Table 2. Estimated marginal posterior mean for variance components and major gene parameters of ln(SI) using polygenic and mixed inheritance models in Bayesian segregation analysis1.
Model2 | loge [p(y/Hi)] 3 | Model tested | BF(H2; H1)4 | ||||||||||
1. General | 0.011 | 0.110 | 3.408 | 1.36 | −1.21 | 0.58 | 0.85 | 0.46 | 0.15 | 0.90 | 1,378.0 | 1 vs. 2 | 487.1 |
2. General fixed | 0.087 | [0] | 35.834 | 5.72 | −5.99 | 0.73 | 0.99 | 0.28 | 0.02 | [0] | 890.8 | 2 vs. 3 | 315.3 |
3. Sporadic | 0.156 | [0] | [0] | [0] | [0] | [0.0] | [0.0] | [0.0] | [0.0] | [0] | 575.5 | 4 vs. 3 | 715.4 |
4. Polygenic | 0.017 | 0.131 | [0] | [0] | [0] | [0.0] | [0.0] | [0.0] | [0.0] | 0.88 | 1,290.9 | 7 vs. 5 | 140.4 |
5. Dominant A2 | 0.015 | 0.121 | 0.055 | 0.23 | 0.23 | 0.45 | [1.0] | [0.5] | [0.0] | 0.89 | 1,354.3 | 5 vs. 1 | −23.7 |
6. Additive | 0.015 | 0.107 | 0.035 | 0.29 | [0] | 0.55 | [1.0] | [0.5] | [0.0] | 0.87 | 1,337.6 | 6 vs. 1 | −40.4 |
7. Dominant A1 | 0.010 | 0.110 | 0.031 | 0.20 | −0.20 | 0.52 | [1.0] | [0.5] | [0.0] | 0.91 | 1,494.7 | 7 vs. 1 | 116.8 |
8. Codominant | 0.012 | 0.115 | 0.405 | 1.18 | −0.13 | 0.46 | [1.0] | [0.5] | [0.0] | 0.90 | 1,343.2 | 8 vs. 1 | −34.8 |
Bayesian segregation analysis of ln(SI) performed with software iBay version 1.46 [20]. The Gibbs sampler had these characteristics: number of iterations per chain = 1,200,000; burn-in period = 600,000; thinning = 10,000; collected samples per chain = 60; total chains = 20; and total collected samples = 1,200.
Model parameters: error variance ; polygenic variance ; major gene variance ; major gene additive effect ; major gene dominance effect ; is frequency of spleen size-decreasing allele A1; is the polygenic model heritability ; and transmission probabilities defined as the probability that a parent with any of the three genotypes transmits the allele to its offspring.
log e of the marginal density under the fitted model Hi.
Bayes factor BF(H2; H1) = p(y/H2)/p(y/H1) is the ratio of the marginal likelihood under one model to the marginal likelihood under a second model, and H1 and H2 are the two competing models.
Value between squared brackets indicates the parameter was fixed to the value shown.