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ABSTRACT

Enrichment analysis of gene sets is a popular
approach that provides a functional interpretation
of genome-wide expression data. Existing tests
are affected by inter-gene correlations, resulting in
a high Type I error. The most widely used test, Gene
Set Enrichment Analysis, relies on computationally
intensive permutations of sample labels to generate
a null distribution that preserves gene–gene correl-
ations. A more recent approach, CAMERA, attempts
to correct for these correlations by estimating a
variance inflation factor directly from the data.
Although these methods generate P-values for de-
tecting gene set activity, they are unable to produce
confidence intervals or allow for post hoc compari-
sons. We have developed a new computational
framework for Quantitative Set Analysis of Gene
Expression (QuSAGE). QuSAGE accounts for inter-
gene correlations, improves the estimation of the
variance inflation factor and, rather than evaluating
the deviation from a null hypothesis with a P-value, it
quantifies gene-set activity with a complete prob-
ability density function. From this probability
density function, P-values and confidence intervals
can be extracted and post hoc analysis can be
carried out while maintaining statistical traceability.
Compared with Gene Set Enrichment Analysis and
CAMERA, QuSAGE exhibits better sensitivity and
specificity on real data profiling the response to
interferon therapy (in chronic Hepatitis C virus
patients) and Influenza A virus infection. QuSAGE
is available as an R package, which includes the

core functions for the method as well as functions
to plot and visualize the results.

INTRODUCTION

Microarrays and RNA-seq have made simultaneous ex-
pression profiling of many thousands of genes across
several experimental/clinical conditions widely accessible.
However, interpreting the profiles from such large
numbers of genes remains a key challenge. An important
conceptual advance in this area was the shift from a focus
on differential expression of single genes to testing sets of
biologically related genes (1). The development of statis-
tical tests to identify gene sets that are differentially ex-
pressed between groups (e.g. control and treatment)
remains an active area of ongoing research [see e.g.
(2–4)]. Gene sets are defined a priori as sharing some bio-
logically relevant property (e.g. members of the same
pathway, having a common biological function, presence
of a binding motif, etc.). In addition to the obvious ad-
vantage in interpretability, a key benefit of analyzing gene
sets compared with individual genes is that small changes
in gene expression are unlikely to be captured by conven-
tional single-gene approaches, especially after correction
for multiple testing. This was demonstrated by (1), where
an oxidative phosphorylation gene set was identified as
downregulated in diabetic patients, even though none of
the individual genes were downregulated by >20%.
Another factor in the popularity of gene set analysis is
the availability of publicly accessible databases, such as
MSigDB (5), that contain easy-to-use and high-quality
gene sets. Gene set analysis methods are generally used
to test one of two null hypotheses, either (i) the genes in
a set are not on average differentially expressed or (ii) the
genes in a set are at most as differentially expressed as
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genes not in the set. Methods that test null hypothesis
(i) are called self-contained, whereas those that test null
hypothesis (ii) are called competitive (6). The advantages
and disadvantages of each approach have been extensively
debated, and each has a distinct interpretation. Self-
contained tests assess the relevance of individual
biological processes, whereas competitive tests seek to dis-
tinguish the most important biological processes from
others that are less important. It has been suggested that
self-contained tests be used as an initial screening that may
be followed up with a competitive test (6). In both cases,
the failure of most methods to account for gene–gene
correlations has been recognized as a major effect that
can produce high Type I error (6–13). The end result
of current gene set methods is a P-value, which tests for
differential expression of the set of genes as a unit.
This focus on P-values restricts the ability to carry out
post hoc comparisons and increase the likelihood of meth-
odological flaws (14). This is especially limiting, as most
existing methods are designed to compare only two groups
(e.g. treatment and control). Although comparing a treat-
ment response between two cohorts (e.g. the response to
treatment with different drugs) can be done, each com-
parison requires its own setup, which is time-consuming
and error-prone. P-values also do not lend themselves to
intuitive visualizations, which can be an important part of
interpreting gene set analysis results. The popularity of
Gene Set Enrichment Analysis (GSEA) is due in part to
the availability of an intuitive plot of gene set differential
expression. The ‘Enrichment Plot’ [see Figure 2 in (15)]
displays the positions of genes in the set in a ranked list
of all the genes being measured. The ability to directly see
that the individual genes in the set ‘tend’ to appear among
the most differentially expressed genes (whether up- or
downregulated) provides important corroboration for
the P-value that is output. Gene sets that have significant
P-values may be dismissed if the pattern does not appear
biologically meaningful [see S3 in Figure 2 of (15)].
Since the development of GSEA (15), many approaches

for testing the differential expression of gene sets have been

proposed (2). The method proposed here, Quantitative Set
Analysis of Gene Expression (QuSAGE), is unique in
several aspects:

. Gene set differential expression is quantified by a full
probability density function (PDF) rather than a single
P-value.

. A variance inflation factor (VIF) is estimated from the
data and used to modify this PDF to account for
gene–gene correlation.

. Individual gene statistics are calculated using a Welch
test formalism so that no assumption of equal variance
of expression between control and treatment is required.

Approach

Given a matrix of gene expression values, QuSAGE
carries out four steps for each gene set of interest (see
also Figure 1):

(1) Compare individual gene expression values between
two groups (paired or non-paired) to obtain a full
PDF for differential expression of genes.

(2) Combine the individual PDFs from within the gene
set into a single ‘activity’ distribution using numerical
convolution.

(3) Correct the variance of the combined PDF to account
for gene–gene correlation by calculating a VIF.

(4) Compute statistical significance by comparing the PDF
to a baseline value or to the PDF of another gene set.

MATERIALS AND METHODS

Estimate the PDF for differential expression of individual
genes

A ‘t-test’ formalism is used to estimate the difference in the
mean expression of each gene between two groups (e.g.
‘control’ and ‘treatment’, which we use throughout the
article as generic labels for sample groups). For gene i,

Figure 1. Overview of the steps to carry out QuSAGE.
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expressions are annotated as Eg
i [where g 2 G are the

indexes of the samples that belong to a single group NG,
and G is one of control (C) or treatment (T)]. Unbiased
estimates for the mean and standard deviation within each
group are then calculated, respectively, by:

�EG
i ¼

P
g2G

Eg
i

NG
and sGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
g2G

Eg
i

� �2
� �EG

i

� �2h i
NG � 1

vuuut
ð1Þ

To model the difference in mean expression for gene i
between the two groups, we define:

tWelch
i ¼

�ET
i �

�EC
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sT
ið Þ

2

NT
+

sC
ið Þ

2

NC

r ð2Þ

According to Welch, tWelch
i approximately follows

Student’s t-distribution with n degrees of freedom, where
n is given by:

�Welch ¼

sTið Þ
2

NT
+

sCið Þ
2

NC

� �2

sT
ið Þ

4

N2
T
ðNT�1Þ

+
sC
ið Þ

4

N2
C
ðNC�1Þ

ð3Þ

In cases where a pooled variance approach is taken, the
standard deviation for the difference in mean expression is
calculated from each of the group standard deviations as:

sPooledi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNC � 1Þ sCi

� �2
+ðNT � 1Þ sTi

� �2
NC+NT � 2

s
ð4Þ

and tPooledi is defined as:

tPooledi ¼
�ET
i �

�EC
i

sPooledi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NC
+ 1

NT

q ð5Þ

which follows the Student’s t-distribution with
� ¼ NC+NT � 2 degrees of freedom.

To analyze paired samples, the difference in individual
gene expression is first calculated for each pair of samples
(s ¼ ft,cg):

Es
i � Et

i � Ec
i ð6Þ

from which the mean and standard deviation for the dif-
ference in expression between the groups are given respect-
ively by:

�ES
i ¼

P
s2S

Es
i

NS
and sSi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s2S

Es
i

� �2
� �ES

i

� �2h i
NS � 1

vuuut
ð7Þ

and we define:

tPairedi ¼
�ES
i

ffiffiffiffiffiffi
NS

p

ssi
ð8Þ

which follows Student’s t-distribution with � ¼ NS � 1
degrees of freedom.

The full PDF for the difference in expression between
the groups is generated for each gene by scaling the
Student’s t-distribution by the standard deviation. By
scaling, we arrive at a distribution for the difference in
expression, rather than the t-statistic itself. This distribu-
tion is shifted to be centered around 0 (by subtracting the
expected difference in expression) and sampled at a fixed
number of points (4096 by default). The range for
sampling is determined by the degrees of freedom such
that at most 10�8 of the cumulative distribution at the
tails are excluded (i.e. assumed to be 0). For example,
when � ¼ 3, the range is ð�480,480Þ, and when � ¼ 120,
the range is ð�6,6Þ.

Combine individual PDFs using convolution

Given a gene set, a single PDF for the difference in ex-
pression is generated by using numerical convolution
applied to the individual gene PDFs. This step builds on
our previously published algorithm (16), by taking advan-
tage of the fact that the distributions here are real and
symmetric (Student’s t-distributions). Briefly, a Fast
Fourier Transform is calculated for each individual gene
PDF to arrive at a k-component vector. The product of
each component across all of the genes is then taken to
arrive at a new k-component vector for the gene set. The
real part of the resulting product is then transformed back
to a PDF using a reverse Fast Fourier Transform and
assured to be normalized and centered around zero. The
mean of the combined PDF is simply the mean fold
change of the individual genes. Technically, the output
of this step is the PDF of the sum of differences in expres-
sions over all genes in the gene set under the assumption
that the genes are independent. To estimate the mean dif-
ferential expression PDF, this distribution is scaled by a
factor of 1=N, where N is the number of genes in the gene
set.

Account for gene–gene correlation

Correlation between genes in a set is taken into account by
scaling the gene set PDF using a VIF. This is done, as by
definition, the variance of the mean difference in expres-
sion for a set of N genes (fE1, . . . ,ENg) is:

Varð
1

N

XN
i¼1

EiÞ ¼
1

N2

XN
i¼1

XN
j¼1

CovðEi,EjÞ ð9Þ

Up to this point, genes were assumed to be independent,
which implies that CovðEi,EjÞ ¼ 0 for i 6¼ j. Therefore, the
VIF is estimated as:

dVIF ¼
PN
i¼1

PN
j¼1

dCovðEi,EjÞ

PN
i¼1

dCovðEi,EiÞ

ð10Þ

where dCov represents the unbiased covariance estimator,
which is calculated for an individual group G as follows:

dCovGðEi,EjÞ ¼

P
g2G

ðEg
i �

�EG
i Þ � ðE

g
j �

�EG
j Þ

NG � 1
ð11Þ
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where �EG
j is the estimator for the mean [Equation

(1)], G 2 fC,Tg and NG is the size of the group (e.g.
control or treatment). When using the Welch approxima-
tion, a VIF is estimated from the covariance of each indi-
vidual group, and a single VIF is calculated as the mean of
the VIFs for each group weighted by the group size.
When using a pooled variance approach, the covariance

is given by:

dCovpðEi,EjÞ ¼

P
G2fC,Tg

ðNG � 1Þ � dCovGðEi,EjÞP
G2fC,Tg

ðNG � 1Þ
ð12Þ

where dCovGðEi,EjÞ is the covariance estimation for group
G [Equation (11)]. Finally, having calculated a VIF for the
gene set, the PDF for the difference in expression be-
tween the groups is scaled by a factor of (

ffiffiffiffiffiffiffiffiffi
VIF
p

). Thus,
the standard deviation of the gene set PDF is increased
when there is a mean positive correlation between genes in
the set ðVIF > 1Þ.

Using moderated statistics for individual gene differential
expression

When estimating the difference in expression between
groups for individual genes, many current studies use
moderated statistics (e.g. ebayes in LIMMA and
SAMtools). These new standard deviations can be
integrated into QuSAGE as follows:

. The t-statistic [Equations (2), (8) and (5)] for each gene
i is re-calculated using the new moderated standard
deviation estimation (~si). For methods that also
moderate the degrees of freedom (n), such as
LIMMA, these new values should be used.

. The VIF calculation is adjusted by modifying the co-
variance matrix:gCovðEi,EjÞ ¼ dCovðEi,EjÞ�i�j ð13Þ

where �i �
~si
si
and ~si is the moderated standard deviation.

Statistical significance of gene set activity

A P-value for detecting activity of a single gene set is
calculated by comparing the gene set PDF to a baseline
value using a one-sided test:

Pvalue ¼

Z �

�1

PðxÞdx ð14Þ

where � is the value to be compared against. For a ‘self-
contained’ test, � ¼ 0, whereas a ‘competitive’ test is
implemented by setting � to be the mean differential
expression of genes not included in the gene set. A
P-value for differences in expression between two gene
set PDFs is calculated by:

Pðx1 � x2Þ ¼

Z 1
�1

dx1

Z 1
�1

dx2P1ðx1ÞP2ðxsÞ�ðx1 � x2Þ

ð15Þ

where �ðxÞ is the Heaviside step function, which equals 0
when x < 0, 1 when x > 0 and 1=2 when x=0.

Data sets

Interferon therapy response
Gene expression data from three clinical studies of the
response to interferon (IFN) therapy in chronic Hepatitis
C virus patients were downloaded from the Gene
Expression Omnibus (GEO): Study 1 (17) (GEO ID:
GSE11190) included samples from both peripheral blood
mononuclear cells (PBMCs) and liver, pre- and 4 h post-
therapy, Study 2 (18) (GEO ID: GSE7123) included PBMC
samples pre- and 1 day post-therapy, and Study 3 (19)
(GEO ID: GSE11342) included PBMC samples pre- and
3 days post-therapy. In all studies, patients were defined as
clinical responders if at least a 1000-fold decrease in the
level of hepatitis C virus (HCV) RNA in the blood was
observed 4 weeks post-IFN therapy. All other patients
were considered to be clinical non-responders.

Influenza A virus infection response
Temporal gene expression data were downloaded for
17 healthy human subjects before and after they
were challenged with live influenza A virus (H3N2/
Wisconsin) (20) (GEO ID: GSE30550). Patients were
defined as symptomatic or asymptomatic based on
a standardized symptom scoring metric [as described
in (20)], combined with nasopharyngeal viral titers
after 24 h.

All data were normalized using the GCRMA package in
R. For each data set, genes were removed if fewer than
two samples had expression values greater than a thresh-
old of 16 (indicating background expression). For the gene
set analysis of these data, the set of IFN-stimulated genes
(ISGs) was defined by (21).

RESULTS

Quantifying gene set activity

Given two groups to compare, gene set activity in
QuSAGE is quantified by the mean difference in log
expression of the individual genes that compose the set.
A key feature of QuSAGE is the estimation of the full
PDF for this activity. We start by computing the differ-
ence in expression for each individual gene under the
common assumption that the log expression follows a
normal distribution within each of the groups (control
and treatment). This interval estimation problem is gener-
ally known as the Behrens–Fisher problem, and there
are two main approaches to calculate the distribution
(see ‘Materials and Methods’ section for details). In the
first method (the pooled variance approach), the variances
of the two groups are assumed to be equal, and the
difference in the mean expression values is modeled as a
Student’s t distribution. The second method, proposed by
Welch (22), is also based on a Student’s t distribution but
relaxes the assumption of equal variances. Most recent
gene expression studies take the first approach and
assume that the variances of the two groups are equal.
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For example, this assumption underlies the individual
gene statistics in the widely used LIMMA package (23)
in Bioconductor.

The pooled variance approach can slightly improve sen-
sitivity (if the equal variance assumption holds) and is
easily compatible with linear models and Analysis of
variance (ANOVA). However, this approach can be ex-
tremely biased when the assumption of equal variances is
broken, which we find is often the case in many real gene
expression data sets. To illustrate this fact, we turn to a
series of clinical studies on the response of chronic HCV
patients to IFN therapy, which we use as running
examples throughout this article. Figure 2A plots the
estimated standard deviation of 12 718 genes that were
measured in one of these studies before the initiation of
IFN therapy (18). In this case, the patients were classified
by their clinical response to therapy, and it is clear that the
standard deviation for most genes is higher in strong re-
sponders. To demonstrate the impact of these unequal
variances, the sensitivity and specificity of both
approaches were estimated using stochastic simulations
based on the actual sample sizes (N1 ¼ 19,N2 ¼ 33) and
standard deviations (s1 ¼ 1, s2 ¼ 0:4) from an example
gene (the X in Figure 2A). Specificity (1-false-positive
rate) was calculated by sampling two groups from
normal distributions with the same mean (�1 ¼ �2 ¼ 1),
whereas the sensitivity (true-positive rate) was calculated
by sampling similar distribution with different means
(�1 ¼ 1, �2 ¼ 2). The results for each approach (Pooled
variance and Welch) are summarized as receivers operat-
ing characteristic curves (Figure 2B). Although the two
receivers operating characteristic curves lie on top of
each other, the desired specificity (Type I error) for the
pooled approach is biased leading to a significantly higher
false-positive rate than the a level. Thus, we recommend
the use of the Welch formalism for most cases, as there is
little benefit, and significant potential disadvantages, to
assuming that the variance of the ‘treatment’ measure-
ments will be similar to the ‘control’.

Accounting for gene–gene correlation

The expression measurements of individual genes in a set
are almost always correlated, and the assumption of inde-
pendence made by most existing gene set methods has
been repeatedly criticized (6–13). Several approaches
have been suggested to account for inter-gene correlations.
A straightforward method is to estimate P-values by
permuting the group labels of the samples. This is imple-
mented by the widely used GSEA method (15). However,
permutations are computationally intensive and perform
poorly with small sample sizes (N- 7 per group), where
the number of possible permutations is limited. A more
recent approach, CAMERA, estimates a VIF directly
from the data and uses this to correct for the error
introduced by gene–gene dependencies in a set (13).
QuSAGE adopts a similar approach but, unlike
CAMERA, does not require the assumption of equal vari-
ances for all the genes in each set.
The equal variances (across genes) assumption taken by

CAMERA leads to a slightly more computationally effi-
cient VIF calculation. However, this assumption is not
valid for most gene sets, and its violation can greatly
impact specificity. For example, we found that many
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways contain genes with widely varying standard de-
viations. In these cases, the VIFs calculated by CAMERA
and QuSAGE differ significantly (Figure 3A). To test
whether QuSAGE improves specificity under these condi-
tions, we generated data sets where genes are expected to
have no true differential expression, but gene–gene correl-
ations within the data would be preserved. In our first test,
the set of pre-therapy samples from HCV patients who did
not respond to therapy (N ¼ 20 poor responders, a subset
of non-responders) was divided randomly into two groups
(‘treatment’ and ‘control’). This procedure was repeated
10 000 times and, in each permutation, a P-value was
calculated for detecting ISG activity (21). We focused on
the set of ISGs because these are biologically relevant for
studying chronic HCV infection. As with many of the
KEGG pathway gene sets, the genes in this set also have
a wide range of standard deviations (across subjects, see
Figure 3A). When calculating ISG activity, gene–gene cor-
relations were either ignored (VIF=1), corrected using
CAMERA, or corrected using QuSAGE (with all other
parts of the computation held fixed). As there is no differ-
ence between the permuted groups, our expectation is that
the P-value distribution should be uniform. However,
CAMERA often produced right-skewed P-value distribu-
tions (high type II error rate) compared with QuSAGE
(see Figure 3C and D). Pathways where the VIF estimates
were close resulted in similar P-value distributions for
CAMERA and QuSAGE (data not shown). Both VIF
estimation methods performed better than the independ-
ence assumption (VIF ¼ 1), which has the highest Type I
error (Figure 3B). To test whether these findings were gen-
erally true, we repeated this procedure using KEGG
pathway gene sets. In Figure 4A, the mean empirical cu-
mulative distribution function for the fraction of KEGG
pathways with significant activity (of the 186 KEGG
pathways) is plotted against the a level. When genes
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samples in a study of chronic HCV infection (18). Samples were
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therapy, and separate standard deviations were calculated for each
group. Equality is indicated by the dashed line. (B) ROC curves
based on stochastic simulations (see text) for testing the difference
between two groups using Welch’s approximation (black line) or the
pooled variance approach (red line). The parameters for the stochastic
simulations were based on the empirical data [indicated by a white x in
(A)]. The X and 0 indicate the values for which � ¼ 0:05.
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were assumed to be independent (VIF ¼ 1), many more
pathways were found to be significant than expected
based on the a cutoff. In contrast, both CAMERA and
QuSAGE tended to be conservative, with CAMERA gen-
erally over-correcting. Similar results were obtained using
four independent data sets containing gene expression
profiles from cohorts of healthy individuals (25–28)
(Figure 4B). Thus, the VIF correction implemented in
QuSAGE effectively controls the Type I error rate in the
face of inter-gene correlations while providing improved
accuracy and power compared with CAMERA. This esti-
mation can be applied in both the pooled variance and
Welch’s approaches to individual gene differential expres-
sion analysis.

Visualizing gene set activity

Visualization of gene set activity can provide biological
insights beyond the calculation of single P-values. The
ability of QuSAGE to estimate full PDFs for gene set
activity enables a number of useful figures to be generated.
R functions to generate several of these are made available
as part of the QuSAGE package.

Comparison of gene set activity across two cohorts
Many experiments seek to compare the transcriptional
response to perturbation across two (or more) cohorts.
For example, in studying the response to IFN therapy in
HCV patients, a key question is whether the blood tran-
scriptional response (post- versus pre-therapy) differs de-
pending on the patients’ overall response to therapy
(responder versus non-responder based on viral load

measurements). As the patients are treated with IFN,
the set of ISGs is a natural set to consider. Using
QuSAGE, activity of the set of ISGs defined by (21) was
quantified in each cohort. These results are plotted in
Figure 5a, which displays the activity PDF for the entire
ISG set, along with the differential activity of the individ-
ual genes that compose the set. In this way, it can easily be
determined whether the activity results from small changes
in many genes, or large changes in just a few genes. In
addition, the gene set activity for both cohorts are plotted
together so that these can be directly compared. This com-
parison across patient cohorts can also be quantified by a
P-value using functions supplied in the QuSAGE package
(also see ‘Materials and Methods’ section), and such post-
hoc analysis is another key advantage of QuSAGE.

Gene set screening summary
Although the ISG set is an obvious candidate to analyze
when studying the response to IFN therapy, in many cases,
we are interested in identifying changes in gene sets which
might suggest new biology. This is most often accom-
plished by screening large numbers of pre-defined gene
sets, such as the ones made available in MSigDB (5), at
the same time. Figure 5B displays the treatment-induced
activity of 186 pathway gene sets from the KEGG
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Figure 3. Comparison of methods to account for gene–gene correl-
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(18)] were randomly divided into two groups. (A) VIFs were calculated
for 186 KEGG pathway gene sets (points) and the ISG gene set (white
x) using CAMERA and QuSAGE. The ratio between these VIF esti-
mates is plotted against the coefficient of variation of the standard
deviations for individual genes in each set. (B) The random division
of samples into two groups was repeated for 10 000 iterations and
P-values were calculated for the activity of the ISG gene set. Gene–
gene correlations were either (B) ignored (VIF=1), (C) corrected using
CAMERA or (D) corrected using QuSAGE. Type I errors for � ¼ 0:05
(indicated by the fraction of the distribution outside the vertical dashes
lines) were (B) 0.685, (C) 0.02 and (D) 0.052.

A

B

Figure 4. QuSAGE VIF estimation effectively controls the Type I
error. (A) P-values were calculated for the activity of each pathway
in the KEGG database (24) using the same data and approach as
Figure 3B–D. Gene–gene correlations were either ignored (VIF ¼ 1)
(black line), corrected for using CAMERA (red line) or corrected
using QuSAGE (green line). The empirical cumulative distribution
function (CDF) was calculated as the fraction of pathways with
P-values below the indicated a threshold, with the dashed line
indicating the specificity of an ideal test. The inset shows a closer
look at the vicinity of 0. (B) The same procedure was repeated using
four independent data sets containing healthy individuals [H1-4 that
correspond to (25–28)]. The mean (±standard error) empirical CDF
at � ¼ 0:05 is plotted using VIF corrections from CAMERA (red) and
QuSAGE (green).

e170 Nucleic Acids Research, 2013, Vol. 41, No. 18 PAGE 6 OF 11

]
to 
interferon 
vs
.
vs.
Since 
interferon
interferon 
stimulated genes (
)
]
While
interferon
]


database. In this case, the mean and 95% confidence
interval are extracted as summary measures of the full
activity PDF. From this visualization, both induced and
repressed pathways can be identified. The PDF for each
pathway gene set can be compared with zero to obtain a
P-value for detecting pathway activity (see ‘Materials and
Methods’ section). These P-values, which can be corrected
for multiple hypotheses testing using standard methods,
are used to color-code each pathway based on significance.
As expected from Figure 5A, the Jak–Stat pathway (which
includes many ISGs) is significantly induced.

Detailed view of gene set activity
Another visualization, shown in Figure 5C, allows inter-
rogation of the individual genes that compose a single
gene set. This can be used to identify the subset of genes
that drive activity. It may also be the case that the genes in
a set are not homogeneous in the direction that they

change as clearly seen in Figure 5C (see DISCUSSION
section for further comments).

QuSAGE improves sensitivity over existing methods

We compared the performance of QuSAGE with the
existing GSEA and CAMERA approaches on two real
data sets: profiling the response to IFN therapy (in
chronic HCV patients) and Influenza A virus infection.

Application to IFN treatment response in HCV patients
QuSAGE was next applied to the analysis of the response
to IFN therapy in patients infected with chronic HCV.
Approximately 3 million people in the USA are chronic-
ally infected with HCV. IFN therapy is costly, poorly
tolerated due to adverse side effects and ineffective in
many patients. The ability to predict which patients are
least likely to respond to IFN therapy would be a great

Figure 5. Visualization methods in QuSAGE. (A) The ISG response in HCV patients to IFN therapy is compared in both clinical responders (upper
panel) and non-responders (lower panel). Differential expression PDFs (comparing post- and pre-therapy time-points) are shown for individual genes
(thin curves color-coded by standard deviation), along with the aggregated estimate for the ISG pathway after taking into account gene–gene
correlation (thick black curve). The mean differential expression for individual genes in the set are indicated as line barcodes between the two panels.
(B) Summary of gene set activity (post- versus pre-therapy) among clinical responders for the 186 pathway gene sets in KEGG. For each pathway,
the mean and 95% confidence interval are plotted and color-coded according to their False discovery rate (FDR)-corrected P-values when compared
to zero. (C) Mean and 95% confidence interval for differential expression of individual genes in the KEGG JAK STAT SIGNALING pathway are
shown for clinical responders (blue line and gray band) and non-responders (points and bars color-coded by FDR-corrected P-values for comparison
with zero). Horizontal dashed lines indicate the mean differential expression for responders (blue) and non-responders (red). In all plots (A, B, C),
data are taken from (17) (see MATERIALS AND METHODS section for details). R code to produce these plots is part of QuSAGE and includes
options allowing many of the features to be customized.
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help in clinical decision making and could allow alternate
treatments to be explored.
Gene expression analysis in liver biopsies before and

after the initiation of IFN therapy have suggested that
clinical non-responsiveness is associated with a high
baseline level of ISG expression, leading to a stunted
response following IFN treatment (17,18,29). While
promising, there are significant disadvantages to a liver
biopsy compared with the use of a non-invasive blood
test to predict the outcome of therapy. Unfortunately,
the same study that identified significant differences in
liver biopsies failed to find any response-related differ-
ences in the PBMC transcriptional profiles of the same
patients (17). The lack of clinical response-related differ-
ences in PBMCs was also observed by (19), although
an earlier study by this group suggested that overall
gene induction following IFN therapy may be blunted in
poor responders (18). These generally disappointing
results call into question the potential of blood transcrip-
tional profiles for predicting HCV treatment response.
However, we recently found that chronic HCV infection
does induce a blood (2) transcriptional signature that can
be identified at the gene set level (30). This observation
motivated us to reconsider previous studies of treatment
response.
QuSAGE was used to analyze genome-wide expression

patterns in chronic HCV patients from three different
clinical studies (17–19) (referred to here as Studies 1, 2
and 3, respectively). These studies each included micro-
array-based expression profiling of PBMCs pre- and
post-IFN therapy. One of the studies also included liver
biopsies from the same patients pre- and post-therapy
(17). We first used QuSAGE to compare pre-therapy
ISG expression levels between clinical responders and
non-responders. Consistent with (17), pre-therapy ISG ex-
pression in the liver was significantly higher in non-
responders (P< 0.001). As expected by previous studies,
this association was not observed in the PBMC samples
from any of the studies (data not shown), suggesting that
pre-therapy ISG expression in PBMCs is unlikely to be a
useful biomarker to predict therapy response. Next, we
applied QuSAGE to estimate ISG set activity, defined
as the difference between post- and pre-therapy samples.
This activity was then compared between clinical
responders and non-responders. Using this approach, we
were able to reproduce the previous observation in Study
1 that clinical responsiveness was associated with signifi-
cantly stronger up-regulation of ISG expression in the
liver (Figure 6). Importantly, we also found evidence for
this association in PBMCs in all three studies (Figure 6).
While the difference was only statistically significant for
Studies 1 and 2, this is likely explained by the later post-
treatment sampling time of Study 3 as the magnitude of
the difference decreased with the length of time between
the pre- and post-treatment blood samples. These results
are particularly important because a difference in IFN
treatment response has not been previously observed in
PBMCs, and it suggests that a blood test may be useful
for predicting therapy response. However, this test is only
useful if done within a short time after IFN treatment, as
the signal disappears 3 days post-treatment. In addition,

these results suggest that the blunted ISG response in non-
responders is not solely due to pre-activation of the IFN
pathway as previously suggested, since no differences in
baseline ISG expression levels were observed for PBMCs.
In addition to ISG activity, QuSAGE detects significant
activity of many other pathways in patients responding
to IFN therapy, even when the number of samples is
small (e.g., 6 non-responders versus 10 responders in
Figure 5B). In contrast, GSEA is unable to detect this
activity since it depends on permutations to account for
gene-gene correlations, which imposes a theoretical limi-
tation in the possible P values that can be produced
(Supplementary Figure S1). Overall, these results demon-
strate the power of QuSAGE to discover new biology, and
show that QuSAGE can be more sensitive than GSEA
when sample sizes are small.

Application to influenza A virus infection response
QuSAGE was also used to quantify ISG activity in asymp-
tomatic and symptomatic subjects following influenza in-
fection. In a previous study, these genes were specifically
associated with symptomatic infections (20). Briefly, 17
healthy human subjects were exposed to live influenza
and classified as asymptomatic or symptomatic based on
the severity of symptoms. Peripheral blood was collected
at approximately 8 h intervals up to 108 h post-exposure
for gene expression analysis. To compare the sensitivity of
QuSAGE with existing methods (GSEA and CAMERA),
we quantified the activity of ISGs at each time-point
relative to the pre-exposure levels (Figure 7A). As
expected, all approaches generally showed stronger ISG
activity in symptomatic patients. However, while the
qualitative activity patterns were similar, QuSAGE was
able to detect statistically significant activity (P< 0.05)
at earlier time points (36 h post-exposure for QuSAGE
and CAMERA versus 45 h for GSEA). The P-values

Figure 6. QuSAGE reveals significantly stronger activation of the IFN
pathway in HCV therapy responders. ISG set differential expression
was calculated for clinical responders (solid lines) and non-responders
(dashed lines) by comparing gene expression measurements from
matched post- and pre-treatment samples. Studies 1, 2 and 3 refer to
(17–19), respectively. The activity PDFs for responders and non-re-
sponders were compared: Asterisk indicates P < 0:05, double asterisk
indicates P < 0:01 and triple asterisk indicates P < 0:001.
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produced by QuSAGE were also consistently smaller.
QuSAGE was also able to detect stronger and earlier dif-
ferences in ISG activity when comparing asymptomatic
and symptomatic subjects directly to each other (36
versus 45 and 53 h post-exposure, for QuSAGE,
CAMERA and GSEA, respectively) (Figure 7C).
Although none of the approaches detected significant
activity in asymptomatic subjects, the activity estimated
by QuSAGE was much smoother and closer to zero
compared with GSEA (compare Figure 7A and B).
Thus, QuSAGE exhibits increased sensitivity compared
with both GSEA and CAMERA.

DISCUSSION

QuSAGE is a statistical framework for gene set analysis.
Focusing on gene sets, rather than individual genes, has
proved to be highly useful in practice, and dozens of
methods have been proposed (2). Compared with
existing approaches, QuSAGE improves power by more
accurately accounting for inter-gene correlations while
also providing a more intuitive means to estimate gene
set differential expression by considering the full PDF
confidence interval estimation. This enables post hoc com-
parisons between gene sets, along with more intuitive visu-
alizations (Figure 5).

Many existing methods for gene set analysis fail to
account for prevalent inter-gene correlations, resulting in
a high Type I error. One approach to account for the lack
of gene independence is to compute P-values by using a
permutation of sample labels to generate the null distribu-
tion, as employed by the widely used GSEA (15).
However, this can be computationally intensive and has
also been criticized for mixing null hypotheses (6). In
addition, permutations require a large number of
samples in each group. When the number of samples per
group is less than seven, GSEA suggests switching to gene
set permutations, which again has the problem of
assuming gene–gene independence. Moreover, if multiple
hypothesis corrections are to be applied, the minimum
sample number increases. A more recent approach,
CAMERA, attempts to correct for inter-gene correlations
by estimating a VIF directly from the data (13). QuSAGE
builds on this approach but corrects for a number of
shortcomings including the assumptions that: (i) the
standard deviation for individual genes is the same
across groups (i.e. treatment and control) and (ii) all
genes have the same variance. This first assumption is
also made by many popular methods for differential ex-
pression analysis, including LIMMA (23), which make use
of the pooled variance in calculating statistics. However,
we find little evidence to support this assumption and
rather observe that standard deviations for many genes
can differ significantly across groups in real data sets.
Although QuSAGE can work with the pooled variance,
we recommend the use of the Welch approximation, which
does not assume equal variance.
Although QuSAGE does not require as many samples

as permutation-based methods, the current implementa-
tion requires at least three degrees of freedom. When
using the pooled variance, it is possible to analyze data
with two samples in each group (degrees of freedom is
2+2� 2 ¼ 2). However, as the variance of a t distribution
is �

��2, it diverges for �! 2. Hence, in cases where the
degrees of freedom falls below three, QuSAGE artificially
set the degrees of freedom to be three (In this case, the
QuSAGE implementation also issues a warning message
that the results should be interpreted with caution.). Small
numbers of samples can also add significant noise to the
estimation of gene–gene correlations, and this impacts the
VIF calculation. QuSAGE estimates these correlations
directly from the data, but this is not strictly necessary.
Assuming that these correlations reflect non-specific co-
regulation (13), they could be estimated from other experi-
ments. Indeed, databases of gene–gene correlations have
been developed (31), and this information could be
directly incorporated into the QuSAGE VIF calculation
to improve the analysis for data sets with a small number
of samples.
QuSAGE quantifies gene set activity as a shift in the

mean differential expression of genes that compose the
set. One might think that this approach could weaken
the biological signal by averaging strongly differentially
expressed genes with weakly differentially expressed
genes and thus diminish the estimated statistical signifi-
cance. However, while including ‘weak’ differentially
expressed genes does indeed lower the activity (by

A

B

C

Figure 7. QuSAGE detects earlier and more significant ISG activity in
symptomatic (versus asymptomatic) human subjects following influenza
exposure. ISG activity was quantified at each time point using
(A) QuSAGE and (B) GSEA. Color-coding indicates the P-values for
detecting activity in asymptomatic (circles) and symptomatic (squares)
subjects relative to pre-exposure levels. (C) ISG activity was compared
directly between the asymptomatic and symptomatic subject groups
using QuSAGE, GSEA and CAMERA. Color-coding indicates the
P-values using the same color key as panels (A) and (B). QuSAGE
and CAMERA both estimate the average activity using the same stat-
istic, although the P-values can differ.
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definition, as activity is simply the average fold-change of
genes in the set), the statistical significant actually in-
creases. To demonstrate this behavior, we used the data
in Figure 5A to re-estimate ISG set activity as ‘weak’
genes were added to the gene set. As seen in
Supplementary Figure S2A, adding genes that are less dif-
ferentially expressed does lower the activity (as expected by
the definition of activity). However, the overall statistical
significance actually increases (see Supplementary
Figure S2B). Thus, rather than exhibiting a ‘dilutional’
effect, QuSAGE benefits from the inclusion of all genes.
For gene sets that include both up- and downregulated
genes, this approach may not be sufficient (32). In cases
where the directionality of individual genes is known (e.g.
based on prior biological knowledge or because the set was
based on observed gene expression changes), then the signs
of these expectations can be used to modify the direction of
the corresponding individual genes differential expressions
in Equation (6). When such knowledge is not available, the
QuSAGE package offers a method to combine individual
genes P-values within a set. First, P-values are computed
for each gene by comparing the differential expression
PDF with either: (i) zero, (ii) the mean activity of the
gene set or (iii) the full PDF of the entire set. These P-
values are then combined into one score for the gene set
using the Brown method (33), which accounts for
gene–gene correlations by exploiting information from
the correlation matrix (derived from the covariance
matrix in Equation (11)). We have validated this method
using the approaches shown in Figures 3 and 4, and con-
firmed that the test is conservative (data not shown).
However, this method loses the benefit of estimating the
full activity PDF. Gene sets that include both up- and
down-regulated genes are also a problem for the widely
used GSEA method. In this case, it has been proposed to
rank genes by the absolute value of their signal-to-noise
ratio (or other statistic used for ranking) (15). A similar
approach could be adapted here by creating a full confi-
dence interval PDF of the absolute value difference
between two groups before the convolution step.
However, in this case, the individual gene PDFs are no
longer symmetric, requiring an alternate convolution tech-
nique and method to account for gene–gene correlations.
Like most gene set analysis methods, QuSAGE assumes

that log expression values are normally distributed. This is
generally accepted for gene expression microarray data.
The normality assumption also holds for RNA-seq data
when the number of samples is sufficiently large (34), and
QuSAGE can be directly applied to expression values
calculated from normalized RNA-seq counts. However,
for small numbers of samples, RNA-seq data are better
described using a negative binomial distribution, whose
parameters can be estimated from the entire data set by
several approaches (35–37). QuSAGE could be adapted to
this case by replacing the t-distribution with a negative
binomial distribution to model individual genes.
An implementation of QuSAGE is made available as an

R package, which can be downloaded from http://clip.
med.yale.edu/QuSAGE. Significant work has been done
to optimize the code for computational efficiency. The
current implementation can be used to analyze data in

real time on a standard desktop computer. For example,
the entire analysis that is shown in Figure 5C took< 20 s
on a single 2.70GHz processor. This involved assessing
186 gene sets (typically 50� 100 genes) on a data set
composed of 10 subjects with 19 798 genes measured at
two time points. Thus, QuSAGE provides an efficient
means to quantify, analyze and visualize gene set activity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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