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Abstract

Insufficient physical activity is the 4th leading risk factor for mortality. Methods for assessing the individual daily life activity
(DLA) are of major interest in order to monitor the current health status and to provide feedback about the individual
quality of life. The conventional assessment of DLAs with self-reports induces problems like reliability, validity, and
sensitivity. The assessment of DLAs with small and light-weight wearable sensors (e.g. inertial measurement units) provides
a reliable and objective method. State-of-the-art human physical activity classification systems differ in e.g. the number and
kind of sensors, the performed activities, and the sampling rate. Hence, it is difficult to compare newly proposed
classification algorithms to existing approaches in literature and no commonly used dataset exists. We generated a publicly
available benchmark dataset for the classification of DLAs. Inertial data were recorded with four sensor nodes, each
consisting of a triaxial accelerometer and a triaxial gyroscope, placed on wrist, hip, chest, and ankle. Further, we developed a
novel, hierarchical, multi-sensor based classification system for the distinction of a large set of DLAs. Our hierarchical
classification system reached an overall mean classification rate of 89.6% and was diligently compared to existing state-of-
the-art algorithms using our benchmark dataset. For future research, the dataset can be used in the evaluation process of
new classification algorithms and could speed up the process of getting the best performing and most appropriate DLA
classification system.
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Introduction

According to the World Health Organization, the 4th leading

risk factor for mortality is insufficient physical activity [1].

Approximately 3.2 million people of the world population decease

each year because of insufficient physical activity [1]. Further-

more, the risk of all-cause mortality is 20% to 30% higher for

people with inadequate physical activity compared to those who

perform moderate physical activities at least 30 minutes a day [1].

Moderate physical activities are for example walking, ascending

stairs or certain household activities. Walking short distances

(instead of driving) or ascending stairs (instead of taking an

elevator) are modest possibilities to enhance one’s own activity

level day by day [2]. Apart from the effect of moderate physical

activity regarding all-cause mortality, it is assumed that the

participation in 150 minutes of moderate physical activity per

week reduces the risk of ischaemic heart disease by approximately

30%, the risk of diabetes by 27%, and the risk of breast and colon

cancer by 21% to 25% [1].

Ogden et al. [3] state that the prevalence of overweight among

adolescents aged 2 to 19 years and obesity among men increased

significantly during 1999 to 2004. They assume that the increase

in body weight is continuing in men, adolescents and children.

Wing et al. [4] review the evidence regarding the role of physical

activity in the treatment of adult overweight and obesity. They

conclude that it is of major interest to develop better ways of

measuring exercise. Thereby better types of exercise can be

defined that will lead to more adherence to exercise and thus long-

term weight loss.

A wide range of studies show that physically active people have

higher levels of health-related fitness and lower rates of various

chronic diseases compared to physically inactive people [5–11].

Methods for assessing the individual daily life activity (DLA) are of

major interest in order to monitor the current health status and to

provide feedback about the individual quality of life.

DLAs can be assessed by different methods. An overview of

these methods is given by Warren et al. [12]. Self-reports like

questionnaires and activity diaries are a widely used tool to assess

physical activity. They provide physical activity data from a large

number of people in short time. However, self-reports induce

problems with reliability, validity and sensitivity [13]. Therefore,

the current trend is to replace self-reports with automatic DLA

classification based on small and light-weight wearable sensors like
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inertial measurement units. These sensors provide a reliable and

objective measurement of physical activity.

Mannini and Sabatini [14] provide an overview of state-of-the-

art human physical activity classification systems. Most of the

approaches used accelerometers but differed in

N number of sensor axes (uniaxial, biaxial and triaxial acceler-

ometer),

N number of sensors and sensor placement,

N sampling rate,

N number of subjects,

N computed features,

N epoch/window size, and

N number and type of activities.

Regarding all these differences, it is difficult to compare newly

proposed methods to existing approaches in the literature. Ideally,

newly proposed methods are compared with other approaches in

the literature based on the same benchmark dataset.

The purpose of this paper is twofold. First, we provide an

extensive, publicly available dataset of DLAs to be used as a

benchmark for new algorithms in the future (http://www.

activitynet.org). Second, we propose a novel, hierarchical, multi-

sensor based classification system for DLAs, that is diligently

compared to existing systems.

Our assumption was that sensor fusion of accelerometers and

recently increasingly available gyroscopes improves the distinction

of several single activities like ascending or descending stairs. For

data generation, we measured 23 subjects with accelerometer and

gyroscope sensors placed at four body positions: wrist, hip, chest

and ankle. Thirteen activities were considered including postures

(sitting, lying, standing), household activities (washing dishes,

vacuuming, sweeping), walking behaviors (normal walking, run-

ning, stairs climbing), and sports activities (bicycling, rope

jumping). Our proposed classification system consisted of a

hierarchical classifier structure that is flexible in its applicability

to other activities that were not investigated in the current study.

In a first step, one classifier, in the following sections denoted by

BASE, was used to distinguish between several activity groups. In

a second step, separate classifiers, in the following sections denoted

by HOUSE, REST, WALK, and BICYCLE, were used to

discriminate between the single activities that were included in

each group. In order to compare the proposed approach to

existing algorithms, several state-of-the-art approaches in the

literature were implemented and evaluated using the provided

benchmark dataset.

Methods

Hardware Equipment and Sensor Setup
We collected data using four SHIMMER (Shimmer Research,

Dublin, Ireland) sensor nodes [15]. The SHIMMER sensor node

contains a MSP430F1611 microcontroller. The resolution of the

analog-to-digital converter was 12 bit. Each sensor node consisted

of three accelerometer and three gyroscope axes. The four sensor

nodes were placed on the right hip, the chest, the right wrist, and

the left ankle (Fig. 1). These four positions were chosen according

to previously published results, which are mentioned in the

following.

Sensors closely attached to the bodys center of gravity are to be

preferred [16]. Sensors on the chest, the trunk or the hip satisfy

this condition. Sensors on the hip are used in a variety of different

studies [16–22]. Sensors on the trunk or chest are also common in

the literature [23,24]. To cover the extremities, one sensor was

placed on the wrist and one on the ankle. Sensors on the wrist

enable a correct classification of activities mainly dominated by the

upper body [17–19,23]. Positioning a sensor on the ankle is

heavily used in gait analysis [25] and activity recognition studies

[17,20]. It has already been shown that sensors on the ankle

support the recognition of ascending or descending stairs [26].

The range for the accelerometers was 66 g. The range of the

gyroscopes was 6500 deg/s for the sensor nodes wrist, chest, and

hip and 62000 deg/s for the sensor node on the ankle, since

larger angular velocities are expected in the lower extremities. The

sampling rate was set to 204.8 Hz and the data was stored on SD

card.

A mobile phone (Samsung Galaxy S2) was used as labeling

device. An Android-based labeling App (Fig. 2) (running on the

mobile phone) was used to label start time and end time of single

activities concurrently to data collection.

The type of shirt and shoe (Fig. 1) was the same for all

participants. We used four different shirt sizes (S, M, L, XL) in

order to ensure tight fit and similar measurement conditions. To

guarantee similar measurement conditions, we measured the chest

width of each volunteer. Shirt sizes were assigned according to a

size chart. The volunteers chose the shoe that they felt most

comfortable in.

Subjects
23 healthy subjects (10 female and 13 male, age 2767 years,

body mass index (BMI) 24.0 kg/m263.5 kg/m2, mean6standard

deviation (SD)) were recruited for the study. Of these 23 subjects,

Figure 1. Sensor placement. Four SHIMMER sensor nodes were
placed on the wrist, chest, hip, and ankle.
doi:10.1371/journal.pone.0075196.g001

Figure 2. Screenshot of App used for data labeling purposes.
doi:10.1371/journal.pone.0075196.g002

Activity Classification Using a Benchmark Dataset
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21 were right handed and two were left handed. The Research

Ethics Committee of the Friedrich-Alexander-University Erlan-

gen-Nuremberg confirmed that there is no necessity to obtain the

approval of the local Ethics Committee. Ethics approval was

deemed unnecessary because we measured only volunteers that

were healthy, in good physical shape and did not suffer from a

disease. All subjects gave written informed consent about their

participation. All volunteers filled in the Physical Activity

Readiness Questionnaire (PAR-Q [27]). The PAR-Q provides a

self-administered screening before performing physical activity.

The aim of the PAR-Q is to identify those people who should

consult a doctor before performing physical activity. In the study,

only those people who passed the PAR-Q were considered. The

content of the PAR-Q can be found on http://www.activitynet.

org. The study protocol involved 13 daily life activities that are

normally performed every day. We used unobtrusive sensors that

did not influence the volunteers and did not pose any additional

risk to the volunteers. Furthermore, both supervisors of the study

were first aid-trained. We did not conduct research outside our

country of residence.

Data Acquisition and Study Design
The subjects put the shoes, the T-shirt, the hip-clip, and the

wrist band on (Fig. 1). The SHIMMER sensor nodes were

powered on and put on a plate (Fig. 3, top). For offline

synchronization, the plate was dropped down twice and, in

between, the plate was moved up and down. The sensors were

then placed on the dedicated measurement positions.

Subjects performed a total of 13 activities (Table 1), which were

taken from the ‘‘Compendium of Physical Activity’’ published by

Ainsworth et al. [28–30]. In these compendiums, physical activity is

characterized in four categories depending on Metabolic Equivalent

of Task (MET) values: sedentary (1.0–1.5 METs), light-intensity

(1.6–2.9 METs), moderate-intensity (3.0–5.9 METs), and vigorous-

intensity ($6 METs) activities. Table 1 lists the durations and the

intensities of the executed activities.

A researcher that labeled the start and end of each activity

accompanied the subject during the whole data acquisition. First,

the static activities (sitting, lying, standing) as well as the household

activities were performed. The subject was told to use the vacuum

cleaner with the right hand as this was the position for the wrist

sensor. Otherwise, the wrist sensor signal delivered no suitable

information about the signal pattern of the right hand. Then the

subject had to walk on the university campus to another building.

In this building, walking upstairs (until the third floor) and walking

downstairs (back to the main floor) was recorded. Afterwards, the

subject walked again on the university campus and performed the

physically more demanding exercises indoor. One exercise

included walking on a treadmill (h/p/cosmos quasar, h/p/cosmos

& medical gmbh, Nussdorf-Traunstein, Germany). The treadmill

speed was set to 8.3 km/h. Furthermore, the subjects had to

bicycle on an ergometer (sanabike 250 F, MESA Medizintechnik

GmbH, Benediktbeuern, Germany) with two different resistance

levels (50 W and 100 W). The treadmill speed and the resistance

level were chosen to obtain activities with different MET values

(Table 1). The subjects were told to keep the revolutions per

minute constant to 70 during the two different resistance levels.

Thus, the differences of the two levels were not due to different

revolutions per minute. Next, the subject had to perform the

activity rope jumping. For this activity, the subject had to perform

five trials with at least five jumps each.

As an example, Fig. 4 shows the linear acceleration in vertical

direction of the hip sensor for the activities lying, standing,

vacuuming, sweeping, walking, and rope jumping.

After the data acquisition, the SHIMMER sensor nodes were

taken from the dedicated measurement positions and put again on

the synchronization plate (Fig. 3). The described synchronization

pattern was again performed in order to check if problems of the

sensors occurred during the data acquisition. The SHIMMER

sensor nodes were powered off and the kinematic data and the

labeling data were stored on a PC for offline processing.

Preprocessing
Four datasets had to be excluded from further processing. Of

these four datasets, three datasets were excluded because of

problems during gyroscope initialization. The fourth datasets was

excluded as the data of the ankle sensor node was not available. In

total, 19 datasets were used in the following.

The four SHIMMER sensor nodes were synchronized offline.

For this, the first up-down movement of the sensor signal was

manually selected in the linear acceleration of the vertical

direction in all sensor nodes (Fig. 3, bottom, vertical line). This

point constituted the common start point of all sensors.

The labeling was done automatically due to the saved start and

end times of the Android app (Fig. 2). For each labeled activity,

two seconds at the beginning and at the end were cut, in order to

eliminate measuring errors during labeling.

Proposed Classification System
An overview of our proposed classification system is depicted in

Fig. 5. The rectangles indicate single classification systems,

whereas the circles indicate single activities. The general idea

was to set up a hierarchy of classification systems, where each

system solved a different classification problem. The first classifier

in the hierarchy was the BASE classification system. It discrim-

inated four activity groups and two single activities (rope jumping

and washing dishes) that did not fit in any of the groups. The

remaining four classifiers constituted the second hierarchy level.

Figure 3. Sensor Synchronization. Plate with four SHIMMER sensor
nodes used for synchronization (top) and sinusoidal synchronization
signal (bottom). Dashed red line depicts the synchronization start point.
doi:10.1371/journal.pone.0075196.g003

Activity Classification Using a Benchmark Dataset
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Table 1. List of studied activities, abbreviations, durations, and intensities expressed in Metabolic Equivalent of Task (MET).

Activity Abbreviation Duration [min] Intensity [MET]

Sitting SI 1 1.3

Lying LY 1 1.0

Standing ST 1 1.3

Washing dishes WD 2 2.5

Vacuuming VC 1 3.3

Sweeping SW 1 3.3

Walking WK n.a.* 3.5

Ascending stairs AS n.a.** 5.0

Descending stairs DS n.a.** 3.5

Treadmill running RU 2 9.0

Bicycling on ergometer (50 W) BC50 2 3.5

Bicycling on ergometer (100 W) BC100 2 6.8

Rope jumping RJ n.a.*** 8.8

*All subjects had to walk on the university campus from one building to another building.
**All subjects had to climb stairs to the third floor and then back again.
***All subjects had to perform 5 trials with at least 5 jumps each.
doi:10.1371/journal.pone.0075196.t001

Figure 4. Example signals. Linear acceleration in vertical direction of the hip sensor for six activities. A: Lying, B: Standing, C: Vacuuming, D:
Sweeping, E: Walking, F: Rope jumping.
doi:10.1371/journal.pone.0075196.g004

Activity Classification Using a Benchmark Dataset
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We chose such a hierarchical system, because new activities can be

introduced without retraining all classifiers. The system was

therefore flexible in its application to different activities.

Preprocessing
The data processing was performed in sliding windows with

50% overlap [17,20,21]. The width of the window was set to 5 s,

comparable to [17,21], which used 6.7 s and 5.12 s, respectively.

Feature Extraction
We defined a generic feature set for the classification systems

BASE, HOUSE, WALK, and BICYCLE, which were computed

for every sliding window. The generic feature set consisted of six

features that were computed for every sensor axis and one feature

that was computed for each of the accelerometer and gyroscope of

each sensor node. The six features for every sensor axis included

four time domain and two frequency domain features.

The four time domain features were:

N minimum amplitude

N maximum amplitude

N mean amplitude

N variance of amplitude.

The minimum and maximum amplitude extracted range

information of the amplitude. The mean and variance of the

amplitude gave important knowledge about statistics of the signal.

The two frequency domain features were:

N spectral centroid

N bandwidth.

Spectral centroid and bandwidth delivered important informa-

tion about the frequency distribution of the activities [31].

The single feature that was computed for each sensor type

(accelerometer or gyroscope) of one sensor node was the energy.

The energy for each sensor type was calculated in three steps.

First, the sum of the squared values for each axis was calculated.

Second, the three sums were added together and divided by three.

Third, this sum was divided by the number of samples. The energy

gave important information about the activity level of a person. In

total, this resulted in 152 features for each sliding window.

We defined a different feature set for the classification system

REST. We extracted the gravitational component of the

acceleration signal by a third-order elliptic low pass filter with

an infinite impulse response and a cut-off frequency at 0.25 Hz

[32]. This means that all three gravitational acceleration

components of all four sensors were used as features. This was

done because only the orientation of the body is important for the

discrimination of the activities sitting, lying and standing. In total,

this resulted in 12 features for each sliding window.

Classification
Since there is no single classifier that is suitable for all

classification tasks [33], the following classification systems were

used [33,34]: AdaBoost (ADA), classification and regression tree

(CART), k-Nearest Neighbor classifier (kNN) and Support Vector

Machine (SVM) with a radial basis function kernel. In the case of

AdaBoost, 100 decision stump learners were used. In the case of

kNN, k was set to five. The cost parameter of the SVM classifier

was set to one and the gamma parameter to one divided by the

number of features. For performance assessment, the mean class

dependent classification rate and the overall mean classification

rate were computed with a leave-one-subject-out procedure for all

five classification systems. In each leave-one-subject-out trial, all

epochs of one certain subject were removed from the training set.

In order to evaluate the whole hierarchical classification system,

the classifier with the best performance was chosen for the systems

BASE, HOUSE, REST, WALK, and BICYCLE.

Comparison to Algorithms in Literature
Our proposed method was compared to six state-of-the-art

approaches in literature [17,19–21,23,32]. We have chosen these

approaches due to their citation rate and hence, their state-of-the-

art research impact. Further, all six approaches had intersections

with our study setup regarding the used sensors (accelerometers

and gyroscopes), the sensor placement, and the performed

activities.

An overview of the different approaches is shown in Table 2.

The third column in the table shows according to each publication

the kind of sensor and their original placement. We only used

identical sensor positions and sensor data. This means that we only

considered at maximum four sensor positions (Fig. 1) of

accelerometer and gyroscope data and disregarded other signals

like the heart rate. We modified, for example, the sensor

placement and axes alignment suggested by Bao and Intille [17].

The authors used five biaxial accelerometers and placed them on

the right hip, the right wrist, the left arm, the right ankle, and the

left thigh. As we acquired data with triaxial accelerometers, we

only used two axes for comparison and only the signals of the three

sensors placed on the right hip, the right wrist, and the left ankle.

These were the sensor positions for which we had identical

placements compared to the work by Bao and Intille [17].

All six state-of-the-art approaches used a lower sampling

frequency than our proposed sampling frequency of 204.8 Hz.

In order to compare our method with the state-of-the-art

approaches, the datasets were down-sampled to the sampling

frequencies used in the corresponding approaches. The down-

sampling was performed by a linear interpolation method.

Furthermore, the epoch size was set according to the description

of each publication. We implemented the features and the

classifiers as described in the different approaches. We compared

our method only to the suggested final feature set and the classifier

with whom the best classification results were obtained. In order to

use the same evaluation process in each approach, a leave-one-

subject-out cross validation was performed in each of the six

Figure 5. Illustration of the proposed classification system.
Rectangles indicate single classification systems BASE, HOUSE, REST,
WALK and BICYCLE. Circles indicate single activities VC (vacuuming), SW
(sweeping), SI (sitting), LY (lying), ST (standing), WK (walking), RU
(running), AS (ascending stairs), DS (descending stairs), BC 50 (bicycling,
50 watt), BC 100 (bicycling, 100 watt), RJ (rope jumping) and WD
(washing dishes).
doi:10.1371/journal.pone.0075196.g005
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state-of-the-art approaches, except in the algorithm of Karantonis

et al. [32]. Karantonis et al. did not apply a training step and used

predefined and fixed thresholds.

Each approach in literature used different activities. We

evaluated all six approaches on all recorded activities in our

work, except for the algorithm of Karantonis et al. [32]. The

hierarchical, threshold based classifier used in Karantonis et al.

was optimized for fall detection and therefore not applicable for all

recorded activities in our work. For the other five approaches, this

means, that we investigated activities that were not considered in

the original works.

Results

Table 3 shows the overall mean classification rates after leave-

one-subject-out procedure. AdaBoost was the best classifier for the

HOUSE system. kNN was the best classifier for the WALK

system. SVM was the best classifier for the BASE, REST and

BICYCLE system. Table 4 shows the mean class dependent

classification rates and the overall mean classification rates of our

proposed and the compared algorithms [17,19–21,23,32]. The

confusion matrix of our proposed algorithm can be seen in Table 5.

Discussion

In this paper, we developed a hierarchical classification system

that was able to distinguish between 13 DLAs. Further, we

compared our proposed method to six state-of-the-art approaches

in the literature [17,19–21,23,32]. In the following, these two

aspects of this study are discussed in detail.

Subsystems BASE, REST, HOUSE, WALK, and BICYCLE
We divided our hierarchical classification system into five

subsystems. The BASE system is the basis for the differentiation in

the four subsystems REST, HOUSE, WALK, and BICYCLE and

the two activities rope jumping and washing dishes.

The best classifier for the BASE system was SVM with an

overall mean classification rate of 97.9% (Table 3). SVM is known

as a classifier with a good generalization performance [34]. The

overall mean classification rate of the AdaBoost classifier was

rather low compared to CART, kNN and SVM. The reason was

the low mean class dependent classification rate of the two single

activities washing dishes and rope jumping, which heavily

decreased the overall mean classification rate of the AdaBoost

classifier. The number of learners seemed to be too low for this

classification problem. Further research using these activities

might take this into account and increase the number of learners.

All in all, the high maximum overall mean classification rate of

97.9% showed the applicability of the BASE system to distinguish

between activity groups and single activities. The grouping

provided the possibility to use different classifier types for different

groups of activities. This enhanced the flexibility of the classifica-

tion system.

The overall mean classification rates of the REST system

ranged from 92.7% to 97.4% (Table 3). Thus, all classifiers were

suitable for the distinction between the static activities. Further-

more, the results showed that the reduced feature set was suitable

for this classification task. The best overall mean classification rate

was obtained with the SVM classifier.

The overall mean classification rates of the classifiers for the

HOUSE system ranged from 84.0% to 89.9% (Table 3). Although

the signal patterns of vacuuming and sweeping are similar (Fig. 4),

the proposed feature set was suitable to distinguish between these

two activities. The best classifier of the HOUSE system was

AdaBoost. The reason might be that AdaBoost is an ensemble

system, which reduces the variance and increases the confidence of

the classifier decision.

The kNN classifier was the best classifier in the case of the

WALK system and reached an overall mean classification rate of

97.7% (Table 3). Thus, walking patterns at different inclinations

and speed levels can be distinguished. It is assumed that the

gyroscope of the ankle provides useful information about the

inclination, which is also stated in [26]. In order to further improve

the performance of the hierarchical system, the activities walking

and running can be grouped, as well as descending and ascending

stairs. The corresponding two new subsystems can be added in our

proposed system after the WALK system (Fig. 5).

The overall mean classification rates of all classifiers in the case

of the BICYCLE system were rather low compared to the

classification rates of the other four subsystems (Table 3). Since the

revolutions per minute were kept constant, it was hard to

distinguish between the two resistance levels. The best classifier

was the SVM, which reached an overall classification rate of

61.6% (Table 3).

Table 3. Mean classification rates (in percent) of the five
subsystems (BASE, REST, HOUSE, WALK, BICYCLE).

ADA CART kNN SVM

BASE 64.8 96.1 97.7 97.9

HOUSE 89.9 84.0 86.5 85.5

REST 95.1 92.7 96.1 97.4

WALK 94.7 93.3 97.7 94.3

BICYCLE 60.8 53.7 49.4 61.6

Best results are printed bold.
doi:10.1371/journal.pone.0075196.t003

Table 4. Mean class dependent classification rates (in
percent) for all 13 activities and overall mean classification
rates of proposed system and state-of-the-art systems [17,19–
21,23,32].

[17] [21] [32] [23] [20] [19] Proposed

SI 83.1 83.7 81.8 65.5 67.7 38.1 88.9

LY 94.5 87.6 94.7 98.2 100.0 57.4 100.0

ST 80.7 60.2 64.0 65.6 48.6 44.4 89.8

WD 88.9 79.0 –* 75.4 56.0 89.6 98.1

VC 66.9 17.7 –* 36.0 39.2 42.9 85.4

SW 81.2 57.8 –* 60.7 62.6 54.3 89.9

WK 96.2 93.0 98.7 74.3 97.6 88.1 99.0

AS 79.5 18.6 –* 28.5 70.6 29.3 95.5

DS 73.1 16.4 –* 44.2 60.2 35.3 95.2

RU 100.0 98.3 –* 92.7 97.2 94.4 100.0

BC50 48.1 50.4 –* 40.2 64.3 47.8 69.1

BC100 48.5 11.7 –* 46.2 41.7 48.3 53.5

RJ 99.4 93.4 –* 76.6 86.7 33.3 100.0

mean 80.0 59.1 84.8 61.8 68.7 54.1 89.6

Best results are printed bold.
*The algorithm of (Karantonis et al. [32]) was not applied to all activities, as
activity optimized features were used.
doi:10.1371/journal.pone.0075196.t004
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All in all, the results (Table 3) showed that different classifier

types achieved the best overall mean classification rate regarding

each of the five subsystems BASE, HOUSE, REST, WALK and

BICYCLE. SVM was chosen three of five times as the best

classifier due to the known good generalization performance. As

AdaBoost and kNN achieved better results in two subsystems,

applying different classifier types for different groups of activities is

therefore mandatory. This endorses that no single classifier is

suitable for all classification tasks [33].

Comparison of Proposed System to State-of-the-art
Algorithms in Literature

We compared our hierarchical classification system with six

state-of-the-art algorithms in literature [17,19–21,23,32].

The algorithm described by Bao and Intille [17] reached an

overall mean classification rate of 80.0% (Table 4). The mean class

dependent classification rates of sitting, standing, and lying

(Table 4) were smaller compared to the given classification rates

in [17]. Especially, the mean class dependent classification rates of

sitting and standing were considerably higher (94.8% and 95.7% in

[17] compared to 80.7% and 83.1%). It is assumed that the

additional sensor on the thigh increased the mean classification rates

in [17]. On the other side, the mean class dependent classification

rates of walking and running were higher using our dataset (89.7%

and 87.7% in [17] compared to 96.2% and 100.0%). This might be

due to the different sensor position at the lower limb.

The algorithm described by Ravi et al. [21] reached an overall

mean classification rate of 59.1% (Table 4). The reason might be

that only one sensor on the hip was used. Therefore, the

classification of activities including upper and lower extremity

motions was challenging. This was indicated by the rather low

mean class dependent classification rates of the activities vacuum-

ing, sweeping, ascending stairs, descending stairs, and bicycling.

The algorithm described by Karantonis et al. [32] reached the

best mean class dependent classification rate for walking (Table 4).

The reason is that besides the detection of the postural orientation

(tilt angle feature), Karantonis et al. used an optimized algorithm

for walking. All used features were matched to their performed

activities (mainly transitions between standing, lying, and sitting

and different fall scenarios). The mean class dependent classifica-

tion rates of sitting and standing were rather low compared to

lying and walking (Table 4). It is assumed that instances of sitting

were misclassified as standing and vice versa, which was also

mentioned in [32]. The focus of Karantonis et al. was to detect

possible falls and hence, this misclassification is not severe. Their

focus was a real-time implementation for ambulatory monitoring.

Their algorithm could only be applied to a subset of our recorded

activities. Therefore, it is difficult to compare the overall

performance to the other approaches and our proposed algorithm.

The algorithm described by Pärkkä et al. [23] reached a rather

low overall mean classification rate of 61.8% compared to the

other algorithms (Table 4). The reason might be that only two

sensors (one sensor on the chest and one sensor on the wrist) were

used. Therefore, as mentioned before, the classification of activities

including lower extremity motions was challenging. This is

indicated by the low mean class dependent classification rates of

ascending stairs, descending stairs, and bicycling. Although

vacuuming includes motions that should be recognized by the

chest and wrist sensor, the mean class dependent classification rate

was low. It is assumed that instances of vacuuming were

misclassified as sweeping, whose signal patterns are similar to

signal patterns of vacuuming (Fig. 4). Regarding the discrimination

of the static activities, the mean class dependent classification rate

of lying was rather high compared to sitting and standing. The

reason might be that Pärkkä et al. merged sitting and standing to

one class. Thus, the used sensor placements were not able to

distinguish between these two activities.

The algorithm described by Preece et al. [20] reached the

overall mean classification rate of 68.7% (Table 4). Preece et al.

focused on the comparison of different feature sets optimized for

dynamic activities. They implemented wavelet features of five

separate studies [35–39], proposed two own wavelet feature sets

and compared each wavelet set to seven time and frequency

domain feature sets. Preece et al. obtained the best result with the

feature set of the magnitudes of the first five components of FFT

analysis (Table 2). This feature set was selected due to dynamic

activities. This might be the reason that the static activities sitting

and standing were classified with only 67.7% and 48.6%,

respectively. Preece et al. did not perform a feature selection as

they wanted to compare different feature sets. The results might

increase, if all features (wavelet, time and frequency domain

features) were combined in one feature set and an appropriate

feature selection procedure was applied to this feature set before

the classification process.

The algorithm described by Liu et al. [19] reached the overall

mean classification rate of 54.1% (Table 4). Liu et al. used the

epoch size of 30 s. This epoch size is not compatible with the

duration of our recorded activities. For the activity rope jumping,

the subjects had to perform five trials with at least five jumps each.

Hence, the duration of this activity was not always 30 s long.

Consequently, some rope jumping datasets were not used in the

classification process which yielded a low classification result of

33.3%. Five of our recorded activities lasted for only one minute

(Table 1). Since two seconds were cut at the beginning and at the

end of the labeled activities, classification of these five activities was

based on only one epoch, which might not be enough for robust

classification. The activities were correctly classified with mean

class dependent classification rates from 38.1% to 54.3%. We

included three household activities in our study setup. Two of

them were only recorded for one minute, and hence, classification

rates of only 42.9% and 54.3% (Table 4) were obtained. The third

household activity (washing dishes) was classified with 89.6%. This

might be because this activity was performed for two minutes

(Table 1), which might lead to better performance in [19]. Liu et al.

[19] performed a two-step feature selection. First, they performed a

statistical analysis that was followed by the minimal-redundancy-

maximal-relevance heuristic [40]. This resulted in a specialized

feature set (Table 2). The problem with specialized feature sets is

that they might not be applicable to all activities. This might be the

reason why only three activities were classified with higher than

80% and activities that were not considered in the original study

setup [19] like ascending and descending stairs were classified with

low classification rates of 29.3% and 35.3%, respectively.

Our proposed method reached the overall mean classification rate

of 89.6% (Table 4). It is assumed that different number of sensors

due to different study setups and different identical sensor positions

influenced the results. We used four sensor positions and compared

these four sensor positions to one sensor position [21,32], two sensor

positions [20,23], and three sensor positions [17,19]. Thus, by using

more sensors more complex activities can be classified.

We suggest to use sensors near the body’s center of mass (hip

and chest) in order to cover a wide range of basic activities such as

sitting, standing, lying, and walking. Nevertheless, the mean class

dependent classification rates of sitting and standing were smaller

compared to lying (Table 4). This trend coincides with the results

of the other approaches in Table 4. It is assumed that an

additional sensor on the thigh improves the performance of the

classification system.
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Moreover, we suggested to use sensors on lower and upper

extremities (wrist and ankle) to distinguish between more complex

activities like ascending stairs, descending stairs, vacuuming, and

sweeping. Nevertheless, vacuuming was often misclassified as

sweeping and vice versa (Table 5). In this case, an additional

sensor on the other wrist might incorporate additional information

into the classification system. Descending and ascending stairs

were often misclassified as walking (Table 5). In order to reduce

the misclassification, specialized gait features might improve the

results for the WALK system. Nevertheless, given the flexibility of

the proposed classification system, the incorporation of these ideas

is straightforward.

The high mean class dependent classification rates of washing

dishes (98.1%) and rope jumping (100.0%) (Table 4) showed again

the applicability of the BASE system to distinguish between single

activities and activity groups.

The high overall mean classification rate of the BASE system

(Table 3) showed that it is possible to classify the merged activity

group of the two resistance levels of bicycling. The rather low

mean class dependent classification rates of the two resistance

levels of bicycling 69.1% and 53.5% (Table 4) showed the

challenge to distinguish between the single resistance levels. The

reason is that the low resistance level was misclassified as the high

resistance level and vice versa, which is confirmed by observations

in the confusion matrix. Bicycling with the lower resistance level

(50 W) was correctly classified in 620 cases and misclassified as

bicycling with the higher resistance level (100 W) in 250 cases

(Table 5). Bicycling with the higher resistance level was correctly

classified in 480 cases and misclassified as bicycling with the lower

resistance level in 410 cases.

The algorithm described by Bao and Intille [17] was the best result

that we obtained with an algorithm used for comparison that we

applied to all performed activities. The reasons might be the following:

N The study design of Bao and Intille and our study design had

three sensor positions in common. In the other approaches, at

maximum two sensor positions were identical.

N The approach by Bao and Intille was applied on twenty

activities under both controlled conditions in the laboratory and

semi-naturalistic conditions outside the laboratory. Thus, the

approach by Bao and Intille seemed to be applicable for a large

set of DLAs, especially under semi-naturalistic conditions.

Compared to Bao and Intille, we only collected data under

controlled conditions. Thus, data under more realistic conditions

would be desirable and it is planned to integrate these more

realistic conditions in our work.

However, our proposed method showed that the classification of

DLAs can benefit from sensor data fusion of accelerometer and

gyroscope (Table 4). It is assumed that especially the gyroscope

improves the classification of activities which include rotational

movements like washing dishes, ascending stairs or rope jumping.

Most approaches found in literature only used accelerometers.

Nevertheless, Lee and Mase [24] and Najafi et al. [41] used the

combination of accelerometer and gyroscope for the classification

of body postures and walking behaviors like ascending stairs or

walking. However, the classification systems were optimized for a

certain subset of activities and cannot be applied to the recorded

activities in our work. Koskimaki et al. [42] used the combination

of accelerometer and gyroscope for the classification of activities of

workers on industrial assembly lines. Altun and Barshan [43] used

the combination of accelerometer and gyroscope for the classifi-

cation of nineteen DLAs. Koskimaki et al. [42] and Altun and

Barshan [43] computed features which were not optimized for a

certain subset of activities and therefore, it is planned to compare

our approach with [42] and [43], too.

For the performance assessment, a leave-one-subject-out

procedure was applied. This procedure results in a small bias

and a large variance of the true error rate estimator [44]. Due to

the sample size, the leave-one-subject-out procedure was preferred

to for example a 10-fold cross-validation, which shows a good

performance for a larger sample size.

Since, multiple subjects perform multiple activities in different

ways, there might be a high intersubject variability. In order to

setup a generalized system that shows good performance for an

unknown subject, the classification systems were trained based on

multiple subjects.

All in all, our hierarchical, multi-sensor based classification

system had problems in the distinction of the different activities of

the HOUSE and BICYCLE systems. Both systems have to be

improved. The activities sitting and lying were classified with mean

Table 5. Confusion matrix of our proposed algorithm. Each entry represents the number of classified epochs.

SI LY ST WD VC SW WK AS DS RU BC50 BC100 RJ

SI 383 0 22 14 1 2 0 0 2 0 7 0 0

LY 0 435 0 0 0 0 0 0 0 0 0 0 0

ST 0 0 386 27 9 0 0 0 0 0 8 0 0

WD 0 0 10 896 5 1 0 0 0 0 1 0 0

VC 0 0 0 0 369 55 0 0 0 0 6 2 0

SW 0 0 1 6 43 643 4 7 5 0 4 2 0

WK 0 0 0 0 4 4 1995 5 7 0 0 0 0

AS 0 0 0 0 0 3 10 279 0 0 0 0 0

DS 0 0 0 0 0 1 11 0 237 0 0 0 0

RU 0 0 0 0 0 0 0 0 0 886 0 0 0

BC50 0 0 0 0 4 22 0 1 0 0 620 250 0

BC100 0 0 0 1 0 6 0 0 0 0 410 480 0

RJ 0 0 0 0 0 0 0 0 0 0 0 0 236

The confusion matrices of each leave-one-subject-out trial were summed up.
doi:10.1371/journal.pone.0075196.t005
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class dependent classification rates below 90%. An additional

sensor on the thigh could increase these classification rates. We

calculated 152 features for each sliding window for each

classification system (except for the REST system). A high number

of features leads to high computational complexity in real-time

applications or in embedded systems. Hence, an automatic

reduction of this feature set like sequential forward selection [34]

should be applied. Nevertheless, the overall mean classification

rate of 89.6% showed the applicability of our proposed system to

classify the acquired 13 activities.

The hierarchical structure of our proposed system has four

advantages:

N Different classifiers can be used for the classification of

different activity groups.

N Additional activities can easily be integrated without retraining

the complete system.

N In many applications, in which the further classification of the

activities in the activity groups is not necessary, the HOUSE,

REST, WALK, and BICYCLE system can easily be neglected.

N A different window size can be chosen for the BASE, HOUSE,

REST, WALK, and BICYCLE system, which might increase

the classification rate.

Conclusion

Physically inactive people have to be motivated to be more

active so that their risk of various chronic diseases will decrease. A

first step is to provide feedback about the individual quality of life.

In this field, the classification of DLAs is of major interest.

In this paper, a novel, hierarchical, multi-sensor based

classification system was developed, which reached an over all

mean classification rate of 85.8%. We considered the classification

of 13 DLAs. Furthermore, our proposed system was compared to

state-of-the-art algorithms in literature using the same dataset. The

comparison showed that the proposed data fusion of accelerometer

and gyroscope provided a useful tool to distinguish between

complex activities like ascending stairs or descending stairs.

A multitude of activity classification systems has been proposed

in literature, and to date it is not clear which solution is

outperforming the others and is applicable to a variety of real

world scenarios. It is mandatory for the community to provide

benchmark datasets and reference implementations. This will help

to speed up the process of getting the best performing and most

appropriate DLA classification system into much needed real

world applications. We are inviting fellow scientists to share their

data and implementations on our newly erected internet platform

(http://www.activitynet.org).
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