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Abstract
Objective—There is increasing interest in adding common genetic variants identified through
genome wide association studies (GWAS) to breast cancer risk prediction models. First results
from such models showed modest benefits in terms of risk discrimination. Heterogeneity of breast
cancer as defined by hormone-receptor status has not been considered in this context. In this study
we investigated the predictive capacity of 32 GWAS-detected common variants for breast cancer
risk, alone and in combination with classical risk factors, and for tumors with different hormone
receptor status.

Material and Methods—Within the Breast and Prostate Cancer Cohort Consortium (BPC3), we
analyzed 6009 invasive breast cancer cases and 7827 matched controls of European ancestry, with
data on classical breast cancer risk factors and 32 common gene variants identified through
GWAS. Discriminatory ability with respect to breast cancer of specific hormone receptor-status
was assessed with the age- and cohort-adjusted concordance statistic (AUROCa). Absolute risk
scores were calculated with external reference data. Integrated discrimination improvement (IDI)
was used to measure improvements in risk prediction.

Results—We found a small but steady increase in discriminatory ability with increasing numbers
of genetic variants included in the model (difference in AUROCa going from 2.7 to 4%).
Discriminatory ability for all models varied strongly by hormone receptor status

Discussion and Conclusion—Adding information on common polymorphisms provides
small but statistically significant improvements in the quality of breast cancer risk prediction
models. We consistently observed better performance for receptor positive cases, but the gain in
discriminatory quality is not sufficient for clinical application.
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OBJECTIVE
Results from genome wide association studies (GWAS) are continuously adding to our
knowledge of genetic risk factors for breast cancer [1–13]. Though effects for single gene
variants are small, cumulatively they may eventually explain a sizable proportion of
heritable breast cancer risk, and there is increasing interest in utilizing information from
common genetic polymorphisms for breast cancer risk prediction. Risk prediction models
can be an important tool for breast cancer prevention, by identifying women at high risk
who would mostly benefit from targeted preventive measures such as mammography
screening, or chemoprevention, e.g. with tamoxifen or raloxifene. Present recommendations
for identifying women at sufficiently high risk to benefit from chemoprevention include
reference to the Breast Cancer Risk Assessment Tool (BCRAT) originally developed by
Gail et al. [14] with the aim to reduce costs not only in terms of financial expense, but also
to optimize expected medical benefits against possible negative side effects (e.g. increased
risk of endometrial cancer) [15]. Likewise, in the light of new results on the limited benefit
of mammography screening for some women [16], which needs to be balanced against
financial costs as well as possible negative side effects such as radiation and overdiagnosis
or false positive diagnosis, it appears worthwhile to also consider the application of risk
prediction models in the context of mammography screening [17–19].
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The Breast and Prostate Cancer Cohort Consortium (BPC3) offers a large and well
characterized study population with both classical epidemiologic risk factor and genetic data
[20], which allow the computation and evaluation of comprehensive risk prediction models.
Here we present results from this resource, evaluating the collective predictive quality of 32
common gene variants that were reported to be associated with breast cancer in at least one
GWAS at genome-wide significance level [1–13]. We investigated risk of breast cancer
overall as well as by subtypes defined by estrogen and progesterone receptor status. Besides
analyses of the discriminatory potential of genetic and non-genetic risk factor information,
we also translated our results to estimates of absolute risk.

MATERIAL AND METHODS
Study population

The BPC3 has been described in detail elsewhere [20]. Briefly, the consortium pools
genotyping information and extensive questionnaire data from large, well established
prospective cohorts based in the USA and Europe. Cases of invasive primary breast cancer
and matched controls were identified from five participating American cohorts: the
American Cancer Society Cancer Prevention Study-II (CPS-II) [21], the Harvard Nurses’
Health Study (NHS) [22] the Hawaii-Los Angeles Multiethnic Cohort (MEC) [23], the
Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) [24] and the
European Prospective Investigation into Cancer and Nutrition (EPIC) [25]. Depending on
the study cohort, cancer cases were identified by linkage with population-based tumor
registries and/or self-reported and confirmed through medical records. Controls were
matched to cases by ethnicity and age and in some cohorts additional matching criteria were
employed, such as current use of HRT at blood donation (EPIC and NHS), recruitment
center (EPIC), and further details concerning blood donation (fasting status, time of the day
and phase of the menstrual cycle in EPIC, date of blood collection in CPS2 and NHS).
Written informed consent was obtained from all subjects, and the project was approved by
the appropriate institutional review board for each cohort. In the present analysis, we
focused exclusively on subjects of European descent in order to have more homogeneous
results, because most breast cancer gene variant discovery has been among women of
European ancestry, and because the other ethnic groups represent a comparatively small
fraction (18%) of BPC3 subjects.

From 6009 invasive cancers in women of European descent 83% could be classified with
respect to estrogen receptor status (21% negative), and 72% could be classified with respect
to progesterone receptor (32% negative). Details of measurement and classification of
receptor status within the different cohorts are given in the Supplement. To differentiate
between breast cancer developed before and after menopause, we regarded cases diagnosed
before the age of 55 as predominantly premenopausal, ‘early disease onset’ (22%), and cases
diagnosed after the age of 60 as postmenopausal, ‘late disease onset’ (62%).

Genetic data
In the current phase of BPC3, 32 single nucleotide polymorphisms (SNPs), that were
previously reported as significantly associated with breast cancer risk at a genome-wide
significance level (p<10−7) were genotyped for a replication study, some results already
published [26]. Genotyping assays were designed and performed using Taqman chemistry
with reagents by Applied Biosystems (Foster City, CA, USA). Genotyping was performed in
four laboratories (located at the University of Southern California, the US National Cancer
Institute, Harvard School of Public Health, and the German Cancer Research Center,
DKFZ). Laboratory personnel were blinded to case-control status. Within each study,
blinded duplicate samples were also included and concordance of these results was greater
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than 99%. The genotyping success rate within each cohort was on average 95.6% (range
90.5%–99.4%). For four loci, either the SNP reported in the original study or a surrogate in
complete or near complete linkage disequilibrium was genotyped (rs4415084 or surrogate
rs920329 (r2=0.981 in HapMap CEU), rs999737 or surrogate rs10483813 (r2=1 in HapMap
CEU), rs10931936 or surrogate rs700635 (r2=1 in HapMap CEU), rs1250003 or surrogate
rs704010 (r2=1 in HapMap CEU)). These 32 SNPs include markers that were used for risk
prediction in an earlier simulation model by Gail [27], and nine of the ten markers
investigated by Wacholder et al [28] based on case and control genotypes in studies that
partially overlap the current data set (32% of our subjects). Subjects with a genotyping call
rate below 75% were excluded from the genetic data (777 subjects, 5%). Thus our analyses
including genetic information were limited to 6.009 cases and 7.827 controls in total. Details
on these cases and controls within the different cohorts are given in Table S1
(Supplementary material).

Statistical Methods
Imputation—Classical risk factor information was complete for the majority of subjects
(68%), with completeness of single variables ranging from 78% to 99% (data on family
history were not available for several study centers in EPIC). To account for the fraction of
missing data as summarized in Table S2 (Supplementary material), ten-fold multiple
imputation [29]was applied to these covariates, conditioning each covariate on all the others,
including case-control status [30]. A maximum of 8 missing genotypes were independently
imputed ten times from the SNPs’ allele frequency within the cohort (country of origin
within EPIC), or overall (rs9383935 was not available for NHS-subjects).

Prediction models—Unconditional logistic regression models were applied throughout
this analysis. A subject’s most important matching criteria of age-group and cohort
membership (country of origin within EPIC) were included in all models to adjust for the
matched design.

Application of the traditional model of the BCRAT [14] was not possible with our data,
because information on history of former biopsies or benign diseases was not available for
all studies in our database. To evaluate the net gain in prediction from the genetic
components, we included other well established risk-factors for breast cancer in our study
into a model building process to produce an extended covariate model. Thus a sequence of
unconditional logistic models with breast cancer status as outcome was fitted to imputed
covariate and genotype data:

1. a covariate effect model derived through a backwards selection process on
available covariates;

2. genetic models of seven (as in [27]), nine (as in [28]) and all thirty-two SNPs,or a
subgroup of those with independent effect; and

3. combinations of the genetic effects with the covariate model as defined in 1 and 2,
to investigate the additional value of the genetic information.

Evaluation of the models
Internal validation—We corrected for overfitting [31, 32] with application of a split-
sample design to the multiple imputed data, stratified by cohort (and country within EPIC),
using two thirds as training and one third as test data. With age at menarche and age at first
full term pregnancy and the adjustment variables age and cohort kept in the model,
backwards model selection as provided from SAS (9.2) PROC LOGISTIC was applied to
each imputed training data set [33]. The final covariate model included all parameters that
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were chosen in more than five of the ten selected models. All model parameters were then
again estimated on the training data and without further adjustment applied to the test data.

Evaluation of prediction quality—The statistical fit of models was compared with
likelihood-ratio tests and the Akaike-criterion within the training data. The Akaike-criterion
is adjusting the likelihood of a model for the number of parameters included and thus
facilitates the direct comparison of the fit of not necessarily nested models. Discriminative
quality of a model to distinguish cases from controls was evaluated with the AUROC-
statistic derived from predicted values from the test data. Because all data were age-matched
with varying case-control ratios in the different cohorts, we calculated the covariate-adjusted
AUROCa [34] from relative risk levels adjusted for age and cohort effects.

Estimation of absolute risks—We used external reference data on age-specific risk
rates from cancer registries [35] to transfer our results from models on relative risk to
absolute risk levels, representing the probability for a breast-cancer free woman to be
diagnosed with breast-cancer in the next five years. Assuming the age-specific covariate
distributions within the control subjects to be comparable to the populations covered by
these cancer registries, for each demographic group defined by cohort-membership and age-
stratum, the absolute baseline risk was calculated from the average relative risk in control
subjects. This baseline risk was then applied to all members of this demographic group.
Details of these risk calculations are given in the Supplement. Around the threshold advised
by the U.S. Preventive Services Task Force [36] to consider chemopreventive treatment
from a 5-year risk level of 1.66 %, we built classes of women with risk-score below 1% as
low risk, above 1.66% as high risk and above 3.5% as very high risk, to evaluate the
potential reclassification gain.

Model comparisons—The change of discrimination of case and non-case subjects due to
different risk models was compared stratified by cohort and country within EPIC with the
IDI, the integrated discrimination improvement, which is independent of class limits [37].
For illustrative purposes we present reclassification tables and the corresponding net
reclassification improvement NRI [37]. Since older women are over represented in our
sample, we also adjusted the age distribution towards that of the US standard population
(white only) in 2000 [38].

Stratification over disease subtypes and by age group—To evaluate the disease
subtype-specific predictive quality, the prediction models estimated from the full dataset
were applied to cases of negative or positive estrogen (ER) or progesterone receptor status
(PR) separately with their corresponding matched controls. Because tumor characteristics
may differ by the age at which tumors are diagnosed, we also analyzed early and late onset
cases, and substrata defined by different ER-status in early and late disease. Our choice of
cutpoint was motivated by the concept that tumor development is a relatively long-term
process, and tumors diagnosed before the age of 55 would have developed predominantly
through a woman’s pre-menopausal phase of life.

RESULTS
Evaluation of risk discrimination

Based on the risk factors age at menarche, age at first full term pregnancy, count of full term
pregnancies, age at menopause, ever use of hormone replacement therapy, body mass-index
in interaction with menopausal status at baseline, smoking and alcohol consumption, our
covariate model had a predictive quality in terms of AUROCa of 56.4% [95% CI: 54.7 –
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58.2%]. Definitions and mutually adjusted estimates of model parameters for the classical
epidemiological risk factors are given in supplementary Table S3.

With respect to the genetic polymorphisms studied, relative risk estimates generally
corresponded to previous findings, except for SNPs rs2180341, rs1011970, rs3817198,
rs909116, rs2075555, and rs311499, for which previously observed associations were not
replicated in our data (Table 1).

The genetic information of all 32 SNPs combined yielded a discriminative power of
AUROCa=58.3% [95% CI: 56.7 – 60.0%]. If only the strongest signal in terms of OR was
preserved from SNPs within the same region and six non-significant SNPs were eliminated,
this quality was unchanged (AUROCa=58.4%, 95%CI: 56.7 – 60.0%) (Table 2).

The 496 tests of individual pair-wise SNP-interactions resulted in a minimal p-value of
0.0003; thus, within this high-dimensional frame-work we found no evidence to include any
genetic interaction terms into the prediction models. Also, combining all genotypes into a
simplified genetic score based on the total count of risk-alleles instead of fitting individually
weighted SNP effects led to a simplified model, which was inferior to that with individually
weighted SNP effects as measured by the Akaike information criterion. The best-fitting
genetic model was that including information on the 18 SNPs that had statistically
significant effects on different loci into a multiple log-additive model with individually
weighted per-allele effects for each SNP. Also, comparing between the sets of 7, 9 and 18
SNPs that were included in former studies by Gail [27] and Wacholder et al. [28] and in our
present analysis, it can be seen, that each increment in SNP number led to an improvement
of the AUROCa, with levels of 56.4, 56.9 and 58.4% respectively.

Adding the 18 SNPs to the covariate model resulted in an AUROCa of 60.5 [95% CI: 58.9 –
62.2%] and in only a very small improvement in discrimination of 0.16% in terms of IDI.

Although for each of the breast cancer subtypes as defined by ER/PR status there was a
statistically significant improvement in model discrimination through addition of genetic
model components, this improvement was much smaller for negative receptor tumors than
for positive tumors (Table 3).Prediction quality both in terms of AUROCa and IDI varied
more by ER-status than by PR-status..

In addition to the sub-classification by ER/PR status we also found that prediction quality
due to genetic factors was generally better for cases with earlier diagnosis, and again this
was particularly the case for ER+ tumors (Table S4, supplementary material), where the
highest AUROCa was observed ( 63.8% [ 95% CI: 58.8 – 68.9%] ).

Estimation of absolute risks and net reclassification improvement
The need to balance risk of different diseases and possible side-effects in the context of
preventive actions for breast cancer warrants the generation of absolute risk levels. To
simulate the gain from adding genetic information to a model of classical risk factors in
practical terms, the estimated absolute risk levels from the covariate model and the model
combining genetic and classical risk factors classified according to the cutpoint of 1.66%, as
suggested for tamoxifen treatment are given in Table 4.

This shows a significant improvement in terms of NRI of 8.3% (95% CI 5.5–11%), which
however would vary slightly when regarding different cut-points around the one presented
(data not shown). According to the combined model of covariates plus 18 SNPs, 52% of
cases and 40% of controls would then be classified into the “high risk” category (> five-year
risk threshold of 1.66%) and might be considered for possible chemoprevention by
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tamoxifen treatment according to recent recommendations [15]. This again is related to the
age distribution in our sample with a majority of elder women. If the age distribution is
weighted corresponding to the US in 2000 [38], the NRI at the 1.66% risk limit is 4.7%.

DISCUSSION
In this analysis of 6.009 invasive breast cancer cases and 7.827 control subjects, all of
European ancestry, we found that the genotypes of common SNPs previously shown to be
associated with breast cancer risk collectively confer at least as much information for breast
cancer risk prediction as an optimized model of classical epidemiologic risk factors
(AUROCa 56.4% vs. 58.3%). Furthermore, in exploiting what is currently the largest
prognostic study base with information on genetic and non-genetic (classical) risk factors,
we found that adding the genetic information to the classical risk factors leads to a moderate
but significant improvement of breast cancer risk overall by adding 3.9% in AUROC. This
is similar to findings recently reported from another study [39]. For the most comprehensive
risk prediction model, which incorporated the classical risk factor data and 18 significantly
associated SNPs, the adjusted concordance statistic AUROCa was equal to 60.5% for breast
cancer overall. To put this into perspective, this improvement in prediction capacity is
currently almost as high as what has been estimated for mammographic density [40].

The predictive quality of all models was clearly better for ER-positive diseases, and varied
from 55.4% for ER- breast cancer to 61.8% for ER+ cancer. This difference reflects the fact
that most of the classical risk factors, as well as the genetic variants identified through breast
cancer GWAS studies so far, are predominantly related to risk of hormone-receptor-positive
disease [41–45], which constitute the majority of breast cancers in women of European
descent. Our findings achieve clinical relevance, because it is known that specific preventive
applications may also have different impacts on hormone-receptor-positive and -negative
breast cancers. For example in the context of chemoprevention with tamoxifen and
raloxifene the incidence of hormone-receptor-positive cancer types is reduced, while the
incidence of breast cancer with negative receptor status appears unchanged [15].

Stratifying by age at diagnosis of disease, we saw a slightly better prediction by all genetic
models for breast cancer at younger ages, but a lower predictive capacity of the covariates at
younger age. The latter reflects that the covariates BMI, HRT-use and age at menopause
have an effect only after menopause. Again, this age dependence of the predictive quality of
our models was mostly present for ER+ breast cancer.

The genetic information provided best discrimination of risk when the effects of the SNPs
were weighted according to specific risk estimates instead of being grouped into a common
allele-counting score; this finding is in line with recent findings by Hsu et al. [46]. Although
single SNP effects were small, a steady increase in prediction quality was observed with
growing number of genetic markers included in the prediction model. This indicates
potential for further improvement in prediction models as more genetic markers will be
identified through GWAS studies.

Though there was a statistically significant improvement in discrimination quality, this may
still be too small to be considered meaningful for clinical application, weighted against
current genotyping costs and additional education, which would be needed to prepare both
physicians and patients for the consideration of genotyping results. Proper evaluation of this
aspect would require a cost-benefit analysis as done by Gail [18] and Freedman [47], based
on explicit assumptions for benefits and costs related to positive and negative classifications.
Although such a balance is beyond the scope of this work, we did, for illustrative purposes,
derive absolute risk levels, that generally form the basis of such cost benefit analyses, and
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calculated the theoretical gain from the adding genotyping information in terms of a net
reclassification improvement (NRI). As shown by our example, even the small increase in
discrimination quality of our model due to the genotype data could lead to a net
reclassification improvement of 8.3% overall. This estimate, however, while illustrative,
must be interpreted with caution, as the NRI generally depends strongly on absolute risk cut
points used.

Strengths of our study are its prospective design and its overall study size, both
characteristics that are desirable for developing statistical models on the joint effects of
classical epidemiologic and genetic risk factors. Also, as the cohorts represent population
groups from both North America and Europe, we could estimate models spanning
heterogeneous risk factor distributions over a relatively large range, especially for the
classical risk factors. An important observation, in this context, is that the genetic factors
showed stable effects on breast cancer risk across all study groups [26].

As a few risk factors considered standard part of the BCRAT-model were not available from
some of the participating studies in BPC3, namely family history, the number of past breast
biopsies and history of benign breast disease, we could not fit this predefined model.
However, the question that we intended to address was, whether genetic factors could
predict risk independently and additionally to traditional risk factors.

We also had no information on mammographic breast density, which is another important
predictor for breast cancer risk [40, 48]. We thus could not examine whether the
improvement of risk prediction by including information from the genetic polymorphisms
would be the same in the presence of these additional risk factors. For the subset of subjects
who provided information on family history we compared the predictive capacity of our
models and we saw no evidence for a difference between subjects who confirmed a family
history of breast cancer and those without.

A further limitation of our study, which resulted from its nested case-control design, is that
within each of the contributing cohorts control subjects had been matched to the cases by
age. Thus, we could only estimate AUROCa after age adjustment, and the discriminatory
effect of age itself on breast cancer risk prediction could not be estimated. As a
consequence, our results in terms of absolute AUROC values were lower in comparison to
other studies where age was included as a predictive variable, although it can be argued that
since increasing age is a risk factor for most cancers, age itself is not a useful discriminator
of risk between two people of the same age. In our estimations of absolute risks, however,
differences due to age and population effects were entered back in on the basis of age-
specific risk levels from different, regional cancer registries.

Finally, a word of caution is needed with regard to our model estimates for absolute breast
cancer risk. We presented our absolute risk models for a mixed North-American/European
population, which is a theoretical construct, and did not correct for competing risks from
other sources. Also, while we used cancer registry data that were specific for European and
US sub-populations included into the contributing cohorts of BPC3, the validity of absolute
risk estimates depends on the assumption that risk factor distributions within the cohorts
were identical to those in the general populations covered by the cancer registries. If, in
reality, the distributions of genetic and other risk factors were different, absolute risk
estimates may be improperly calibrated. Moreover, the thresholds we regarded for model
evaluation in terms of reclassification and NRI are not generally applicable because the
decision to use tamoxifen also depends on risks of non-cancer complications, such as stroke
and pulmonary embolism, and consequently higher thresholds may be more appropriate for
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older women. Thus while quite instructive in showing possible gain in classification
accuracy for “real-life” purposes, these results have to be interpreted with great caution.

Conclusion
In conclusion, our analyses indicate, that small increases in prediction quality may be
expected with a growing number of genetic markers detected to be associated with breast
cancer risk. For the gene variants identified so far, these increases in predictive quality can
be observed particularly for ER-positive breast cancer subtypes. The quality of risk
prediction overall of genetic and classical risk factors combined is still far from a level to
allow accurate discrimination of prospective cases or non-cases for preventive measures on
a population level. However, extrapolating from our observations and considering further
theoretical estimations [49] it can be anticipated that the discriminative power will further
increase as the number of known common genetic determinants of breast cancer grows.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2

Discriminative value AUROCa (95%-confidence interval) for models including different covariates and
genetic effects, and integrated discrimination improvement (IDI) due to addition of genetic effects to the
covariate model.

Cov-effect None Covariatesc

geneffect AUROC
(95% CI)

IDI AUROC
(95% CI)

IDI

None
0.5*

0.564
(0.547 – 0.581)

32 SNPs 0.583
(0.567 – 0.600) 0.16%

0.604
(0.588 – 0.621) 0.17%

18 SNPs** 0.584
(0.567 – 0.600) 0.15%

0.605
(0.589 – 0.622) 0.16%

9 SNPs 0.569
(0.552 – 0.586) 0.11%

0.595
(0.579 – 0.612) 0.12%

7 SNPs 0.564
(0.547 – 0.581) 0.10%

0.591
(0.574 – 0.608) 0.10%

*
by construction

**
better than 32 SNPs according to Akaike information criterion

c
including parameters on age at menarche, at first birth and at menopause and count of births, BMI, alcohol consumption, smoking and use of

hormone replacement therapy.
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