Skip to main content
. 2013 Jul 13;69(Pt 8):o1242. doi: 10.1107/S1600536813018618
Experimental. Spectroscopic data for the title compound: IR (KBr cm-1): (C=O ester 1728), (NH 3317), (C—H aliphatic, 2833–2924), (C—H, Ar, 2975–3002). 1H-NMR: (DMSO-D6) δ at 1.3(t, 3H, CH3 of ethyl group), 4.0(q, 2H, –CH2 aliphatic in ethyl group), 2.3(s, 3H, CH3), 3.4(s, –CH2), 3.7(s, 3H, –OCH3), 10.8(s, 1H, –NH), 6.8(s, 1H, Ar), 6.6(d, 1H, Ar), 7.2(d, 1H, Ar). 13C-NMR: 171 (C=O ester), 11(CH3 in indole), 14(CH3 of ethyl group), 29(–CH2), 55 (–OCH3), 59(–CH2 of ethyl group). 99, 103, 109, 110, 128, 129, 133,152 (8 C, aromatics). There are two signals at 29 and 59 p.p.m. oriented downward in the DEPT spectrum confirming the existence of two –CH2 groups.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.