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ABSTRACT

Organisms across all three domains of life use gene
regulatory networks (GRNs) to integrate varied
stimuli into coherent transcriptional responses to en-
vironmental pressures. However, inferring GRN
topology and regulatory causality remains a central
challenge in systems biology. Previous work
characterized TrmB as a global metabolic transcrip-
tion factor in archaeal extremophiles. However, it
remains unclear how TrmB dynamically regulates
its �100 metabolic enzyme-coding gene targets.
Using a dynamic perturbation approach, we eluci-
date the topology of the TrmB metabolic GRN in
the model archaeon Halobacterium salinarum.
Clustering of dynamic gene expression patterns
reveals that TrmB functions alone to regulate
central metabolic enzyme-coding genes but cooper-
ates with various regulators to control peripheral
metabolic pathways. Using a dynamical model, we
predict gene expression patterns for some TrmB-de-
pendent promoters and infer secondary regulators
for others. Our data suggest feed-forward gene regu-
latory topology for cobalamin biosynthesis. In
contrast, purine biosynthesis appears to require
TrmB-independent regulators. We conclude that
TrmB is an important component for mediating meta-
bolic modularity, integrating nutrient status and
regulating gene expression dynamics alone and in
concert with secondary regulators.

INTRODUCTION

Diverse metabolic processes must be differentially
regulated to maintain homeostasis and optimize growth
in changing environmental and intracellular conditions.
Environmental fluctuations occur at several temporal
scales. This is mirrored in the integrated transcriptional

and metabolic regulatory networks at the enzymatic, tran-
scriptional and post-transcriptional levels in organisms re-
sponding to fluctuating conditions (1). For example,
transient nutrient changes may result in microsecond-
scale regulation of enzyme activity, whereas prolonged
exposure during the course of minutes or hours may
trigger changes in the levels of enzyme-coding transcripts
(2). Because of the potential for the buildup of toxic inter-
mediates and futile cycles, temporal dynamics of meta-
bolic enzyme-coding transcripts can be as important as
overall levels (3). Over evolutionary time scales, the
constant presence of a given nutrient may lead to gene
loss in competing metabolic pathways. Such streamlining
of the genome is thought to enable faster replication and
long-term adaptations in network structure or topology
(4). Discerning the dynamic function of the underlying
network resulting from the interaction of many different
levels of regulation remains a central challenge.

In archaea, evidence is mounting that transcription may
be an important mechanism for regulating metabolism.
Unlike eukaryotes and bacteria, in which regulation of
flux through central carbon metabolism and other
pathways appears to be allosteric (5), archaea seem to
lack many classic allosteric regulatory control points
(6).For example, in hypersaline-adapted archaea, glutam-
ate dehydrogenase was found to be unresponsive to ADP
and GDP (7), whereas D-Lactate dehydrogenase was not
regulated by fructose-1,6-bisphosphate (8). Additionally,
pyruvate kinase from Halobacterium salinarum was found
to possess only weak allosteric regulation (9). Other po-
tential regulatory mechanisms such as protein phosphor-
ylation have been proposed in two different archaeal
species (10,11); however, in the hypersaline-adapted
archaeal model system H. salinarum, much of the
missing regulation seems to take place at the level of tran-
scription (12–15). This property of haloarchaea provides a
simplified model system for understanding the underlying
logic of the integrated transcriptional and metabolic
network. The largely transcriptional nature of archaeal
responses has already been used to infer regulatory
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networks with a remarkable degree of accuracy (14).
H. salinarum survives in an extreme and fluctuating
environment, where daily and seasonal changes in
salinity, oxygen and nutrients require constant adjustment
of metabolism (16). Current evidence suggests that
many of these metabolic adjustments are regulated
transcriptionally.

For example, in H. salinarum, TrmB has been
characterized as the central transcriptional regulator of
carbon metabolic pathways under aerobic conditions
(17). Conserved throughout the archaea, TrmB is a
winged helix-turn-helix transcription factor (TF) that
binds a palindromic inverted repeat cis-regulatory
sequence in Pyrococcus furiosus (18), Thermococcus
litoralis (19) and H. salinarum (17). TrmB acts as a repres-
sor at some promoters and as an activator at others. In the
obligately anaerobic hyperthermophillic archaea, TrmB
has been characterized as a regulator specifically
involved in oligosaccharide transport and catabolism
(20). In contrast, TrmB in H. salinarum has been found
to bind 113 promoters in the genome to regulate genes
involved in diverse processes including central carbon me-
tabolism, TCA cycle, amino acid metabolism and co-
factor metabolism (17).

Yet even in these simplified systems, where metabolic
flux should largely be predictable from transcriptional
data alone, regulatory causality is complicated by meta-
bolic feedback. For example, TrmB appears to be
regulated at the level of TF activity (14,17), binding
sugars (glucose, trehalose, maltose) with varying affinities,
which in turn decrease TrmB affinity for DNA (17–19).
However, by de-activating transcription of ppsA (encoding
phosphoenolpyruvate synthase) and other gluconeogenic
genes while de-repressing transcription of pykA
(encoding pyruvate kinase) and other glycolytic genes,
the amount of glucose is decreased, causing increased
TrmB-promoter binding and reversing the effect (17). In
bacteria, the enzymes involved in glycolysis and
gluconeogenesis are regulated allosterically (5) in
response to transient changes, and transcriptionally
through cAMP Responsive protein (Crp in gram
negative bacteria) in response to more permanent
changes (21). In contrast, we hypothesize that TrmB regu-
lates metabolic enzyme-coding genes rapidly in response
to stimuli while also adapting the equilibrium levels of
these genes to longer-term conditions.

Regulation of diverse pathways in response to environ-
mental fluctuations of varying temporal scales is also
likely to be mediated by several TFs working together in
various combinations to produce appropriate transcrip-
tional dynamics for each pathway (14,22). Such network
topology is difficult to infer on the basis of steady state
measurements of gene expression and promoter occu-
pancy. To unravel cause and effect relationships in the
gene regulatory network (GRN) controlling metabolism,
we measured gene expression using NanoString� (23) and
TrmB binding dynamics using ChIP-qPCR over time in
response to a glucose stimulus. Integration of these data in
the context of a dynamical model enabled prediction of
how TrmB and its partners enact several transcriptional
programs in different ways across metabolic pathways.

MATERIALS AND METHODS

Strains and growth conditions

H. salinarum NRC-1 (ATCC strain 700922) was used as
the wild-type strain background for all studies
(Supplementary Table S1). Gene expression was assayed
in a previously constructed strain containing an in-frame
deletion of VNG1451C [�ura3DtrmB; (17)] and its
isogenic parent strain (�ura3). A previously constructed
strain containing trmB::c-myc fusion on a low copy
number plasmid was used for ChIP-qPCR to determine
binding site occupancy (17). Cells for gene expression were
grown in Complete Defined Medium containing 19 amino
acids [modified from (17); Supplementary Table S2] sup-
plemented with 50 mg/ml uracil to complement the ura3
deletion. Strains carrying the trmB::c-myc construct for
ChIP-qPCR were grown in Complete Defined Medium
supplemented with 20 mg/ml mevinolin for plasmid main-
tenance. Cultures were grown at 225 r.p.m. shaking at
42�C under low ambient light.

mRNA preparation for gene expression time course

H. salinarum Dura3 (parent) and �ura3DtrmB (knockout
mutant) strains were grown to early logarithmic phase
(OD600 &0.3). For gene expression time courses, three
4ml of aliquots were removed from the continuously
shaking cultures before the addition of 5% (w/v) glucose
(�240, �60, 0min time points) and seven afterwards (5,
10, 20, 45, 90, 180, 360min time points). Cells were imme-
diately pelleted by centrifugation and snap frozen in liquid
nitrogen. RNA was prepared using the Absolutely-RNA
miniprep kit (Stratagene/Agilent) according to the manu-
facturer’s instructions. RNA quality was assessed using
the Agilent 2100 BioAnalyzer RNA-Nano Chip and the
Prokaryotic Nano RNA protocol (Agilent Technologies,
Santa Clara, CA), and samples were verified to be free of
DNA contamination by 25 cycles of PCR amplification on
at least 200 ng of RNA before cDNA conversion in reverse
transcriptase quantitative PCR (RT-qPCR).

RT-qPCR

RNA extracted from cells was quantified using RT-qPCR.
Briefly, RNA was quantified using the Power SYBR
RNA-to-CT 1-step kit (Applied Biosciences) in an
Eppendorf Mastercycler ep Realplex thermocycler using
Realplex software. Reaction size was 20 ml, and reactions
were prepared according to manufacturer’s instructions.
Plate setup was performed robotically using a Corbitt
Life Sciences liquid handling system. CQ threshold was
determined automatically by the software. Primers were
crosschecked against the H. salinarum genome using
BLAST to ensure specificity. Amplification efficiencies
for each pair of primers (ppsA – VNG0330G, pykA –
VNG0324G, eif1a2 - VNG1756G) were determined by
running three serial 10-fold dilutions of the same sample
(see Supplementary Table S3 for primers). These
efficiencies were used to calculate enrichment relative to
the reference gene (VNG1756G) in RNA from time course
sampling from the measured CQ values as previously
described (24). Each experiment consisted of two to
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three biological replicates (separate cultures) and three
technical replicates. The significance of change in gene
expression before and after nutrient addition was
assessed using the Welch one-sided t-test. Using the first
three and last two points of each biological replicate time
course, we determined P-values for the difference in means
equivalent to a 1.5-fold up- or downregulation.

Measurement of gene expression using NanoString

Quantification of additional genes was performed on the
same RNA samples using NanoString technology (23).
One hundred micrograms of each RNA sample from
glucose time courses were delivered to NanoString
(Seattle, WA), where samples were hybridized to a
custom probe set (Supplementary Table S4) encompassing
100 genes of interest and counted using an nCounter
machine. The same mRNA samples used for RT-qPCR
were used for NanoString experiments. Data were
normalized by total counts per sample across strains. All
raw and normalized data are included in Supplementary
Table S5. For clustering, each gene was further mean
centered and normalized to a standard deviation of 1.
Gene expression profiles were clustered using k-means
with a Pearson correlation distance function on the
normalized gene expression data with k=8. The same
clustering parameters were used for both �ura3 parent
and �ura3DtrmB mutant data sets. Each cluster was
analyzed for enrichment of Clusters of Orthologous
Groups (COG) categories (25,26) using the
hypergeometric test.

ChIP-qPCR protocol

H. salinarum cells harboring the trmB::c-myc construct
were grown to early logarithmic phase (OD600 &0.3) as
described earlier in the text. DNA–TF complexes were
cross-linked and immunoprecipitated using the c-myc
epitope tag as previously described (17). Primers were
designed according to the criteria presented in (27). The
qPCR thermocycling reaction and thermocycling condi-
tions were as described previously (28), except that the
SsoAdvanced SYBR Green Supermix (Bio-Rad) was
used. Each of five biological replicates was run in three
technical replicates. Enrichment of TrmB binding at the
ppsA promoter was calculated as relative enrichment of
the immunoprecipitated sample versus the input. The
ratios given in the figures compare enrichment at the
binding peak to the 30 end of the gene of interest (28)
(Supplementary Table S3).

Degradation constant calculation

To assess the validity of our data and improve the
accuracy of our modeling, we decided to incorporate
genome wide mRNA degradation parameters. Although
these parameters have been determined for a related strain
[H. salinarum R1 ATCC 29341/DSM 671; (29)], the actual
half-lives were not published. We therefore reanalyzed the
microarray data (ArrayExpress accession number E-
MEXP-1088, http://www.ebi.ac.uk/arrayexpress/) to de-
termine these values (Supplementary Table S6). In short,
we normalized each gene on each array to the t=0 time

point, and for each gene, fit an exponential decay curve
through the points that were annotated as valid in the
microarray file using the nls() function in the statistical
package R. Standard error was also calculated using nls().

Modeling approach and fitting

Synthesis rate determination. To better understand how
binding events at the promoter influence gene expression,
we calculated the derivative with respect to time for every
gene at each time point by the weighted average of the
slope of the segments before and after each time point.
We used the Kdeg values from (29) to calculate the synthe-
sis rate according to Formula 1.

d mRNA½ �

dt
+Kdeg mRNA½ � ¼ Ksynthesis ð1Þ

Gene expression prediction. To determine the import-
ance of TrmB regulation to specific genes, we used an
ordinary differential equation (ODE) model to predict
gene expression dynamics in both WT and �ura3DtrmB
strains as a function of ChIP-qPCR enrichment at the
ppsA promoter. The first three and last three points of
the Dura3 gene expression and TrmB-binding time
courses were used to determine the values for Kbasal and
Keff by setting the right hand side of Formula 2 to 0. The
Hill coefficient (n) was set to either negative or positive
one to indicate repression or activation, respectively. The
level of gene expression during the nutrient stimulus was
predicted by calculating the change in gene expression
every minute according to Formula 2.

d mRNA½ �

dt
¼ �Kdeg mRNA½ �+Kbasal+Keff :TrmBn

enrichment

ð2Þ

Calculating model residuals. To elucidate the topology
of nutritional control of central and peripheral metabol-
ism, we compared our predicted and actual gene expres-
sion data. Each gene was normalized to a maximum of 1.
The normalized values were used as input to the TrmB-
enrichment-based predictive ODE model of gene expres-
sion (earlier in the text). For each gene in each of the
�ura3DtrmB and �ura3 strain backgrounds at each
mRNA time point, we calculated the difference between
the predicted synthesis rate and the actual synthesis rate as
calculated earlier in the text (see ‘Synthesis Rate
Determination’ section). We clustered resulting traces on
the basis of the �ura3 data using k-means clustering with
k=5 and Euclidean distance.

Feed-forward loop logic approximation. To assess
whether a feed-forward loop (FFL) might be responsible
for the dynamics we observed in the cobalamin biosynthe-
sis cluster, we simulated the network using a logic approxi-
mation (Figure 8A) (30). Genes involved in cobalamin
biosynthesis were normalized so that the lowest value
was 0 and the highest value was 1. A regulator was
presumed active when its value was >0.5. We used the
TrmB ChIP-qPCR binding data as an input and fit the
degradation parameter (Kdeg FFL Effector & Kdeg.cob/cbi) for
both of the other genes to the average scaled expression
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profile of the cob/cbi cluster using least squares. The fit
was evaluated at 5, 10, 20 and 45min following glucose
addition. This is the period in which feed-forward
dynamics would be expected to be most apparent.

RESULTS

Gene expression dynamics in response to nutrients are
dependent on TrmB

Our previous work demonstrated that TrmB binds the
promoter of metabolic enzyme-coding genes throughout
the genome in response to carbon source availability (17).
However, these studies were conducted at steady state. To
investigate the dynamic expression response of TrmB-
regulated genes to nutrients (glucose, glycerol and
sucrose), we used RT-qPCR to measure repressed (pykA)
and activated (ppsA) gene levels in response to nutrients
over time (Figures 1 and 2). TrmB is thought to regulate
these genes by binding to the promoter either to activate or
to repress expression in the absence of glucose. Addition of
glucose to the medium results in TrmB dissociation from
the promoter and de-activation or de-repression of the
target gene (17). Briefly, H. salinarum cells were grown on
amino acids as a carbon and energy source to mid-logarith-
mic phase. Cells were sampled thrice before and seven times
after the addition of nutrients (‘Materials and Methods’
section). We considered a change relevant when a 1.5-fold
or greater up- or downregulation of the target gene was
significant (P< 0.05). As these genes are a key control
point in glycolysis (pykA) and gluconeogenesis (ppsA),
their levels are highly informative of the regulation of
that pathway (31,32).

We observed that both ppsA and pykA mRNA exhibit a
characteristic steady-state expression value during mid-
logarithmic phase growth before glucose addition that
differs between the �ura3 parent and �ura3DtrmB
mutant strain (Figure 1). On addition of glucose, ppsA is
de-activated (Figure 1A, 3.6-fold decrease) and pykA is de-
repressed (Figure 1B, 12.7-fold increase) by the first time
point (5min), and both genes reached a new equilibrium
level by 45min. Hereafter, we refer to such monotonic
changes in gene expression as state-change dynamics.
These dynamics were greatly attenuated in the
�ura3DtrmB mutant background in response to glucose
(Figure 1) and in the �ura3 parent strain in response to
sucrose (Figure 2). Gene expression dynamics similar to
those in response to glucose were observed with glycerol
(Figure 2), although ultimately, a different final equilib-
rium level was reached. These data confirm that gene ex-
pression dynamics of ppsA and pykA are specific to
glucose and glycerol and dependent on TrmB.
Furthermore, they confirm the role of TrmB in regulating
genes coding for enzymes in glycolysis/gluconeogenesis at
both short and intermediate temporal scales.

NanoString measurement of temporal gene expression
reveals metabolic modularity governed by TrmB

In our initial experiments, both ppsA and pykA gene
expression exhibited state-change TrmB-dependent
dynamics. Because these genes are an important control

point in glycolysis/gluconeogenesis (6), state-change
dynamics in response to glucose and glycerol were
expected. However, TrmB regulates genes involved in
processes across metabolism (17). To assess the impact
of TrmB on gene expression in response to glucose, we
assayed mRNA levels over time following glucose
stimulus for 100 genes involved in central and secondary
metabolism using NanoString (23). NanoString was used
to assay gene expression because it has been shown to be
sensitive, precise and require minimal processing (33). We
selected 96 genes involved in central metabolism, including
both direct and indirect TrmB targets and TrmB itself
(Supplementary Table S4). Using data from previous
microarray experiments (13,14,34,35), we also selected
three genes (VNG1670C, mrp, srp19) expressed at high,
medium and low levels with minimal variation across
many conditions (Supplementary Table S4). The same
glucose response time points used for RT-qPCR
(Figure 1) were sampled in the NanoString experiment.
As NanoString has not been previously used for mRNA
quantification in H. salinarum, we validated the data by
comparing measurements of ppsA and pykA gene expres-
sion in the same RNA time course samples between the
NanoString and RT-qPCR platforms. We found a linear
relationship (Pearson correlation=0.962) across several
orders of magnitude (Figure 3), suggesting that
NanoString is a robust alternative to RT-qPCR for the
quantification of mRNA in H. salinarum.
To determine the pattern of TrmB-dependent regulation

across central and secondary metabolic pathways,
NanoString gene expression profiles were clustered separ-
ately in the �ura3 and �ura3DtrmB strain backgrounds
using k-means. The distribution of clusters was integrated
with the TrmB-centered metabolic regulatory network re-
construction (17) (Figure 4 and Supplementary Table S5).
Clusters of genes frombothDura3 and�ura3DtrmB expres-
sion profiles were analyzed for significant (P< 0.01) enrich-
ment of membership in COGs (Table 1) (25, 26).
Surprisingly, we found that temporal gene expression
patterns clustered according to metabolic pathway
modules in the Dura3 strain and to a lesser extent in the
�ura3DtrmB mutant, suggesting that TrmB is at least par-
tially responsible for the maintenance of metabolic modu-
larity (Figure 4C and F and Supplementary Table S5 and
Table 1).
The gluconeogenic enzyme-coding genes exhibited the

same state-change downregulation dynamics as ppsA in
the �ura3 strain, with the exception of enolase (eno),
which is not a direct TrmB target (17). These dynamics
were not observed in the �ura3DtrmB strain (Figure 4A
and Table 1). Because state-change dynamics in
gluconeogenic enzyme-coding genes were greatly dimin-
ished in the �ura3DtrmB strain, it is likely that these
genes are predominantly dependent on TrmB. As
expected, the expression profiles of enzyme-coding genes
in gluconeogenesis clustered in the �ura3 parent strain but
not in the �ura3DtrmB strain (Table 1).
In contrast to the state-change dynamics (i.e.monotonic

increases or decreases and a statistically significant change
in equilibrium gene expression) observed in the glycolytic
and gluconeogenic pathways, impulse-like dynamics
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(transient increases or decreases in gene expression) were
observed in the genes coding for enzymes in purine, co-
balamin and amino acid biosynthesis in the Dura3 strain.
The variety of impulse-like dynamics made metabolic
modularity especially apparent in these clusters. The
pattern of gene expression in the purine biosynthesis
cluster was distinct in both the �ura3 and �ura3DtrmB
strains (Figure 4B and G and Table 1). Expression of these
genes displayed a transient increase in mRNA immedi-
ately on the addition of glucose in both backgrounds
(Figure 4B and G). Although the impulse-like dy-
namics observed in purine biosynthesis genes are not

TrmB-dependent, the difference in overall mRNA concen-
tration compared with the parent strain at the start of the
time course but not at the end suggests that TrmB is none-
theless important in controlling these genes.

Expression patterns in genes coding for enzymes
involved in cobalamin (vitamin B-12) biosynthesis also
differed between the �ura3DtrmB mutant and �ura3
parent strains. In the �ura3 parent strain, these genes
were downregulated as soon as glucose was added. This
was followed by a transient upregulation centered 45min
after the addition of glucose (Figure 4E). These distinct
expression patterns were tightly correlated and clustered
together in the Dura3 strain (Figure 4E). In contrast, in the
�ura3DtrmB background, these genes were slowly

(A)

(B)

Figure 1. ppsA and pykA gene expression exhibits state-change
dynamics in response to glucose perturbation when TrmB is present.
Gene expression of ppsA (A) and pykA (B) to a 5% glucose stimulus in
the �ura3 (black lines) and �ura3DtrmB (gray lines) strains were
measured by RT-qPCR and are shown plotted on a logarithmic axis.
Error bars represent the standard error from the average of at least two
biological replicate experiments. Asterisks indicate significance of the
difference in expression level between the beginning and the end of the
time course; * significant at P< 0.05; ** significant at P< 0.01; ***
significant at P< 0.001.

(A)

(B)

Figure 2. ppsA (A) and pykA (B) do not respond significantly to 5%
sucrose in the �ura3 strain (black lines). ppsA and pykA respond to
0.167% glycerol stimulus in the �ura3 strain (gray lines). Gene expres-
sion was measured by RT-qPCR and is shown plotted on a logarithmic
axis. Asterisks indicate significance of the difference in expression level
between the beginning and the end of the time course; * significant at
P< 0.05; ** significant at P< 0.01; *** significant at P< 0.001.
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and constantly upregulated following the addition of
glucose without any rapid changes in expression level
(Supplementary Figure S1). There was no significant clus-
tering of these expression profiles in the �ura3DtrmB
knockout (Table 1). Together, these data suggest that co-
balamin biosynthesis is predominantly TrmB regulated
but that other factors may be involved.

In summary, the surprising diversity of observed
dynamic gene expression patterns suggests that TrmB is
required for temporal coordination of gene expression
across metabolism in response to glucose. These patterns
implicate other unknown regulatory factors in this process.
The expression of genes coding for enzymes at the core of
central metabolism appears to be predominantly TrmB
regulated, while branching cofactor pathways seem to
require additional, as of yet unidentified regulators.

TrmB promoter occupancy can explain gene expression
dynamics for ppsA

To determine the specific contribution of TrmB-promoter
binding to gene expression dynamics, we assayed TrmB
enrichment over time in response to glucose at the ppsA
promoter using chromatin immunoprecipitation followed
by qPCR (ChIP-qPCR, ‘Materials and Methods’ section).
Binding was assayed from 60min before glucose addition
through 180min after addition. The same time points used
for gene expression measurement were sampled with five
additional time points for increased resolution. During
mid-logarithmic growth on amino acids as a sole source
of carbon and energy, TrmB showed significant binding
enrichment (Figure 5A). On the addition of glucose, TrmB
dissociated from the ppsA promoter within 2min, and
binding dynamics exhibited slight but reproducible

damped oscillations before reaching a new steady state
level (Figure 5A). To quantitatively assess the role
played by TrmB in the gene expression profile of ppsA,
we calculated a derived mRNA synthesis rate and
compared it with promoter occupancy. We reasoned
that a derived mRNA synthesis rate is representative of
actual promoter activity and deconvolves the effect of dif-
fering mRNA degradation rates in different genes.
Derivation of an mRNA synthesis rate from mRNA

data requires the degradation constant (Kdeg) for the
gene of interest. For this, we used genome-wide mRNA
degradation rates that have been experimentally
determined previously in H. salinarum (29). The derived
mRNA synthesis rate of ppsA inferred from the gene ex-
pression data (Figure 5B) correlated strongly with the
ChIP-qPCR measurement of actual enrichment (Pearson
correlation=0.94). Taken together, these calculations
suggest that TrmB is the primary regulator of ppsA
mRNA synthesis.

Prediction of gene expression based on TrmB-promoter
enrichment

TrmB dynamics at the ppsA promoter explained the
temporal gene expression pattern observed for ppsA
mRNA (Figure 5). This led us to ask to what extent
TrmB-promoter binding dynamics alone could explain
the temporal expression patterns of other genes in the
TrmB regulon. To address this question, we modeled
expression across the 100 genes in the NanoString data
set as a function of TrmB enrichment at the ppsA
promoter over time. As TrmB binds a cis-regulatory
motif that is conserved throughout its regulon (TACT-
N(7–8)-GAGTA) and its biochemical mechanism involves
reduced affinity for DNA when sugar is present in the
growth medium, we expect that TrmB binding will be
qualitatively similar at all regulated promoters. This is
supported by previous genome-wide ChIP-chip studies
showing that TrmB bound its regulon only in the
absence of glucose or glycerol (17). We therefore
assumed for computational modeling purposes that
TrmB dynamics at the ppsA promoter were representative
of those at other promoters in the genome. ppsA
promoter-binding dynamics (Figure 5) were used as an
input to an ODE model of gene expression with two par-
ameters: a basal synthesis rate (Kbasal) and a scaling term
(Keff)(Methods). For 62 genes, this approach adequately
explained the dynamics and predicted the level of gene
expression in the �ura3DtrmB mutant strain (Figure 6A
and B and Supplementary Figure S1). For other genes,
this method explained certain aspects of the dynamics,
but not all. For yet other genes, the model was unable
to explain the changes in gene expression (Figure 6C
and D). The modeling and prediction for each of these
groups is described in turn later in the text.
To characterize both the role and the temporal

dynamics of additional regulators working with TrmB
over time in response to glucose, we calculated the differ-
ence in gene synthesis rate between the model prediction
and the observed data. We then clustered the synthesis
rate residuals (actual minus predicted) in the �ura3

Figure 3. NanoString gene expression measurements are tightly
correlated with qPCR measurements. mRNA levels for ppsA (black
points) and pykA (gray points) were measured by RT-qPCR and
NanoString. Both RT-qPCR and NanoString are shown plotted on a
logarithmic axis. Error bars represent standard error from two repli-
cates of NanoString and at least two replicates of RT-qPCR.
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strain for each gene over the glucose response time course
using k-means. This approach classified the accuracy of
model fits to the data into five different groups (Figure 7).
All five clusters were highly enriched for specific COG

functions (Table 2). In two of the five clusters (Cluster 4
and 5, Figure 7D), containing 62 of 100 genes, no pattern
was found in the residuals. This suggests that these genes
exhibited either little change over the time course or that
expression predictions from the TrmB-enrichment model
were accurate (Figure 7D). As expected, all three of the
no-change control genes were members of these two
clusters. Further, carbohydrate metabolism genes were
enriched in one of these clusters: they are predominantly
TrmB regulated and were therefore accurately predicted
(Figures 5 and 6).
The three remaining clusters (Clusters 1, 2, 3; Figure 7

A–C) showed significant dynamic patterns in their model
residuals between 0 and 180min after perturbation with
glucose. This indicates that the model prediction deviated
significantly from the observed data over certain time
points. Further, this deviation suggested that other regu-
lators besides TrmB may be involved.

Inferring regulatory network topology from dynamic gene
expression output

To identify how such regulators may be involved, we
reversed biological circuit design principles (2) to infer
GRN structure from dynamical output. Patterns of regu-
lation that could not be predicted from TrmB-promoter-
binding data were analyzed using logic approximations.
We applied this to Clusters 1 and 3, which were
enriched for functions in purine and vitamin B-12 biosyn-
thesis, respectively (Figure 7 and Table 2).
The �ura3 residuals in Cluster 3 (enriched for genes

encoding cobalamin biosynthesis proteins) exhibited a
peak centered at 20–45min (Figure 7C and Table 2).
Consistent with the gene expression data, the spike was
absent in the �ura3DtrmB strain. The global time delay
from changes in transcript to changes in protein level fol-
lowing perturbation in H. salinarum has been estimated at
�16min based on parallel mRNA and proteomics time
course data (13). The similarity between global transcrip-
tion-translation time lag and the lag between glucose
addition and the peak observed in cobalamin biosynthesis
gene residuals at 20–45min suggest that TrmB and a
second TrmB-dependent regulator may be involved in a
FFL to regulate cobalamin biosynthesis. As we observed
an immediate decrease in gene expression after TrmB
dissociated from the DNA, we reasoned that either
TrmB or the FFL regulator could activate cobalamin
gene expression. This represents an OR logic gate in the
FFL. To test whether our data were consistent with such a
feed-forward regulatory topology, we simulated the

A

B

Figure 5. (A) TrmB-binding enrichment at the ppsA promoter is
correlated with (B) predicted mRNA synthesis rate inferred from the
gene expression data (‘Materials and Methods’ section) at the TrmB-
dependent ppsA promoter after the addition of 5% glucose. Error bars
represent the standard error from the average of biological replicate
experiments. See also Supplementary Figure S3.

Table 1. P-values of enrichment of COG terms in k-means clusters of dynamic expression profiles of the �ura3 and �ura3DtrmB strains after

glucose stimulus

COG term Description Dura3 Dura3DtrmB

Carbohydrate transport and metabolism Glycolysis/gluconeogenesis 1.08E-03 NS
Amino acid transport and metabolism 2.95E-03 7.32E-04
Nucleotide transport and metabolism Purine biosynthesis 1.35E-04 1.23E-09
Coenzyme transport and metabolism Cobalamin biosynthesis 4.47E-03 NS

NS=not significant.
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proposed network using logic approximations (30)
(Figure 8A). We then fitted the parameters of the simula-
tion to our cobalamin biosynthesis (cob/cbi) gene expres-
sion data over the first 60min following glucose addition
(‘Materials and Methods’ section). The fitted degradation
rate of the FFL effector was 0.034min�1. This indicates a
response time of �20min, which is consistent with the
16min lag between transcription and translation (13),
and supports the transcription-translation FFL hypothesis
(Figure 8B). From this model, the degradation constant
for the cob/cbi mRNA was estimated at �5.5min, which is
similar to the average empirically determined half-life of
the cob/cbi mRNA [8.0min; (29)]. Furthermore, the

dynamic profiles of these genes make it clear that TrmB
is acting as an activator of cob/cbi genes, and that the
second regulator is acting as an activator as well.

In contrast to the lagged residuals of the cobalamin
biosynthesis cluster, the residuals of Cluster 2, enriched
in arginine and serine metabolism genes, exhibited an im-
mediately changing dynamic residual profile in the �ura3
parent strain (Figure 7B and Table 2). Model residuals
increase immediately on glucose addition in the �ura3
parent strain. This suggests that TrmB is not a primary
regulator of these genes. In contrast to the previous
cluster, because of the diversity of amino acid metabolic
pathways and the likelihood of multiple independent
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Figure 6. ODE model fit to NanoString gene expression data in response to glucose is predictive of gene expression in the Dura3 (parent strain) and
�ura3DtrmB mutant background for some but not all genes. (A) Phosphoglycerate mutase (gpm). (B) Pyruvate kinase (pykA). (C) Cobalamin
biosynthesis gene (cbiG). (D) 5-phosphoribosylglycinamide (GAR) synthetase (purD, purine biosynthesis pathway). Black lines represent mRNA level
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�ura3DtrmB, respectively. Error bars depict standard error from the average of two biological replicates of the gene expression data. Model fits to
data for the remaining 96 genes are exhibited in Supplementary Figure S1.
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regulators, further understanding of network topology of
this cluster will require additional studies.

The residuals of Cluster 1, enriched for functions in
purine biosynthesis (Figure 7A and Table 2), increased
immediately following glucose addition. Furthermore,

the residuals were similar in both �ura3 and
�ura3DtrmB. As the response time through a TF would
be on the order of the half-life of this factor [�10min; (2)],
these data implicate a secondary regulator already present
in the cytoplasm. Although TrmB may ultimately control
the concentration of such a secondary regulator
(Supplementary Figure S2), initial dynamics are likely
TrmB-independent. As the input signals to this secondary
regulator are unknown, this network is not amenable to a
logic simulation. Nevertheless, these data support the hy-
pothesis that a secondary regulator may work through an
independent pathway to impinge on the purine biosynthe-
sis genes coordinately with TrmB (Figure 6D).
In summary, predictions from ODE and logic models

suggest that TrmB is responsible, in various capacities, for
the temporal regulation of metabolism as well as the
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Figure 7. The difference between model-predicted and actual gene synthesis rates in �ura3 (black) and �ura3DtrmB (gray) in clusters over time in response
to glucose. (A) Cluster 1, enriched in genes coding for enzymes involved in purine biosynthesis; (B) Cluster 2, enriched in genes coding for enzymes involved
in amino acid metabolism; (C) Cluster 3, enriched in genes coding for enzymes involved in cobalamin biosynthesis; (D) Clusters 4 and 5, containing genes
whose expression is well-fitted by our model. The error bars represent the standard error from the average of the model fit residuals in each cluster.

Table 2. P-values of enrichment of COG terms in k-means clusters

of �ura3 model residuals

Cluster number COG term P-value

Cluster 1 Nucleotide transport and metabolism 6.30E-03
Cluster 2 Amino acid transport and metabolism 3.19E-02
Cluster 3 Coenzyme transport and metabolism 1.39E-06
Cluster 4 Carbohydrate transport and metabolism 7.24E-03
Cluster 5 Energy production and conversion 4.73E-02
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overall gene expression levels. We conclude that
integrating temporal gene expression data in response to
environmental and genetic perturbation assists in the clari-
fication of cause-effect relationships and prediction of the
GRN topology that regulates metabolic pathways.

DISCUSSION

In this study, we integrated dynamic gene expression data
with ChIP-qPCR measurement of promoter-binding site
occupancy over time using a two-parameter ODE model
to better understand the regulatory causality and topology
of the glucose responsive network in H. salinarum. We
found that TrmB operates directly, indirectly and in con-
junction with other factors to regulate gene expression
levels and temporal dynamics in response to glucose.
The cobalamin biosynthesis pathway appears to be

regulated transcriptionally both by TrmB and a TrmB-
dependent secondary regulator. Using logic approxima-
tions, we show that FFL topology is consistent with
our data (Figure 8B). Previous ChIP-chip data also
suggest that TrmB binds the promoters of four TFs:
VNG0156C, VNG0247C, VNG0878G and VNG1179C
(17). The TrmB cis-regulatory motif has been identified
in the upstream regions of several more TFs, including
VNG1899G. To determine which of these TrmB-depend-
ent TFs are the most likely candidates for the secondary
regulator, we explored the Environmental and Gene
Regulatory Influence Network (EGRIN). EGRIN is a
computationally inferred GRN for H. salinarum learned
from gene expression data across a range of genetic and
environmental conditions (14). Of the directly TrmB
regulated and potentially TrmB-regulated TFs, we
predict from EGRIN that VNG0156C, VNG1899G or
VNG1179C are more likely candidates for the regulation
of cobalamin biosynthesis.

Alternatively, feed-forward topology could be achieved
via feedback from a secondary metabolite, such as
adenosylcobalamin (vitamin B-12), rather than direct
regulation by another TF. For example, in Salmonella
typhimurium B-12 biosynthetic enzymes are regulated by
riboswitches. These 50 untranslated region mRNA
elements bind to B-12 with high affinity to control trans-
lation of target mRNAs (36).

It is also possible that a more complicated regulatory
topology underlies the dynamics we observed. For
instance, in S.typhimurium, transcriptional control of
B-12 biosynthesis involves the interaction of several
general and specific TFs. Genes coding for enzymes in
B-12 synthesis appear to be transcriptionally activated
by the relevant global TF, Crp (via cAMP), under
aerobic conditions and ArcA/ArcB under anaerobic con-
ditions. Besides affecting the transcription of the cob/cbi
genes, the condition-appropriate global regulator also ac-
tivates PocR. PocR binds DNA and further activates co-
balamin synthesis and propanediol metabolism [the
pathway for which cobalamin is needed; (37)].

Despite the potential for complicated control systems,
we favor the transcriptional FFL network proposed
for cob/cbi regulation. Riboswitch motifs have been
identified in numerous bacteria, but few archaea (38).
Computational analysis of the H. salinarum transcriptome
reveals little evidence for extensive 50 untranslated regions
(39) or riboswitch motifs. Furthermore, the timing of the
feed-forward dynamics is consistent with a transcriptional
feed-forward system rather than with more rapid post-
transcriptional regulation. Although it remains formally
possible that other more complex regulatory topologies
involving TrmB are acting on the B-12 biosynthesis
cluster, our data most parsimoniously support the less
complex FFL motif model under the conditions tested
here.
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The FFL motif is widely distributed in GRNs across the
bacterial and eukaryotic domains. In Escherichia coli,
FFL motifs are statistically overrepresented in network
analyses (40). For example, the global TF Crp and the
specific TF AraC control the arabinose utilization
operon in a FFL motif with AND logic (40); i.e. to tran-
scribe the arabinose utilization genes, the lack of glucose
AND the presence of arabinose must be sensed. FFL
motifs are similarly overrepresented in yeast (41).
Although relatively few putative FFLs have been specific-
ally identified in archaea (28), many of the same evolu-
tionary drivers that have led to feed-forward motifs in
other genomes may also be relevant (42).

Purine biosynthesis, on the other hand, appears to be
co-regulated by a non-TrmB-dependent TF in
H. salinarum (Figure 4). The EGRIN network suggests
several other regulators may be in play, including
VNG5009H, VNG2614H and VNG2163H; however,
none of these are directly TrmB regulated. TrmB is
required for the appropriate equilibrium level of these
genes, suggesting that it plays at least a partial role in
their regulation (Supplementary Figure S2). In E. coli
and Bacillus subtilis, for example, purine biosynthesis is
transcriptionally regulated by the PurR repressor in
response to the small molecule hypoxanthine (43,44).
Hypoxanthine integrates exogenous purine availability,
salvage and de novo biosynthesis to maintain cellular
purine levels. Although we could not identify a PurR
homologue in H. salinarum on the basis of sequence, an
analogous topology seems likely based on our analysis.

By integrating dynamic measurements of gene expres-
sion with promoter occupancy, this study has provided
insight into TrmB-mediated transcriptional regulation of
metabolism. Previous studies on TrmB in archaea have
focused on steady-state gene expression and promoter-
binding site occupancy to determine network structure
and infer regulatory relationships (17,45). Under steady-
state analysis, it is difficult to discern the role of TFs in
activating or repressing genes because the signal from
primary TFs is frequently confused by secondary regula-
tion. For example, it is difficult to infer the sign of edges in
an FFL (activation or repression), as the equilibrium level
of gene expression output is affected by both input edges.
We have demonstrated that adding a temporal dimension
to gene expression measurement during metabolic adjust-
ment deconvolves such regulatory relationships. Using a
network inference approach, we hypothesize a FFL regu-
latory topology from the signal at observable nodes. By
capturing the temporal separation of the activity of
primary and secondary regulators, we lay the groundwork
for establishing regulatory causality. This method of
dynamic measurement of gene expression in response to
genetic and environmental perturbation may be a gener-
ally feasible method for reconstructing GRNs in other
organisms across all three domains of life.
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