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The growth and evolution of networks has elicited considerable interest from the scientific community and a
number of mechanistic models have been proposed to explain their observed degree distributions. Various
microscopic processes have been incorporated in these models, among them, node and edge addition, vertex
fitness and the deletion of nodes and edges. The existing models, however, focus on specific combinations of
these processes and parameterize them in a way that makes it difficult to elucidate the role of the individual
elementary mechanisms. We therefore formulated and solved a model that incorporates the minimal
processes governing network evolution. Some contribute to growth such as the formation of connections
between existing pair of vertices, while others capture deletion; the removal of a node with its corresponding
edges, or the removal of an edge between a pair of vertices. We distinguish between these elementary
mechanisms, identifying their specific role on network evolution.

he study of networks has received significant attention from the scientific community, thanks to its utility as

a useful representation of many complex systems found in the real world, ranging from social to technolo-

gical, infrastructural, biological and epidemiological systems' . While seemingly disparate, these networks
show common features, among them the fact that they evolve and grow, and many display heterogeneous degree
distributions”®. A series of models have been proposed to account for the growing nature of networks and to
uncover the role of various processes that affect the network topology. Perhaps the best-known are the class of
models based on preferential attachment’, in which vertices are added to a network with edges that attach to pre-
existing vertices with probabilities depending on their degrees. When the attachment probability is precisely
linear in the degree of the target vertex the resulting degree distribution follows the power-law p; ~ k™. This case
is of special interest because many networks from citation networks to the World Wide Web are observed to have
degree distributions that approximately follow power laws'°.

While the preferential attachment model captures the qualitative features of network evolution, it is a minimal
model with obvious limitations: (i) It predicts the value of the degree exponent to be y = 3, whereas most real
world networks have exponents in the range 2 = y = 4. (ii) It predicts a pure power law degree distribution, while
real systems are characterized by small degree saturation and high-degree cutoffs. (iii) It ignores a number of
elementary processes that play an important role in the evolution of many real networks, like the addition of
internal links and node or link removal.

To account for these limitations, a considerable amount of research has been conducted in the network science
community, exploring a series of pertinent modifications to the original model, by changing the form of the
attachment probability''™'¢, incorporating effects such as ageing'’~*, fitness®'~*, and allowing for the simultan-
eous addition and deletion of edges and vertices* >, each leading to predictions that approximate better the
degree distributions observed in real systems. Despite these advances, the current models were motivated by
specific problems, making it difficult to understand the role of individual processes on network evolution. For
example, models have typically included both random and preferential external attachment of nodes'*", or
preferential external and internal addition of nodes and edges'>'¢, but not simultaneously incorporating all of
these, nor in a fashion that the individual role of each process can be separately elucidated. At the same time these
models neglected the important role of the deletion of nodes and edges. When considered*****, this was studied
in conjunction only with preferential attachment of new nodes, and although the qualitative results were
sound (namely that deletion increases the value of 7y, eventually driving the network from a power law to an
exponential regime) the predictions for the degree exponent y > 3 even in the presence of low deletion rates, was
not in agreement with what is seen in real networks. Furthermore, when attempts were made to incorporate
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simultaneously multiple growth processes, the models were parame-
terized such that it is difficult to separate the contributions of the
individual elementary processes to the network topology. For
example, Ref. 31 considered the combination of adding links between
existing nodes and random rewiring of edges along with node addi-
tion. Unfortunately the variable representing each process were
dependent parameters, making it difficult to “decouple” their role
on the evolution from each other.

In light of these difficulties, our goal here is to study in detail a
model, which contains the fundamental processes by which a net-
work evolves, along with the degree of freedom of being able to study
and emphasize the role of each process independent of the other. Our
primary goal is not necessarily to uncover new results (although we
do present a series of new findings) but rather separate the “wheat
from the chaff” untangling the results of previous work, thus putting
in context and interpreting the role of the individual growth
processes.

To be specific, in this paper we study a model which incorporates
some of the most elementary processes that drive network evolution,
namely the addition of vertices and edges and their removal. Broadly
speaking there are four distinct microscopic mechanisms that con-
tribute to network evolution. Two contribute to growth, i.e. either a
new vertex attaches to pre-existing vertices, or an existing pair of
vertices form connections between them. The other two capture
deletion, either the removal of an existing node with its correspond-
ing edges, or the removal of an existing edge between a pair of
vertices. We systematically distinguish between these four fun-
damental processes, identifying their role on network evolution
and the degree distribution. We show that one can generate networks
with degree distributions in the same range as measured in real net-
works, in the presence of either specific combinations of these pro-
cesses, or indeed all of them occurring simultaneously.

Results

Model for network evolution. Let p; denote the fraction of vertices
that have degree k in a network of size n. Following'"'*> we define the
attachment kernel 7, to be # times the probability that a given edge of
anewly added vertex attaches to a pre-existing vertex of degree k. The
factor n here is convenient, as it means that the total probability that
the given edge attaches to any vertex of degree k is mypy. Since each
edge must attach to a vertex of some degree, m; must satisfy the
normalization condition, Z}io mipr=1. We define 7y ;- to be the
joint attachment kernel for an edge to be placed between the two
vertices of degree k and k’. The correct normalization in this case is
given by > [ _o Tkxprr =1, where pgp is the joint degree
distribution. We consider a network that evolves in time,
according to the four basic processes outlined in the introduction.
That is, in each unit of time, the following elementary steps are
considered:

Node addition. We add a new vertex to the graph along with ¢ edges.
While in principle, the number of these edges can be drawn from
some distribution, in the spirit of simplicity, we assume that all newly
added vertices have the same degree. We must next decide how to
attach the ¢ edges to pre-existing vertices in the network via the
attachment kernel ;. In the preferential attachment model 7, ~ k
(ref. 9), which precludes nodes with initially no links (k = 0) from
acquiring an edge. In real networks however even isolated nodes can
acquire links. Indeed, in citation networks, a new research paper has a
finite probability of being cited, or in social networks, a person that
moves to a new city will quickly acquire acquaintances. Zero-degree
nodes can acquire links if we add a constant a to m;'>*, obtaining

T =A(a+bk), (1)

where A = (a + b{k))~". Note that for k = 0, 7, ~ a, thus this
represents the probability for a node to acquire its first link and

can be thought of as its initial attractiveness® or fitness®*>. In the
limit a — 0 we recover pure preferential attachment, while as b — 0,
7 = 1 and we have purely random attachment of vertices leading to
an exponential degree distribution™.

Addition of internal links. Often links do not arrive with new nodes,
but are added between those already extant in the network. For
example, the vast majority of the links in the World Wide Web are
internal links, corresponding to URL’s added between existing web
documents, and so are virtually all new social/friendship links
formed between individuals who already have other friends. To
reflect this, we select m pairs of vertices already present in the graph
and according to 7, add a single edge between them. In order to
choose the form of m;;, we take inspiration from measurements
made on real networks****, suggesting that internal links are formed
with probability 7, ~ (s + tk)(s" + t'k’), incorporating both ran-
dom (s, s") and preferential (¢, t') attachment. This form allows us to
factorize the joint probability 7 ;- into the product fif;, and assum-
ings = s', t = t', we choose,

fe=B(s+1k), (2)
where B = (s + Kk))~".

Node deletion. Many real systems also experience node deletion,
reflecting for example, the departure of an employee from an organ-
ization or the removal of a document from the WWW. To account
for this phenomenon, with probability » we randomly remove a
single vertex from the graph, such that r < 1 corresponds to a grow-
ing network, while r = 1 represents a network of fixed size where
deletion is balanced by growth. In principle r can be greater than 1 (of
course then it ceases to be a probability), in which case we have
shrinking networks®* that eventually disintegrate. In this paper,
however, we restrict ourselves to the case of growing networks and
thus exclude this case.

Link deletion. Finally networks may also experience the deletion of
individual links between nodes. In fact this is probably more com-
mon than node deletion, as URL’s between webpages are frequently
removed or relationships between friends in a social network are
terminated while they continue to maintain ties with other acquain-
tances. Therefore with probability g we randomly select m existing
pairs of vertices and remove the edge between them.

We thus have eight parameters in the model, their role being
summarized in Table 1, while the four processes captured by the
model are schematically illustrated in Fig. 1. Now that we have our
basic ingredients, we can write down a rate equation that captures the
evolution of the resulting network,

Table 1 | List of key parameters in the model and their respective
roles

Parameter Role

c Number of external edges added

m Number of internal edges added/removed
r Probability of removing a vertex

q Probability of removing an edge

a Controls random external edge addition

s Controls random internal edge addition

b Controls preferential external edge addition
t Controls preferential internal edge addition
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Figure 1| Summary of the elementary processes whose input on network topology is studied in the paper. Left panel (a) With probability 7, ~ a + bka
newly introduced vertex (red circle) connects to c existing vertices (in this case ¢ = 2). (b) With probability 7, x a pair of existing vertices form a
connection to each other (green line). Right panel (c) With probability r a vertex (red circle) is chosen at random and deleted with its edges (dashed red
lines). (d) With probability g an edge between two existing vertices (green dashed line) is removed.
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The term Jy, represents the addition of a vertex with degree ¢, while
i represents the flow of degrees from fromk — 1tokand ktok + 1
owing to the addition of a single edge from the new vertex. Terms
involving m; ;- represent the flow of degrees due to the addition of a
single edge between two existing vertices, while the combinatorial
factor 2 accounts for the fact that each end of the edge can connect to
a vertex with degree k or k’. The terms (k + 1)py; and kpy describe
the flow from degree k + 1 to k and from k to k — 1 as vertices lose
edges when one of their neighbors is removed from the network. The
term rp; represents removal of a vertex of degree k with probability r,
while ey ; is the probability that a randomly selected edge has a vertex
of degree k on one end and another of degree j on the other.
Contributions from processes in which a vertex gains or loses two
or more edges in a single unit of time vanish in the limit of large n and
have been neglected.

The rate equation (3) is fairly complex due to the presence of the
joint probabilities 7 and pys. However if we assume that the
network lacks degree correlations, then py i can be factorized as
Pipr> while Zer; = kpi/(k). With the aid of generating functions
(Supplementary Methods, Sec. S1) this can be recast in differential
equation form thus,

ZC

£(2) (i ¥ 9) —Bla—2)g ()= (4)

1—z T1-z2’

where g(z) = Zj pxz* and 0, f3, o are functions of the parameters listed
in Table 1. (See Supplementary Methods, Eq. (S3) for their explicit
forms.)

Average degree (k). The solution to Eq. (4) is non-trivial. We can
make progress, however, if the average degree (k) depends only on

the free parameters of the model ¢, m, r, q. Note that at each time step
the net number of vertices added is 1 — r, each of which has c edges.
There are m edges added between existing pairs of vertices, while the
average number of edges removed when removing a randomly
chosen vertex is by definition (k). The number of edges removed
between existing pairs of vertices is g X m. Therefore in each time-
step the mean number of edges added is ¢ + m — (k) — qm. For a
graph with e edges and n vertices (k) = 2e/n. After time T we have n =
(1 — )7 and assuming that (k) has an asymptotically constant value,
e = (c + m — (k) — gm)t. Substituting and re-arranging, we obtain

k)= T fe+m(1—q). 5

Solutions for the degree distribution p;. We proceed to solve Eq.
(4) to determine the degree distribution p;. While we can solve the
equation with all its components numerically, it is difficult to get a
closed form analytic expression. We therefore first treat the case with
only the node and link addition processes (which we can solve
exactly) and then use an approximation to include the deletion
processes.

Pure growth. We start by considering the case when vertices and
edges are added but never removed (left panel of Fig. 1). In this case
r,q = 0 and thus o = 0. With this simplification, and after a sequence
of manipulations (Supplementary Methods, Sec. S2) it can be shown
that this leads to a degree-distribution,

) ’
o(+53)

where B(x, y) = I'(x)I"(»)/T'(x + y) is the Beta function. For large x,
we have B(x, y) = x™” and thus asymptotically p, ~ (k + k¢)77, a
shifted power-law, where,
p=1+ 1 oy sla+b(c+2m)|+2tcla+b(c+m)]
p bsc+2atm+2bt(c+m)(c+2m)

,  (7a)
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Figure 2 | Comparison between numerical simulations and analytical calculations (a) The points represent the result of logarithmically binning

numerical simulations over multiple realizations of the evolution process of a growing network involving pure addition with parameters c= 3, m = 2,a =
0.5,b=1,5=0.5, t = 1.0. The final size of the network is n = 10° nodes. The solid line is the theoretical result Eq. (6). The agreement between the two is
excellent. (b) Same set of parameters, now including deletion processes with = 0.2, g = 0.1. The solid line is a fit to the form py ~ (k + ky) " where y is the

theoretical expression (10). Once again the agreement is very good.

0 4bms(c+m)+as(c+2m)+2ac(c+m)t

B bsc+2atm+2bt(c+m)(c+2m)

ko (7b)

In Fig. 2a we plot py as a result of numerical simulations of the
evolution process described here, along with the theoretical express-
ion (6). As the figure shows the agreement between the two is
excellent.

We can isolate the effect of each growth process by setting its
associated parameter to 0. The combinations are listed in Table 2,
which allows us to draw the following conclusions.

Initial attractiveness/random attachment. Once present these two
have the following consequences:

® [Increases the degree exponenty. As we see from Table 2 its primary
effect is to introduce positive contributions to the exponent 7,
making the network more homogenous. For example in the sim-
ple case of prefer%ntial and random attachment of external links,
we have, y =3+ —. This means that y is always greater than 3 and

therefore the second moment (k?) is finite affecting both network

robustness®** and spreading phenomena***, In general the con-

tributions are simple additive perturbations for each random
process, in combination with internal or external preferential
attachment. When both external and internal preferential attach-
ment are present then the perturbations are more complex com-
binations than simple linear additive terms, however the
qualitative behavior is the same, y increases.

Generates a small-degree cutoff. We see that the solution is a
shifted power law p; ~ (k + ko) 7, implying a small-degree sat-
uration at ko, where kg is a function of the parameters ¢, m, a, b, s, t.
In the limit k>>1, however this initial attractiveness loses rel-
evance and py has a purely power law tail, a phenomenon that
can be understood from the fact that initial attractiveness predo-
minantly favors small-degree nodes.

Internal links. To understand the role of internal links we consider
several special cases.

® Double random attachment (t = 0, a, b, s # 0). In this case we have
external preferential and random attachment as well as random
addition of internal links. The degree exponent resulting from this

Table 2 | The list of solutions as a function of the different parameters for Eq. (7). The acronyms stand for Preferential (P) and Random (R),
while the subscripts refer to external (e) and internal (). When appropriate, citations to the literature where the results have been
calculated for the partial case are shown
Parameters Evolution Process Exponent y Range Shift ko Refs.
¢ b P, 3 — 0
¢ b a Pe+ Re 3+ 2 (3,%) a 12,15
be b
c,mb,s P, +R; 2m 2m 4m(c+m) -
34 3,3+= ameTm)
c,mb,a,s P.+ R, +R; 349 2m (3,2) 4bm(c+m)+a(c+2m) -
* be 3 be
¢ m, bt P+ P N 2,3) 0 13,16
c+2m
cmta P+ Re 24+ £ (2 2+£) c(c+m) -
m ! m m
¢, mta,s P+ R+ R RN (2,%9) s(c+2m)+2ct(c+m) -
m ' 2mt T 2m
¢, mbta P.+ P+ Re cla+b(c+m)) 2,2+ i) ac(c+m) 13
am+b(c+m)(c+2m) m am+b(c+m)(c+2m)
c,mb,ts P.+ P+ R; s(c+2m) +2ct(c+m) 2,3+ Zﬂ) 4ms(c+m) 13
cs+2t(c+m)(c+2m) ' c cs+2t(c+m)(c+2m)
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a s
evolution process is =3+ — + ——. Therefore-like in the case

of external links-random attachment of internal links continue to
play a homogenizing role as the exponent y > 3 for any combina-
tion of the parameters m, s, t. Indeed the random addition of
internal links tends to favor lower degree nodes due to their
preponderance, and consequently make them more similar to
hubs by increasing their degree. In the limit where random-dom-
inates over preferential-attachment (a, s — %) the distribution
converges to the exponential universality class as (k°) is finite.

® Double preferential attachment (a,s = 0 & b, t 7 0). In the case
of pure double preferential attachment, both ends of a new
link are proportional to the degrees k, k' of the nodes they

connect. The resulting exponent is y =2+

, indicating
that it varies between 2 and 3. Thus in this case, we see that the
preferential addition of internal links makes the network more
heterogenous. This is the result of two effects. Preferential
attachment of external links creates a power law network with
hubs (albeit with a fixed = 3), whereas the internal links
preferentially connect high-degree nodes allowing them to
grow faster at the expense of low-degree nodes, lowering
below 3.

® Random and Preferential attachment. In this case all para-
meters are non-zero, and the overall effect is a combination
of the two listed above. The key thing to note, is that the range
of the degree exponent is 2 <y < o,

The most important phenomenon that we glean from the results is
the heterogenizing influence on p; when internal links are added
preferentially. Even in combination with the other effects, there are
parameter ranges where y < 3 and since most real networks are
known to have exponents in this range, this suggests that internal
preferential attachment plays a key role in maintaining the docu-
mented heterogeneity in real networks. Next we examine whether
node and edge deletion preserves or destroys the effects of the ele-
mentary growth processes.

Growth with deletion. In the presence of node and edge deletion,
solving Eq. (4) in closed form is difficult. However, as we are prim-
arily interested in the asymptotic form of the degree distribution, we
resort to approximation methods to determine the form of py in the
tail of the distribution. In order to do so, we first simplify the express-
ion for the attachment kernels by setting b, ¢ = 1, such that m; = A(a
+ k) and f; = B(t + k). The disadvantage of this is that we cannot
treat random and preferential attachment separately. However we
have already explored the homogenizing role of random processes in
the previous section and based on the limiting behaviors that we
found, we assume py follows a power-law with an exponential cor-
rection, py = Ck 7, and solve for y and Q in the limit k>>1. Next,
following'***, we employ the method of telescoping products via an
expansion of py at large k (Supplementary Methods Sec. S2).
Substituting this expansion into Eq. (3) we find two solutions for
Q, namely Q = 1 and

Ac+2mB

B r+2qm/{k)’ (8)

If Q < 1 then the solution (8) is normalizable and p; decays expo-
nentially (with a power-law correction). However if the ratio is
greater than 1, it does not correspond to a normalizable probability
distribution and therefore the correct solution is Q = 1, leading to a
purely power law distribution p; ~ k™. This suggests that one of the
primary effects of the deletion process is to induce a topological phase
transition at the point Q = 1, separating an exponential regime from
a power-law regime. This phase transition has previously been poin-
ted out by, in the limited context of node addition and deletion. We

find that this phenomenon is robust to the inclusion of the full set of
growth processes considered here.

With a further simplifying assumption, we can define a single
critical parameter that determines the scaling regime. If a = s, or
in other words the degree of external and internal random attach-
ment is the same, then (8) reduces to: Q = A(c + 2m)/(r + 2gm/{k)).
Substituting in the expressions for A, (k), we find

=A==

1+r m(q+r)+cr

a strictly positive quantity, such that for a > a4, the distribution is
exponential, whereas for a < g, the distribution follows a power-law.
At the critical point a, it can be shown that p; has the stretched
exponential form pk~Ck*7’e*5ﬁ (Supplementary Methods, Sec.
S$2).
Below a, we find
(1+7)[e(c+m(1—q))+alc+m)(1+7)]

c%l—r%+chﬂl—qﬂ3—r)—adl+rﬂ+ﬂan(L—@2—a(L+rﬂq+rﬂ’
(10)

=2+

and in Table 3 we list the exponent y as a function of different para-
meter combinations, now including deletion. In Fig. 2b, we plot py as a
result of numerical simulations of the evolution process and compare it
to the theoretical expression (10), finding that the agreement between
the two is very good.

We can define one more critical point within the power-law
regime, in terms of a critical parameter a that separates power-laws
with finite second moments (i.e Y > 3) and those with infinite second
moment (2 <y = 3). To do so we set (10) equal to 3 and solve for a to

find
2 c+m(l—gq) m(l—q)—cr
¢ 1+r mq+ (c+m)(1+2r))

Therefore for a>a; we have a power-law with exponent y > 3 and
for a<a! we have 2 < y = 3. Note that negative values of a’ are
possible. In fact certain authors have suggested'” that one can gen-
erate power-laws with exponent y < 3 if the parameter a is negative
(one can see this in Table 2 by setting either a, b < 0). It is however
unclear as to what a negative value of a might mean. The most logical
way to interpret a is either as random attachment, or a fitness/intial
attractiveness parameter, and there does not seem to be a reasonable
argument for a vertex to have negative fitness. Consequently, we
require a > 0, allowing us to define yet another critical value,

(11)

re="(1-gq), (12)

c
such that if r > r, the phase with 2 < y = 3 disappears (as a is
negative) leaving us only with an exponential phase and a power-law
phase with y > 3. This is fairly easy to understand if the condition is
recast in a different form. Recall that the existence of the state (2 <y
= 3) is driven by internal preferential attachment which is parame-
terized by m. Using (5) we can rewrite Eq. (12) as the condition (k) +
2mq > 2m. The term (k) + 2mq however is just the average number
oflinks that are removed in a given time-step through node and edge
deletion, whereas 2m is the number of internal links added via pref-
erential attachment. So if the number of deleted links is greater than
the number of internal links added, than the effect of internal pref-
erential attachment is suppressed and therefore the state vanishes.
In Fig. 3 we plot the three phases, exponential (blue), power-law y
> 3 (red) and power-law 2 <y < 3 (green), also showing the random
attachment parameter a as a function of the deletion parameters r, g.
In order to separate the effects of node and edge deletion we set g = 0
in Fig. 3aand r = 0 in 3b. In both cases, we have the existence of three
phases separated by the a., a’ curves. However, we see that edge
deletion permits a much larger range in the phase-space for the
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Table 3 | The list of solutions of Eq (10) in function of the relevant model parameters. The acronyms stand for Preferential (P), Random (R),
Deletion (D), while the subscripts refer to external (e), internal (i), node (n) and link (I). When appropriate, citations to the literature where the
results for the partial case have been calculated before, are shown. Note here, that when = is shown in the range column, it denotes a phase
transition from a power law fo an exponential regime
Parameters Evolution process Exponent y Range Refs.
cr Pe + Dn 34 1i (3,30) 24-27
—r
C Qe 1 Pe+R.+ D, 2cr+a(l1+r)(1+2r) (3,%9) 45
34
c(I—=r)+ar(l+r)
cm,r P.+ P+ D, c(1+7) (2,%0) —
24—
c(1—r)+2m
c,m, Qg I P.+ P,+R.+ D, 2t c(1+r)c+m+a(l+7) (2,%9) —
(1—r)+mla(l+r)+2m)]+c[m(3—r)+ar(1+7)]
¢, mar P.+ P+ R+ D - (147)[(2c(c+m) +a(c+2m)(1+7)] (2,%) —
2(c+m)(2m+c(1—r))+a(l+7r)(c(1—r)+2mr)
c,m,ag; I P.+ P, +R.+ R + D, (1+7r)(a(14+7r)+c) (2,0) —
2m+c(1—r)—ar(1+r)
c,m,r,q P.+ P,+ D, + D, 2t c(1+7) (2,%9) —
c(1—r)+2m(1—q)
¢, mq P.+ P+ Dy 24 ¢ (2,3) 6
c+2m(1—q)
¢, m,ae, q P.+ P, +R.+ D 24 cla+c+m(1—q)) (2,%9) —
+3em(1—q)+m(a+2m(1—q))(1—q)
c,m, a,q P.+ P, + R; + Dy a(c+2m)+2c(c+m(1—q)) (2,%) —
a(c—2mq)+2(c+2m(1—q))(c+m(1—q))
¢, m, Qi q P.+ P+ R.+ R+ D (a+c)(c+m)—cmgq (2,%9) —
& +3cm(1—q) +m(2m(1 —q) —aq)

existence of a power-law degree distribution (especially for the green
phase). The critical parameters a.(c, m, 1, q) and a’(c,m,r,q) in con-
junction with Table 3 allow us to discuss the effects of each deletion
process.

Node deletion. Node deletion has a strong homogenizing effect on
the degree distribution, inducing a topological phase transition from
a power law to an exponential phase. Its effect is better understood by
looking at specific limits.

® (a,q = 0) When including only external preferential attachment,
we have y=3+ % For r < 1, the number of removed nodes is
less than that of newly introduced nodes and hence the network
exhibits net growth. However y increases in function of r and thus
the network is more homogenous. Specifically, in the limit r — 1,
we see that y diverges when there is only external preferential
attachment, and the degree distribution transitions to a stretched
exponential®’. This can be explained by the fact that random node
removal serves as a pruning of the degree of the high-degree nodes
(since the nodes that are being removed are more numerous low
degree ones which are connected to the hubs resulting in a peak
for py near (k)). Thus when the addition of a node is compensated
by the deletion of one, the increase of neighbors of hubs (from the
addition of the new node) is balanced by the removal of its low
degree neighbors, ultimately resulting in the homogenization of
the network.

On the other hand in the presence of internal preferential attach-

ment the degree exponent is y=2+ %
the divergence is suppressed. The adverse effect of deletion is com-
pensated by preferentially connecting hubs together, thus maintaing
the heterogenous character of the network. In this regime all three
phases can co-exist, although at r = r, the green state vanishes for

reasons explained earlier.

and one can see that

e (a# 0,q = 0). The compensating effect of internal preferential
attachment is eventually overcome with the introduction of

random addition. The homogenizing effect of this, in conjunction
with node deletion eventually induces a topological phase trans-
ition between a power law (red) and exponential (blue) phases ata
_ c s . . A _cl=r)+2m

= a,, which in this parameter regime is a, = BT Note, that
a. = 0 for all r, and therefore the phase transition exists whenever
there is any node deletion. In addition to this the power law region
: . ¥_  2(m—cr)

is separated into the red and green phases at a’ = T nasay One
again, the green state vanishes at r = r,.

Edge deletion. Edge deletion has a similar effect to node deletion,
however, it admits a wider region in phase space for power laws. We
once again examine these by looking at different limits.

® (a, r = 0) The value of the exponent in this regime is
y=2+ m Unlike node deletion, we see that y ranges
between 2 and 3 for all values of g In the limit ¢ — 1,y = 3.
This is easy to understand, since for g = 1 the number of internal
edges added and those removed are the same, and thus we effec-
tively only have preferential attachment of external edges and
recover that limit.

® (a#0,r=0) In this limit, just as in node deletion, there is a phase
[c+2m(1—q)][c+m(1—q)]

transition at a.= . Once again, we see that

mq
the phase transition is present for all values of g. The curve mark-

ing the separation between the green and red phases is now,

gt = 21 =q)lctm(l—q)]
¢ c+m(l1+q)

case for node deletion, the green phase exists for all values of g.

, which is positive for any g. So unlike the

Node and edge deletion. In general all three phases co-exist. The
corresponding limiting behaviors are:

e Homogenous regime (r = r.) The green phase vanishes and only
two phases survive (blue and red).

e Exponential regime (r, g — 1) Red and green phases vanish and
only the blue phase survives.
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Figure 3 | The existence regions of the three phases as determined by the elementary mechanisms (a) The random attachment parameter a as a function of
r (node removal) with g (edge-removal) set to zero and ¢ = 3, m = 2. The three phases are separated by the boundaries a. (9) and a’ (11). Above a,
the degree distribution is exponential (blue). At the phase boundary a, the distribution is a stretched exponential of the form pj ~ k344 a/2 =0k Below
a, the distribution is a power-law p, ~ k™7 (red), while below a; the distribution is a power-law with infinite second moment, i.e 2 <y < 3 (green).
(b) Same as (a) but now as a function of g, with rset to 0. We find access to a much larger region of phase-space permitting the power-law regime, specially

the green phase.

e Heterogenous regime (1, g — 0) The blue phase vanishes while the
green and red phases survive.

Discussion

Taken together the results suggests that the form of the degree dis-
tribution py is in general a highly complex interplay between the
different parameters, and is determined by the dominant elementary
process. While the combined effect is complex, we have been able to
clearly outline the role of the individual mechanisms, which are:

External links. A pure power law with y = 3 emerges if the links are
added only via preferential attachment. This can be thought of as the
“backbone” or starting point for understanding the degree distribu-
tion of real networks. When one includes initial attractiveness of
nodes or random attachment of the links, these lead to a small
degree saturation of the distribution by introducing a shift k.
Furthermore it homogenizes the network by making y > 3, driving
it toward the exponential universality class.

Internal links. When placed between nodes randomly, internal links
have the same effect as initial attractiveness. However, when
preferentially added, they tend to link together high degree nodes,
allowing them to grow faster than low degree ones and thus the
resulting network becomes more heterogenous. In conjunction
with external preferential attachment this lowers the exponent to y
< 3.

Node and edge deletion. Taken together node and edge removal
have a disruptive influence on the network topology. Random
node removal depletes the low-degree nodes (since they are more
numerous) while random edge removal depletes the high-degree
nodes (since they have the most links) and their combined effect is
to drive the exponent y far from 3, thus making the network more
homogenous. In particular as r — 1 the power law form of the
distribution is destroyed and the network undergoes a topological
phase transition to a stretched exponential. When combined with
random attachment (parametrized by a), this happens for r, g <1 at
a critical value a. such that for a > a, the network has an exponential
distribution whereas for a < g, it continues to follow a power-law.
The power-law phase includes a region with 2 <y = 3 (due to
internal link addition). This however vanishes for * > r, when the
number of deleted links exceeds the number of added internal links.

Thus random attachment and deletion act as homogenizing
forces, conspiring against the heterogenizing force, preferential
attachment. The resulting degree distribution, whether exponential
or power law, depends on which of these dominate. However, the
important thing to note is that there are wide regions in phase space
of Fig. 3 that permit networks with y < 3 when all of these elements
co-exist. This is particularly important as in most real networks (for
which we have 2 < y = 4), several of the elementary processes
discussed here do appear together. In citation networks, for example,
there are no deletion effects (in principle citations can be retracted,
but this is rare) although empirical measurements suggest the pres-
ence of initial attractiveness and preferential attachment®. Our
results indicate that the degree exponent should be a shifted power
law with y > 3 and this is precisely what is found”. Many other
networks, where deletion effects are present, have degree exponents
7 < 3 and our findings indicate that the reason for observed forms for
Pr strongly depends on the presence of preferential attachment of
internal links (in combination with external links), as well as net
growth, where vertex and edge addition outstrip their deletion.

One can augment the findings here by generalizing the framework
to directed networks'*%, including non-linear corrections to pref-
erential attachment'>", increasing average degree*~', edge rewir-
ing®® or aging of vertices'’** among other effects. Each of these will
of course introduce perturbations to our solutions, but the qualitative
behavior should remain within the bounds determined by the ele-
mentary mechanisms discussed here.

Methods

Solving for p using generating functions. Given a rate equation involving p, and of
the form p'y = F(k,px), we can convert this into a differential equation by the use of
generating functions g(z) = >°, pxz*. Multiplying the rate equation by z*, summing
over k and noticing that terms in kpy can be written as dg(z)/dz, we arrive at a
differential equation of the form dg(z)/dz = F(g(z)). Assuming that a solution to the
differential equation exists in closed form (typically special functions like the Beta
function or Hypergeometric functions), this can then be expanded in a power series of
z, following which py is determined by comparing coefficients.

Solving for py using telescoping products. Frequently a closed form solution to such
a differential equation does not exist. Nevertheless one can make progress if one is
interested in the form of the distribution for large k (the tail of py). Typically a guess is
made to the general form of py either through heuristic arguments or by examining
the results of numerical simulations. In the case discussed in this manuscript, we
chose pr = Ck™"QF. A high degree expansion is then performed for the telescoping
products pi/px—, and py/pi 1 in powers of 1/k, which is then substituted back into the
rate equation Eq. (3). Ignoring terms in 1/k (since we are interested in the limit k>>1)
and setting terms in k to zero gives us solutions for Q. Depending on the regime we are
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interested in, the corresponding solution for Q is substituted back into the equation
and setting the k-independent term to zero gives us the solution for y.
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