Catalase Yang and Poovaiah (2002b)
FAD-dependent oxidoreductase, DWF1 Du and Poovaiah (2005)

Membrane proteins/ion channels/transporters
Disease resistance gene MLO Kim et al. (2002a, 2002b)
Cyclic nucleotide-gated cation channels (CNCG) Arazi et al. (1999); Kohler et al. (1999); Ali et al. (2007)
Vacuolar Ca2+-ATPase Malmstrom et al. (2000)
Endoplasmic reticulum Ca2+-ATPase Hong et al. (1999)
Plasma membrane Ca2+-ATPase** Chung et al. (2000)
AAA family CIP111 Zielinski (2002)
AAA+-ATPase AFG1L1 Bussemer et al. (2009)
Apyrase Hsieh et al. (2000); Steinebrunner et al. (2003)

Others
Kinesin-like protein Reddy et al. (1996); Wang et al. (1996)
Pollen-specific protein (MPCBP, NPG1) Safadi et al. (2000)
Chaperonin10 Yang and Poovaiah (2000c)
DRL1 Nelissen et al. (2003)
NADPH-dependent dehydrogenase Tic32 Chigri et al. (2006)
Ubiquitin-specific protease6 (AtUBP6) Moon et al. (2005)
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subgroup D of MAPK in Arabidopsis and rice (Oryza
sativa), were reported to be regulated by Ca2+/CaM
(Ding et al., 2009; Takahashi et al., 2011). Structural fea-
tures of CaM-regulated protein kinases are summarized
in Figure 2. Although the regulation of some of these
kinases by CaM remains to be confirmed, accumulated
evidence indicates that Ca2+-mediated signals could
regulate a broad range of physiological activities related
to plant growth, development, and responses to envi-
ronmental stimuli (Zhang et al., 2002; Vanoosthuyse
et al., 2003; Charpenteau et al., 2004; Hua et al., 2004; Liu
et al., 2008; Kim et al., 2009a; Yang et al., 2010; Oh et al.,
2012). Among all these CaM-regulated kinases, CCaMK
has been widely studied because of its role in symbioses,
developmental processes, and stress responses.

ROLE OF Ca2+/CaM-REGULATED KINASE IN
PLANT-MICROBE INTERACTIONS

Ca2+ spiking in the nucleus and perinuclear region of
root hair cells has been documented as one of the
earliest cellular responses after the perception of symbi-
onts by host plants (Ehrhardt et al., 1996; Wais et al.,
2000; Walker et al., 2000; Kosuta et al., 2008). Accumu-
lating results have revealed a common symbiotic path-
way composed of eight components, SYMRK/DMI2,
POLLUX/DMI1, CASTOR, NENA, NUP85, NUP133,
CCaMK, and CYCLOPS/IPD3, which are all required
for the normal establishment of both root nodulation
symbiosis (RNS) and arbuscular mycorrhizal symbiosis
(AMS; Singh and Parniske, 2012; Oldroyd, 2013).
CCaMK, which carries structural features enabling it
to interact with Ca2+ and Ca2+/CaM, acts as a decoder

of the encrypted Ca2+ signal (Levy et al., 2004; Mitra
et al., 2004). An activation mechanism of CCaMK is
proposed in the next section of this update (Fig. 3).
CCaMK was first identified and cloned in lily (Lilium
spp.), and biochemical studies on lily CCaMK showed
that its kinase activities are regulated by both Ca2+ and
Ca2+/CaM (Patil et al., 1995; Takezawa et al., 1996).
CCaMK alone is inactive, with little or no kinase
activity. Its autophosphorylation, predominantly at the
Thr-271 residue, is significantly stimulated when
Ca2+ levels increase (Takezawa et al., 1996). Autophos-
phorylation at this position drastically increases its
affinity for CaM, a phenomenon called CaM trapping
(Sathyanarayanan et al., 2000), and also increases its
substrate phosphorylation activity (Takezawa et al.,
1996). The kinase activities of CCaMK in leguminous
plants are closely related to its function in supporting
the establishment of RNS and AMS. Site mutations
T271A of MtCCaMK and T265I of LjCCaMK resulted
in deregulated and constitutive substrate phosphoryl-
ation activity and produced spontaneous nodulation
when used for the complementation of ccamk null
mutations in both Medicago truncatula and Lotus japo-
nicus (Ramachandiran et al., 1997; Gleason et al., 2006;
Tirichine et al., 2006). A recent study on L. japonicus
CCaMK indicated that Thr-265 in its native state inter-
acts with other amino acids along with the positively
charged Arg-317 in the CaMBD/autoinhibitory domain
(AID) region, and this interaction is disrupted when
Thr-265 is mutated to Ala or Ile (Shimoda et al., 2012).
Together with the aforementioned biochemical data,
this suggests that the native Thr-265 (Thr-271 in
M. truncatula) is critical in maintaining an ideal intra-
molecular interaction between the autoinhibitory do-
main and the kinase domain that keeps CCaMK inactive.
Changing the structure at this position through auto-
phosphorylation provides a regulatory mechanism for
the substrate phosphorylation capacity of CCaMK and
the associated physiological function in supporting plant-
microbe symbioses.

Very recently, Ser-337 in LjCCaMK (corresponding
to Ser-343 in MtCCaMK) and Ser-344 in MtCCaMK
(corresponding to Ser-338 in LjCCaMK) in the CaMBD
were reported to be novel autophosphorylation sites in
CCaMK (Liao et al., 2012). Phosphorylation at Ser-337
of LjCCaMK and Ser-344 of MtCCaMK both negatively
regulate their interaction with CaM and their kinase ac-
tivities. Furthermore, the phosphomimicking mutation of
Ser-337 of LjCCaMK and Ser-344 of MtCCaMK failed
to complement null mutants of CCaMK in both RNS
and AMS. These results indicate that autophosphor-
ylation at Ser-337 of LjCCaMK and Ser-344 of MtCCaMK
has negative regulatory functions in LjCCaMK and
MtCCaMK at both the biochemical and physiological
levels. Interestingly, the negative regulation through
the autophosphorylation of Ser-337 of LjCCaMK is
required for the proper progression and establishment
of both RNS and AMS (Liao et al., 2012; Routray et al.,
2013), but autophosphorylation at Ser-344 acts solely
as a negative control to switch off the activated

Figure 2. Schematic presentation of the domain structure of
Ca2+/CaM-regulated protein kinases. One example of each class of
CaM-regulated kinases, MtCCaMK (UniProt Q6RET7), AtCBK3/AtCRK1
(UniProt O80673), AtCRCK1 (UniProt Q9FIL7), AtCRLK1 (UniProt
Q9FIU5), and AtMPK8 (UniProt Q9LM33), is presented. The kinase
domain is in blue, CaMBD is in red, functional EF hands are in bright
purple and degenerated EF hands are in light purple, the transmem-
brane domain is in light brown, and the yellow bar in MAPK8 repre-
sents the conserved TDY motif recognized and phosphorylated by
MAPK kinases. CaMBDs in the MAPK D subgroup, including MPK8,
are not currently resolved.
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MtCCaMK (Routray et al., 2013), implying a complex
regulation of CCaMK through autophosphorylation.
The well-characterized CaMKII, the closest homolog

of CCaMK in animals, also has several autophos-
phorylation sites in its autoinhibitory/CaMBD, and its
activities are delicately regulated through differential
autophosphorylation at different sites (Hanson and
Schulman, 1992). Similar to CCaMK, phosphorylation
of CaMKII at its autophosphorylation sites in the
CaMBD also interferes with its interaction with CaM
and negatively regulates its kinase activity (Colbran
and Soderling, 1990; Hanson and Schulman, 1992). A
high sequence homology of 79% between CaMKII and
CCaMK around the CaM/autoinhibitory region (Colbran
and Soderling, 1990; Patil et al., 1995), the presence of
autophosphorylation sites in both of the kinases, and
their similar impact on CaM-binding properties indicate
that CCaMK could be inactivated in a similar way to
CaMKII, and this hypothesis has now been confirmed
(Liao et al., 2012; Routray et al., 2013). Although CCaMK
is very similar to CaMKII, especially in its kinase domain
and CaMBD/AID region, CCaMK is drastically different

from its cousin in the C terminus and acquired the ability
to receive Ca2+ signals using both the CaMBD and the
Ca2+-binding VLD. Hence, it is not surprising to see that
its mode of activation is different from that of CaMKII.

Although CCaMK was reported to be a major regu-
lator of plant-microbe symbioses, evidence also suggests
that CCaMK is involved in other aspects of plant life.
Tobacco (Nicotiana tabacum) CCaMK was indicated to
play a role in controlling the development of anther
(Poovaiah et al., 1999), and pea (Pisum sativum) CCaMK
was up-regulated in roots in response to low temperature
and salt treatment (Pandey et al., 2002). Recent results
showed that CCaMK from maize (Zea mays; ZmCCaMK)
and rice (OsCCaMK) both play important roles in abscisic
acid-induced antioxidant protection (Ma et al., 2012; Shi
et al., 2012). Together, these results suggest that CCaMK
acts as a multifunctional regulatory protein in plants.

PROPOSED ACTIVATION MECHANISM OF CCaMK

Based on published data, we propose an activation
mechanism of CCaMK (Fig. 3). The first EF hand of

Figure 3. A, Schematic diagram of MtCCaMK showing the domain structure and autophosphorylation sites. B, Activation of
CCaMK by Ca2+ and Ca2+/CaM. State 1, CCaMK most likely with Ca2+ loaded in the first EF hand. CCaMK is inactive in this
state. State 2, CCaMK loaded with Ca2+ in its three EF hands in the VLD. Because of the Ca2+-induced changes in the tertiary
structure of CCaMK, the kinase is active and Thr-271 is ready for autophosphorylation. State 3, Thr-271 is autophosphorylated
and CCaMK shows a dramatic increase in its affinity for CaM, a phenomenon called CaM trapping. State 4, Ca2+ and Ca2+/CaM-loaded
CCaMK. The kinase is fully active and should be able to phosphorylate substrates as well as CCaMK itself. As long as the
CCaMK is bound by Ca2+/CaM, it should remain active. State 5, Ser-343 and/or Ser-344 are phosphorylated, CCaMK can no
longer interact with CaM, and its kinase activity is also turned off, whether the Ca2+ concentration is high enough to load in its
EF hands. Mycorrhizal and Nod factor-induced Ca2+ spikings (bottom left corner: mycorrhizal is at top and Nod factor is at
bottom) are adapted from Kosuta et al. (2008).
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CCaMK has a very high affinity for Ca2+ (Swainsbury
et al., 2012). Hence, in the resting condition, it is likely
that CCaMK is loaded with Ca2+ in its EF1 site, and at
least one of the other two sites must be unloaded to
keep CCaMK responsive to Ca2+ spiking. It could also
be postulated that in the resting condition (state 1), the
CaMBD/AID interacts with the kinase activity center
and keeps the kinase at an inactive or low-activity status
(Takezawa et al., 1996). The hydrogen bond-based inter-
action between Thr-271 and Arg-323 is predicted to be
critical for maintaining this intramolecular interaction to
seal the kinase activity of CCaMK under this condition
(Shimoda et al., 2012). Alteration in the status of Thr-271
or changes in the Ca2+-loading status of VLD could break
this inhibition of the kinase activity. Ca2+ binding to the
three EF hands in the VLD induces a change in the ter-
tiary structure of CCaMK, activates its kinase activity,
and also makes the Thr-271 accessible for autophos-
phorylation (state 2, transient and active, may phos-
phorylate substrates; Sathyanarayanan et al., 2000, 2001;
Gleason et al., 2006; Swainsbury et al., 2012). Thr-271
was reported to be the preferred and likely the first
autophosphorylated site of CCaMK (Sathyanarayanan
et al., 2001; Routray et al., 2013), and autophosphor-
ylation at this site induces an increase in its affinity for
CaM by about 200-fold, a phenomenon called CaM
trapping (state 3, active and may phosphorylate sub-
strate, transient, and CaM trapping; Sathyanarayanan
et al., 2001; Gleason et al., 2006; Tirichine et al., 2006).
Once the CCaMK reached state 3, CaM in the vicinity
was attracted to CCaMK, even though the Ca2+ con-
centration could have already decreased to a level lower
than that in the stage of Ca2+ loading to EF hands in the
VLD. Once bound by CaM in the CaMBD/AID region,
CCaMK is fully activated and can phosphorylate sub-
strates such as IPD3/Cyclops, CIP73, and itself (state 4,
CCaMK fully loaded with Ca2+ and Ca2+/CaM and
highly active; Messinese et al., 2007; Yano et al., 2008;
Kang et al., 2011). In addition, CaM binding could
protect Ser-343 and Ser-344 from being phosphorylated
by CCaMK, which is supported by the in vitro phos-
phorylation assays that demonstrated that CaM binding
decreases the autophosphorylation level of CCaMK
(Takezawa et al., 1996).

Recent results showed that, if Ser-343 and/or Ser-344
are autophosphorylated, CCaMK will no longer interact
with Ca2+/CaM and its kinase activity will be turned off
(Liao et al., 2012; Routray et al., 2013). Hence, another
impact of Ca2+/CaM binding to CCaMK could be to
maintain its activity for a prolonged period even after
Ca2+ decreases to some extent. Since the interaction
between Ca2+/CaM and CCaMK is dynamic, the fully
activated CCaMK will still have a chance to be auto-
phosphorylated at Ser-343 and Ser-344 in its CaMBD;
this will cap the CCaMK from further CaM binding
(a phenomenon called CaM capping) and also inactivate
itself (state 5; Liao et al., 2012; Routray et al., 2013). This
inactivation can be postponed by decreasing Ca2+

concentration. If CCaMK is regulated to state 3 and
there is no CaM available in the vicinity of CCaMK,

the Thr-271-phosphorylated active kinase could im-
mediately phosphorylate the unprotected Ser-343 and
Ser-344 in its CaMBD and inactivate the kinase activity
rapidly (state 5). This was observed to occur in vitro
within 30 s (Sathyanarayanan and Poovaiah, 2002).
Hence, the phosphorylation of Thr-271 acts as a
“binary logic switch” in the decision-making process;
it could quickly activate or quickly turn off the kinase
activity of CCaMK depending on whether CaM is
available once the Thr-271 is phosphorylated. Logi-
cally, this inactivation via the autophosphorylation of
Ser-343 and/or Ser-344 in the CaMBD could be miti-
gated or avoided by decreases in Ca2+ concentration;
this could be the reason why this kinase is activated in
vivo by Ca2+ spiking (Oldroyd and Downie, 2004).
After losing the phosphate groups at Thr-271, Ser-343,
and/or Ser-344, the CCaMK at state 5 could be changed
back to state 1, 2, or 3. Different from CaMKs in animals,
which need to form a dodecamer to read the oscillative
Ca2+ signals (Hudmon and Schulman, 2002), the dually
regulated CCaMK, which receives Ca2+ signals from both
VLD and CaMBD, could sense and respond to oscillative
Ca2+ signals in a monomer format. Recent empirical data
obtained from truncated versions of CCaMK also support
that CCaMK may not form multimers in the presence or
absence of Ca2+ (Swainsbury et al., 2012).

Ca2+/CaM-MEDIATED REGULATION OF
TRANSCRIPTIONAL CONTROL IN PLANTS

Transcriptional control is an end result of many signal
transduction pathways, including Ca2+/CaM-mediated
signaling. CaM interacts with a variety of DNA-binding
proteins/transcription factors. Over 90 CaM-binding
proteins (CBPs) are DNA-binding proteins that fit into
several families of known transcription factors, including
CAMTAs (also known as AtSRs), WRKY IID, bZIP,
MYB, Trihelix, NAC, CBP60, MADS, and GRAS (Reddy
et al., 2011a), and the CaMBDs in some of the newly
identified CaM-binding transcription factors remain to
be determined (Popescu et al., 2007). In this section, we
will focus only on recent developments in the direct
regulation of Ca2+/CaM on transcriptional machinery
through the actions of CAMTAs/SRs.

The Best Characterized CaM-Regulated Transcription
Factors: CAMTAs

NtER1 was the first member of the CAMTA family
reported to be a CaM-binding protein (Yang and
Poovaiah, 2000a). Follow-up studies showed that
CAMTAs belong to a conserved transcription factor
family that exists in all the examined multicellular
eukaryotes (Reddy et al., 2000; Bouche et al., 2002;
Yang and Poovaiah, 2002a; Finkler et al., 2007). The
expression of CAMTAs is developmentally regulated
(Yang et al., 2012) and responds to different abiotic and
biotic signals (Yang and Poovaiah, 2002a; Yang et al.,
2013). Target cis-elements for this family are (A/C/G)
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CGCG(T/C/G) (Yang and Poovaiah 2002a) and (A/C)
CGTGT (Choi et al., 2005; Doherty et al., 2009; Du et al.,
2009; Kim et al., 2009b; Galon et al., 2010b). All mem-
bers of the CAMTA family carry a CG-1 DNA-binding
domain in the N terminus, followed by a TIG domain,
ankyrin repeats, a Ca2+-dependent CaMBD, and tan-
dem repeats of the IQ motif that interact with CaM in a
Ca2+-independent manner (Bouche et al., 2002; Yang
and Poovaiah, 2002a; Finkler et al., 2007; Du et al.,
2009). The functions of AtSRs/CaMTAs were found to
be dependent on their interaction with Ca2+/CaM (Choi
et al., 2005; Du et al., 2009).
Loss-of-function mutants of AtSR1/CAMTA3 were

reported to have pleiotropic, temperature-dependent,
constitutive disease-resistant phenotypes, including
compromised growth, spontaneous leaf chlorosis
with autonomous lesions, constitutive expression of
pathogenesis-related genes, and elevated resistance
against both virulent and avirulent strains of Pseudomonas
syringae pv tomato DC3000 (Galon et al., 2008; Du et al.,
2009). These phenotypes were correlated with higher
levels of endogenous salicylic acid (SA), demon-
strating that AtSR1/CAMTA3 is a negative regulator
of SA-mediated defense responses (Du et al., 2009).
It was also shown that AtSR1/CAMTA3 interacts with
a CGCG box motif in the 21-kb promoter region of
EDS1 both in vivo and in vitro and suppresses the
transcription of EDS1, a critical player in the SA acti-
vation loop and toll interleukin 1 receptor-nucleotide
binding domain (NB)-leucine rich repeat (LRR)-type
R gene-mediated defense in Arabidopsis (Du et al.,
2009). Recently, AtSR1/CAMTA3 was also shown to
negatively regulate ethylene-mediated senescence by
recognizing a CGCG box in the promoters of EIN3 and
disease resistance by interacting with a CGCG box in
the promoters of NDR1, a key signaling component
required for coiled-coil-NB-LRR-type R gene-mediated
plant immunity (Nie et al., 2012). Similar to the func-
tion of CAMTA3, OsCBT, a CAMTA member from
rice, also plays a negative role in regulating rice de-
fense against both the bacterial pathogen Xanthomonas
oryzae pv oryzae and the rice blast fungus Magnaporthe
grisea (Koo et al., 2009). Very recently, CAMTA3 was
shown to play a critical role in plant defense against
insect herbivory (Laluk et al., 2012; Qiu et al., 2012).
atsr1/camta3 null mutants are more vulnerable to her-
bivore attack, and CaM binding was shown to be re-
quired for AtSR1/CAMTA3 in maintaining normal
levels of plant resistance to herbivore attack. In addi-
tion, it was observed that elevated SA levels in atsr1
mutant plants have a negative impact on both basal
and induced biosynthesis of jasmonates, a critical
hormone-mediated wounding response in plants (Qiu
et al., 2012). Furthermore, compared with the wild type,
the atsr1 mutant accumulates less of the insect re-
pellent metabolite glucosinolate, and this coincides
with the altered expression of several genes involved
in glucosinolate metabolism, such as MYB51, AtST5a,
and IQD1 (Laluk et al., 2012). In a different line of re-
search, CAMTA3 was shown to recognize the conserved

DNAmotif 2 (CM2, CCGCGT) in the promoter of CBF2,
a critical transcription factor required for Arabidopsis
cold acclimation and the subsequent establishment of
freezing tolerance as well as the regulation of cold-
induced gene expression (Doherty et al., 2009). Very
recently, results showed that CAMTA1 and CAMTA2
share some functional redundancy with CAMTA3 in
suppressing SA biosynthesis and the quick induction
of CBF1, CBF2, and CBF3 transcription (Kim et al., 2013).
AtCAMTA1 was reported to be an auxin-responsive
gene, and hypocotyl elongation of AtCAMTA1 knock-
out or repression lines is hyperresponsive to exogenous
application of auxin, indicating that CAMTA1 could
regulate plant growth through the action of auxin
(Galon et al., 2010a).

Recent Breakthrough in Ca2+/CaM-Mediated
Transcriptional Control of Plant Immunity

Ca2+/CaM-mediated signaling has been documented
to be involved in almost every aspect of a plant’s life,
including plant growth and development, as well as
plant responses to biotic and abiotic stresses (Du and
Poovaiah, 2005; Lecourieux et al., 2006; Yang et al.,
2007; DeFalco et al., 2010a; Du et al., 2011). In the past
several years, mechanisms by which Ca2+/CaM regu-
late plant defenses against pathogenic microbes have
been revealed at an impressively rapid pace. Figure 4
summarizes the accumulated information of how
Ca2+/CaM regulates the functions of target proteins
involved in plant responses to pathogen attack. Rapid
increases in intracellular Ca2+ concentration, oxidative
burst, nitric oxide (NO) production, hypersensitive
responses and the associated cell death, accumulation
of SA, induced expression of pathogenesis-related genes,
and the establishment of local and systemic resistances
are common defense responses that occur at different
stages during the establishment of immune responses
after plants are challenged with pathogens (Nimchuk
et al., 2003; Lecourieux et al., 2006; Fu and Dong, 2013).
These changes are presented in Figure 4 in a rough
temporal order. The key defense-related events/signaling
components, such as hydrogen peroxide (H2O2), NO, and
SA, are well known to induce the production of each
other and, hence, are positioned directly or indirectly
in various feed-forward amplification loops and act
as positive regulators of hypersensitive and defense
responses (Lecourieux et al., 2006; Ali et al., 2007; Fu
and Dong, 2013). Accumulated data revealed that
Ca2+/CaM-mediated regulations oversee and coordinate
the progression of the entire plant immune system.

Properly controlled production of NO with the in-
volvement of Ca2+, CaM, and NO synthase after the
perception of lipopolysaccharides or avirulent pathogen
and the balanced action of NO and H2O2 contribute to
the appropriate progression of the hypersensitive reac-
tion and the establishment of plant defenses (Ali et al.,
2007). On the other hand, NO has also been reported to
be a powerful stimulator of intracellular Ca2+ in plants,
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providing a path of feedback to the Ca2+ signaling
system (Besson-Bard et al., 2008). While well known as
a regulator of endogenous Ca2+ levels, H2O2 production
during the oxidative burst requires Ca2+ influx, which
activates the plasma membrane-localized NADPH oxi-
dase (Keller et al., 1998). Furthermore, Ca2+/CaM has
been proposed to increase H2O2 generation through
Ca2+/CaM-dependent NAD kinase, which affects the
concentration of available NADPH during the assembly
and activation of NADPH oxidase (Harding et al., 1997;
Turner et al., 2004). Moreover, Ca2+/CaM binds to plant
catalase and enhances its activity (Yang and Poovaiah,
2002b). Recently, Ca2+/CaM was also reported to reg-
ulate H2O2-mediated defense responses by regulating
the MAPK cascade through the action of MAPKs and
MAPK phosphatases (Lee et al., 2008; Bartels et al.,
2009; Takahashi et al., 2011).

SA has been generally accepted as a defense hor-
mone that controls plant defense against biotrophic
pathogens (Nimchuk et al., 2003; Fu and Dong, 2013).
The SA activation pathway is under extensive regula-
tion by Ca2+/CaM-mediated signaling. Transcription
of the SA biosynthesis gene ICS1/SID2 is controlled by
the Ca2+/CaM-binding transcription factor CBP60g
(Wang et al., 2009, 2011; Zhang et al., 2010), providing
a venue for the Ca2+ signal to activate the production
of SA. The transcription of two critical genes, EDS1 and
NDR1, required for the activation of both toll inter-
leukin 1 receptor-NB-LRR and coiled-coil-NB-LRR
R gene-activated immunities, is negatively controlled by
CaM-regulated AtSR1/CAMTA3, enabling tight con-
trol over the synthesis of SA and providing an effective
approach to avoid the misactivation of effector-triggered
immunity as well as pathogen-associated molecular
pattern-triggered immunity, since SA is critical for both
(Nimchuk et al., 2003; Fu and Dong, 2013). In addition,
Ca2+/CaM could also provide both positive and nega-
tive controls through WRKY7, WRKY11, WRKY17, and

WRKY53 (Park et al., 2005; Journot-Catalino et al., 2006;
Kim et al., 2006; Murray et al., 2007; Popescu et al.,
2007), although their direct downstream target genes
and their regulation by CaM remain unknown.

Defense-related gene expression after the accumulation
of SA also seems to be regulated by Ca2+/CaM-mediated
signaling. CaM binding to TGA3 enhances its interaction
with the target promoter (Szymanski et al., 1996); fur-
thermore, TGA3 interacts with NPR1, a critical tran-
scription cofactor involved in SA perception and the
expression of a broad spectrum of defense-related genes
(Fu and Dong, 2013), providing a possible option to
regulate the output of defensive reactions. Furthermore,
CaM could also repress the expression of pathogenesis-
related genes through the action of the transcription fac-
tor CBNAC (Kim et al., 2012). It is very interesting to see
that Ca2+/CaM can exert a well-balanced control even
at the final stage of defense responses after the induced
accumulation of SA.

Defense comes with a price; mutant plants with mis-
activation or constitutive activation of defense responses
usually suffer significantly in their growth and devel-
opment or can even die (Heil and Baldwin, 2002). The
deployment of multiple positive and negative regulatory
controls on different progression stages during the es-
tablishment of plant immunity demonstrates the critical
importance of balancing these immune responses. As
summarized in this update, Ca2+, the universal mes-
senger in eukaryotes, including plants, could act as a
competent conductor in orchestrating these powerful
physiological activities, which could protect plants from
pathogen attack or cause them to commit “suicide.”

CONCLUSION

Since the discovery of CaM over 40 years ago, and
especially during the last decade, tremendous progress

Figure 4. Multiple controls of plant
immunity by Ca2+/CaM. Empirically
confirmed regulations are presented with
solid lines, regulations not directly con-
firmed are presented with dashed lines,
arrowheads indicate positive control, and
T-heads indicate negative control.
HR, Hypersensitive response; PR, patho-
genesis related.
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has been made in the isolation and characterization
of Ca2+/CaM and its target proteins. A complex
Ca2+/CaM-regulated network is beginning to emerge,
but it is far from complete. While accepting the unique
roles of Ca2+ as a messenger, we are also realizing the
complexities and the challenges of Ca2+/CaM-mediated
signaling and its cross talk with different signal trans-
duction pathways in plants. As more genomes are se-
quenced and more high-throughput tools are developed,
the significance and the scope of this network are being
realized at an unprecedented rate. However, there are
several issues that still need to be resolved. First, we be-
lieve that many CaM-binding proteins remain to be
identified, not to mention the target proteins of CaM-like
proteins. Hence, the identification of novel CaM-binding
proteins will still be one of the most important tasks for
plant scientists. Classic approaches to identify targets of
CaM through protein-protein interaction-based expres-
sion library screening may still be used, but improved
approaches, such as the CaM-modified nanowire tran-
sistor method, are highly desirable. Second, the functional
significance of these target proteins in terms of bio-
chemical, molecular, and physiological activities needs to
be adequately studied. Third, we need to determine how
Ca2+/CaM and its interactors respond to upstream sig-
nals and how they regulate various downstream signal
transduction pathways. For example, scientists need to
determine whether and how Ca2+/CaM helps CCaMK
to initiate RNS or AMS based on the subtle differences
in Ca2+ spiking induced by Nod or Myc factors. Fourth,
we need to understand the significance and complexity
of Ca2+/CaM-mediated regulations, their roles as both
positive and negative regulators to balance a particular
signaling pathway, and how these regulatory roles are
coordinated. To cite a specific example: when, where, and
how Ca2+/CaM helps plants to produce a positive or
negative regulation of the SA-mediated immune response
to ensure appropriate protection against a potential
pathogen and avoid the negative consequences of overre-
action during defense. Progress in these areas will signifi-
cantly improve our understanding of Ca2+/CaM-mediated
signaling in plants.
Received May 3, 2013; accepted August 28, 2013; published September 6, 2013.
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