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Although extensive studies have demonstrated the functional impairment of antigen-specific CD4* and CD8* T-cells
during chronic hepatitis C virus (HCV) infection, the functional status of global CD4* and CD8* T-cells remains
unclear. In this report, we recruited 42 long-term (~20 years) treatment-naive chronic HCV (CHC) patients and 15
healthy donors (HDs) to investigate differences in global CD4* and CD8* T-cells function. We show that CD4* and
CD8" T-cells from CHC patients underwent increased apoptosis after TCR stimulation. Furthermore, IFN-y, IL-9 and
IP-10 were elevated in CHC patients’ plasma and promoted activation-induced T-cells death. Global CD4* and CD8*
T-cells also showed unique transcriptional profiles in the expression of apoptosis-related genes. We identified BCL2,
PMAIP1, and CASP1 in CD4* T-cells and IER3 and BCL2A1 in CD8* T-cells from CHC patients as HCV-specific
gene signatures. Importantly, the gene expression patterns of CD4* and CD8* T-cells from CHC patients differ from
those in CD4* and CD8* T-cells from human immunodeficiency virus type 1 (HIV-1) or hepatitis B virus (HBV)
infected individuals. Our results indicate that chronic HCV infection causes a systemic change in cytokine levels that
primes T-cells for activation-induced apoptosis. Furthermore, HCV infection programs unique apoptosis-related gene
expression profiles in CD4* and CD8* T-cells, leading to their enhanced activation-induced apoptosis. These results
provide novel insights to the pathogenesis of chronic HCV infection.
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Introduction

Approximately 170 million people are chronically infected
with hepatitis C virus (HCV) [1,2]. The functional exhaustion of
HCV-specific T-cells contributes to failed viral clearance in
chronically infected patients [3-5]. HCV-specific CD8* T-cells
exhibit various degrees of functional impairment, including
impaired proliferation, reduced effector cytokine production,
and enhanced apoptosis [6-8]; however, the mechanisms
underlying these changes are incompletely understood.
Deregulated expression of inhibitory receptors on HCV-specific
CD8* T-cells, increased Treg numbers, and enhanced cytokine
levels impact the function of antigen-specific T-cells during
chronic HCV infection [3,4]. Nevertheless, the impact of chronic
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HCV infection on the function of global CD4* and CD8" T
lymphocytes remains poorly understood. Addressing this issue
will elucidate mechanisms by which the host environment
impacts antigen-specific T-cells during chronic HCV infection.
In this study, we investigated the functional status of global
CD4* and CD8* T-cells in a group of long-term (~20 years)
treatment-naive chronic HCV infected (CHC) patients. We
found that long-term chronic HCV infection did not cause a
significant change in the numbers of total lymphocytes or major
lymphocyte subpopulations or in total T-cells proliferation. In
contrast, both CD4* and CD8*" T-cells from CHC patients
exhibited dramatically enhanced activation-induced apoptosis.
Furthermore, IFN-y, IP-10, and IL-9 were significantly elevated
in the plasma of CHC patients. These cytokines sensitized
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Table 1. Clinical parameters of CHC patients and HDs.

CHC Patients
Number in each group 42 15

Age (years), median (range) 51.6 (35-67) 44.5 (37-56)
Sex (M:F) 25:17 1:4

Serum HCV RNA (IU/ml) (range) 0-6.38x107 -

1b, 1b/2a, 2a, 2a/2b

Serum HCV RNA gene type —
g i (16:1:19:1)

Parameter Healthy Donors

Serum total bilirubin (umol/L),
15.1 (6.9-36.7) 8.37 (6.1-12.8)

median (range)

Serum direct bilirubin (umol/L),

3.1(1.7-6.4) 2.02 (0.4-4.3)

median (range)

AST (IU/L), median (range) 51.2 (18.4-389.0)
ALT (IU/L), median (range) 63.0 (10.6 - 590.8)
doi: 10.1371/journal.pone.0077008.t001

48.45 (26.8-81.9)
16.2 (8.6-44.3)

primary T-cells from healthy donors (HDs) to activation-induced
death. Consistent with these findings, CD4* and CD8* T-cells
from CHC patients displayed deregulated expression of
apoptosis-related genes. B-cell Ilymphoma 2 (BCL2),
phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1),
and caspase 1 (CASP1) in CD4* T-cells and immediate early
response 3 (IER3) and BCL2-related protein A1 (BCL2A1) in
CD8* T-cells from CHC patients are identified as HCV-specific
gene signatures. These gene signatures were specific to CHC
and differed from those in T-cells from chronic human
immunodeficiency virus type 1 (HIV-1) or hepatitis B virus
(HBV) patients. Taken together, our results demonstrate that
chronic HCV infection induces a cytokine environment that
sensitizes T-cells to activation-induced apoptosis and induces
unique apoptosis-related gene signatures.

Materials and Methods

Subjects

Forty-two anti-HCV Ab* CHC patients without prior anti-viral
treatment from Gansu province, China were recruited. The
CHC patients were infected with HCV through blood donation
during the 1980s and 1990s (1988-1994). The average time of
infection was ~20 years. Fifteen HDs in the same age range
were selected as healthy controls. The clinical parameters
were measured in Beijing YouAn Hospital (Table 1). Written
informed consent was obtained from all individuals before their
participation in this study, and the study protocol was approved
by Beijing YouAn Hospital Ethical Committee.

Flow cytometry

Venous blood samples were collected using EDTA as an
anticoagulant. Red blood cells were lysed with Lysing Buffer
(BD Biosciences, CA, USA), and the cells were stained with
APC-anti-CD4  (RPA-T4), PerCP-anti-CD8 (SK1) (BD
Biosciences), FITC-anti-CD3 (OKT3), FITC-anti-CD45RO
(HI100), and PE-anti-CD45RA (UCHL1) (Biolegend, CA, USA)
following the manufacturers’ instructions. Flow cytometry data
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were collected with a BD FACSAria™ Cell Sorter (BD
Biosciences) and analyzed with FlowJo (Tree Star, OR, USA).

PBMC separation and T-cells stimulation

Peripheral blood mononuclear cells (PBMCs) were isolated
from fresh blood samples by density gradient centrifugation
using Ficoll-Paque PLUS (GE Healthcare, Buckinghamshire,
UK). CD4* and CD8" T-cells were purified from PBMCs using
CD4 and CD8 microbeads with an autoMACS Separator
(Miltenyi Biotec, CA, USA) following the manufacturer's
instructions. The purity of separated CD4* and CD8* T-cells
was >90%. For T-cells stimulation assays, 96-well plates
(Costar Corning, MA, USA) were coated overnight at 4°C or for
2-3 hours at 37°C with 1 pg/ml anti-CD3 and anti-CD28
(eBioscience, CA, USA). PBMCs were labeled with 1 pl 5-(and
6-)-carboxyfluorescein diacetate, succinimidyl ester (CFSE,
5mM, Sigma-Aldrich, MO, USA) in a volume of 1 ml PBS and
seeded at 1-1.5x108 cells/ml in the coated 96-well plates for 3
days. T-cells proliferation was measured by CFSE dilution, and
T-cells apoptosis was determined using Pacific Blue Annexin V
(Biolegend, CA, USA). PBMCs without stimulus were cultured
for 3 days to determine the spontaneous apoptosis of T-cells.

Cytokine measurement and sensitization culture

Plasma samples were collected by centrifuging fresh blood
samples at 400xg for 5 minutes. Twenty-seven cytokines,
including Eotaxin, FGF basic, G-CSF, GF-CSF, IFN-y, IL-1B,
IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70),
IL-13, IL-15, IL-17, IP-10, MCP-1 (MCAF), MIP-1a, MIP-1b,
PDGF bb, RANTES, TNF-a and VEGF, were measured with a
human Grp | Cytokine 27-Plex Panel (Bio-Rad, CA, USA) using
a Luminex 200 (Millipore, MA, USA) according to the
manufacturer’s instructions. To test the effects of cytokines on
T-cells apoptosis and proliferation, freshly isolated CFSE-
labeled PBMCs from HDs were cultured in RPMI 1640 medium
(10% FBS and 7.5pg/ml IL-7) containing cytokines at the
concentrations identified in the plasma of CHC patients (IFN-y
300, 500pg/ml; IL-18 12pg/ml; IL-9 60, 400pg/ml; IP-10
7000pg/ml) (Peprotech, NJ, USA). PBMCs were incubated at
37°C in the presence of 5% CO, in 96-well plates for 48 hours
and then transferred to plates coated with anti-CD3 and anti-
CD28 antibodies for stimulation. PBMCs were cultured without
cytokines as controls (NC) in the same condition. T-cells
apoptosis and proliferation were measured after 3 days of
stimulation.

Microarray analysis

Purified CD4* and CD8* T-cells were lysed in Trizol
(Invitrogen, CA, USA), and RNA extraction and microarray
assays were performed by CapitalBio Corporation (Beijing,
China). The quality and integrity of total RNA were determined
using an Agilent 2100 Bioanalyzer (Agilent Technologies, CA,
USA). T-cells gene expression patterns were detected with an
Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array
(Affymetrix, CA, USA). Five patients and 5 HDs randomly
selected from sample groups (HCV-h group, HCV-I group, and
HD group) were analyzed for each cell type.

October 2013 | Volume 8 | Issue 10 | e77008



Statistical analysis

CEL files were imported to Partek Genomics Suite software
(Partek Inc., MO, USA) as raw data using default settings. After
background correction, normalization, and summarization using
RMA (Robust Multichip Average) analysis, expression data
were log, transformed for further analysis. Differential gene
expression between CHC patients and HDs was determined by
one way ANOVA. False discovery rate (FDR) correction was
applied using the step-up method with an FDR of 5% as the
cut-off. Significantly modulated genes were defined as those
with P <0.05 and 21.5-fold change in mean differential
expression. Significantly modulated apoptosis genes were
hierarchically clustered using Partek Genomics Suite software
with default settings. Additionally, principal components
analysis (PCA) was used to cluster patients in 3 dimensions.
The significantly changed genes were used as input for the
gene function and pathway enrichment analysis. GeneGo
Metacore software (GeneGO Inc., CA, USA) was used to
identify the most significant biological pathways associated with
the modulated genes using default parameters. Different HCV
patients groups (HCV-h or HCV-I) were performed separately
and compared to each other for common pathways. In addition,
common significantly modulated genes shared by both HCV
patient groups were imported for pathway analysis. DAVID
Bioinformatics Resources (http://david.abcc.ncifcrf.gov/) was
used to identify functional categories based on the annotation
sources GOTERM-BP (biological process). Different HCV
patient groups were performed separately and the FDR for
enrichment analysis was set as 5%. Significantly modulated
genes were classified into different functional categories
according to the enrichment results, as listed in Table S1 and
S2. Microarray data for gene expression in global CD4* and
CD8* T-cells during chronic HBV [9] and HIV-1 infection [10,11]
were obtained from public databases Gene Expression
Omnibus (GEO). The same statistical analysis for HBV and
HIV-1 data was done as described above. The common
significantly modulated genes between chronic HCV infection
and chronic HIV-1 or HBV infection were identified by gene
symbols, which were also analyzed for pathway and function
enrichment. For comparison of special T-cells gene expression
signature, log, values were used and statistic strategy for
quantitative real-time PCR was applied. For correlation
analysis of apoptosis gene expression level with clinical
parameters or plasma levels of cytokines, fluorescent values of
all samples from microarray analysis instead of log, values
were used.

GraghPad Prism 5.00 software was applied for data analysis
except in microarray analysis, and p-values<0.05 (t-test) were
regarded as statistically significant. Microarray raw data are
available in the Gene Expression Omnibus database (http://
www.ncbi.nim.nih.gov/geo) under accession no.GSE49954.

Results

CHC patient characteristics

Viral load and CTL function are inversely correlated during
HIV and HBV infection [12—-15]. To determine the impact of
serum HCV titers on the function of global CD4* and CD8* T-
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cells in CHC patients, we divided the CHC patients into 3
groups: HCV-n (negative), HCV-I (low) (10%-108 1U/ml RNA),
and HCV-h (high) (10%-108 IU/ml RNA) (Figure 1A). Alanine
transaminase (ALT) and total bilirubin (TBIL) values were
significantly higher in all 3 groups of CHC patients than in HDs
(Figure 1B). Although the direct bilirubin (DBIL) values in HCV-I
and HCV-h patients were within the normal range, they were
significantly higher than those in HDs (Figure 1B). Consistent
with previous reports, 12% of the CHC patients exhibited
abnormal liver function based on TBIL and ALT levels [16]. Six
large groups of viral genotypes (1-6) containing over 70
different subtypes are defined based on subgenomic regions
[17]. In China, the main subtypes are 1b and 2a (Table 1).
There was no correlation between HCV genotypes and RNA
titers (data not shown). Although the mean ALT, AST, DBIL,
and TBIL values in the HCV-h group were higher than those in
the other groups (Figure 1B), we did not find a significant
correlation between HCV viral titers and gender, age or ALT,
AST, DBIL, and TBIL values in these long-term treatment-naive
patients (Figure S1).

Enhanced activation-induced apoptosis of T-cells from
CHC patients

Although HCV-specific T-cells have been thoroughly studied
in CHC patients [3], the functional status of total T-cells in CHC
patients is not clear. We first assessed the frequencies of
lymphocyte subpopulations in CHC patients. Interestingly, the
frequencies of most of the T-cells subpopulations in the
peripheral blood of CHC patients were similar to those in HDs
(Figure 2A and 2B). The only significant change was a
reduction in CD4*CD45RO* T-cells in HCV-l patients (HD,
57.8% + 2.8%; HCV-I, 46.0% * 3.8%) (Figure 2A), suggesting
that long-term chronic HCV infection had a minimal impact on
overall lymphocyte composition.

We next examined the proliferation and apoptosis of total
CD4* and CD8" T-cells from CHC patients. Surprisingly, we did
not observe any significant difference in the proliferation of total
CD4* or CD8" T-cells from CHC patients and HDs (Figure 3A
and 3B). However, total T-cells from all CHC groups exhibited
significantly enhanced activation-induced apoptosis, with a >2-
fold increase in CD8* T-cells and a ~2-3-fold increase in CD4*
T-cells when compared to T-cells from HDs (Figure 3C and
3D). In contrast, the spontaneous apoptosis rates of total CD4*
and CD8* T-cells were similar among the CHC patients and
HDs (Figure 3C). These results suggest that changes in the
host environment induced by HCV infection may sensitize the
T-cells to activation-induced apoptosis.

The roles of cytokines in activation-induced apoptosis
of T-cells from CHC patients

Cytokines play important roles in regulating T-cells survival.
We hypothesized that dysregulated cytokine expression in the
CHC patients might sensitize CD4* and CD8* T-cells to
activation-induced apoptosis. Plasma levels of IFN-y, IL-1f,
IL-9, and IP-10 were elevated in the CHC patients (Figure 4A).
Interestingly, the levels of IFN-y and IL-9 were highest in the
HCV-h group, whereas the levels of IL-18 and IP-10 were
highest in the HCV-I group (Figure 4A). The levels of other
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Figure 1. Clinical parameters of the three groups of CHC patients (HCV-n group, n=6; HCV-l group, n=13; HCV-h group,
n=23) and HDs. (A), HCV RNA titers for the three groups of CHC patients. HCV-n: negative; HCV-1:103-10¢ |U/ml; HCV-h: 2108
IU/ml. (B), The concentrations of ALT, AST, DBIL, and TBIL in the plasma of CHC patients compared to HDs. *, p<0.05; **, p<0.01;

*** £<0.001.
doi: 10.1371/journal.pone.0077008.g001

primary inflammatory cytokines, such as TNF-a, were similar in
CHC patients and HDs (data not shown).

We next examined whether these cytokines sensitized CD4*
and CD8* T-cells to activation-induced cell death. PBMCs from
HDs were pre-cultured with IFN-y, IL-1B, IL-9, or IP-10 for 48
hours before stimulation with anti-CD3/CD28 antibodies. The
concentrations of cytokines used were equivalent to either the
median or the maximal value measured in the CHC patients. At
these concentrations, these four cytokines did not significantly
alter TCR-induced CD4* and CD8* T-cell proliferation (Figure
4B), suggesting that the abnormal levels of these cytokines did
not cause gene expression changes related to the cell
proliferation machinery. In contrast, pre-incubation of HD T-
cells with IFN-y, IL-9, or IP-10 resulted in significantly
enhanced activation-induced CD4* or CD8* T-cells apoptosis
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(Figure 4B and 4C); however, pre-incubation of T-cells with
IL-18 did not affect activation-induced cell death (Figure 4B)
(p>0.05). These results demonstrate that IL-9, IFN-y and IP-10
sensitize T-cells to activation-induced apoptosis and suggest
that cytokine levels in CHC patients affect global T-cells
function.

Gene expression profiles of CD4* and CD8* T-cells in
CHC patients

These results suggest that the host environment in CHC
patients may reprogram the gene expression profiles of CD4*
and CD8* T-cells. We thus sought to define the gene
expression profiles of total CD4* and CD8" T-cells from CHC
patients. Surprisingly, the overall gene expression patterns of
global CD4* or CD8" T-cells from CHC patients were not
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profiles of T-cells subsets in the peripheral blood of patients and HDs are shown. *, p<0.05.

doi: 10.1371/journal.pone.0077008.9g002

dramatically different from those from HDs and cannot be used
to separate CHC patients from the HDs (Figure 5A and Figure
S2). Interestingly, T-cells from HCV-h and HCV-l patients
shared only a few common changed genes (61 genes for CD4*
T-cells and 47 genes for CD8* T-cells) (Figure 5B).
Furthermore, no common pathway was altered in T-cells from
both HCV-h and HCV-l patients (Figure S3). These results
suggest that differences in HCV titers influence the gene
expression patterns of CD4* and CD8* T-cells in CHC patients.

We further analyzed the gene expression changes using the
online DAVID program. Significantly changed genes involved in
important biological processes for CD4* and CD8" T-cell
function were selected from the HCV-h and HCV-l groups
(Table S1 and S2). Although the inhibitory receptors PD-1,
Tim3, 2B4, and CTLA-4 are upregulated in HCV-specific CD8*
T-cells in CHC patients [18-24], the mRNA expression of these
receptors was not significantly changed in global CD4* or CD8*
T-cells of CHC patients, suggesting that the inhibitory receptors
do not contribute to global T-cells dysfunction during chronic
HCYV infection.

Because global CD4* and CD8* T-cells from the CHC
patients exhibited enhanced activation-induced apoptosis, we
analyzed the expression profiles of genes related to apoptosis.
The number of significantly changed apoptosis-related genes
was greater in CD4* T-cells from the CHC patients than in
CD8* T-cells (Table 1 and S2). Interestingly, the significantly
changed apoptosis-related genes in CD4* T-cells were largely
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different from those in CD8* T-cells (Table S§1 and S2),
suggesting that two different sets of genes may be involved in
the enhanced activation-induced apoptosis of CD4* and CD8*
T-cells. Furthermore, genes altered in the HCV-l group were
different from those in the HCV-h group for both CD4* and
CD8* T-cells (Table 81 and S2), suggesting that differences in
HCYV titers have a qualitative effect on T-cells gene expression
profiles. Importantly, the expression signatures of the
apoptosis-related genes in CD4* and CD8" T-cells of CHC
patients were distinct from those of HDs and were sufficient to
distinguish the CHC patients from HDs (Figure 5C). These
results demonstrate that chronic HCV infection results in
altered expression of apoptosis-related genes in global CD4*
and CD8" T-cells.

Correlation of apoptotic gene expression levels with
the pathogenesis of HCV infection

We analyzed the significance of the expression levels of
apoptotic genes during HCV infection by correlating them with
other clinical parameters. We found that the expression levels
of 20 apoptosis-related genes in CD4* T-cells and 6 apoptosis-
related genes in CD8* T-cells were significantly correlated
(p<0.05) with at least one clinical parameter (Figure 6 and data
not shown). Interestingly, the expression levels of 5 apoptosis-
related genes death-associated protein kinase 1 (DAPK1),
pleckstrin homology-like domain family A member 1 (PHLDA1),
pleckstrin homology-like domain family A member 2 (PHLDA2),
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groups. (B), Representative FACS profiles of T-cells proliferation for each group of CHC patients and HDs. (C), Apoptosis rates of
CD4* and CD8* T-cells from the CHC patients and HDs with or without anti-CD3/CD28 stimulation. (D), Representative FACS
profiles of T-cells apoptosis for each group of CHC patients and HDs. For (A) and (C), each dot represents one individual. *, p<0.05.

doi: 10.1371/journal.pone.0077008.g003

CASP1, and NLR family pyrin domain-containing 3 (NLRP3) in
CD4* T-cells from CHC patients were positively correlated with
ALT, AST, TBIL, and DBIL values (Figure 6A). Expression of
the anti-apoptotic gene brain and reproductive organ-
expressed (BRE) was negatively correlated with TBIL. DNA
damage-regulated autophagy modulator 1 (DRAM1)
expression in CD4* T-cells was correlated with HCV RNA titers
in the CHC patients (Figure 6A). Interestingly, the expression
of NLRP3 in CD8* T-cells from CHC patients was positively
correlated with TBIL and DBIL values (Figure 6B). In addition,

PLOS ONE | www.plosone.org

the expression levels of mal, T-cell differentiation protein (MAL)
in total CD8* T-cells were positively correlated with the ALT
values and HCV RNA titers (Figure 6B). These significant
correlations suggest that dysregulation of T-cells death may be
associated with the pathogenesis of chronic HCV infection.
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Figure 4. Elevated cytokine levels in the plasma of CHC patients and their roles in sensitizing T-cells to activation-induced
apoptosis. (A), Cytokine levels, including IFN-y, IL-1, IL-9, and IP-10, in the plasma of CHC patients and HDs as measured by
Luminex assay. (B), Effect of pre-incubation of PBMCs with the indicated cytokines on T-cells proliferation as measured by CFSE
dilution and T-cells apoptosis as measured by Annexin-V staining. PBMCs from HDs were pre-incubated with or without (NC) the
indicated cytokines for 48 hrs and then stimulated with anti-CD3/CD28 for 3 days before the measurement of proliferation and
apoptosis. Data were from 5 independent HDs. (C), Representative FACS profiles of CD4* and CD8* T-cells apoptosis after pre-

incubation with cytokines followed by stimulation.
doi: 10.1371/journal.pone.0077008.g004

Gene expression signatures of total CD4* and CD8* T-
cells in chronic HCV infection differ from those in
chronic HIV or HBV infection

An important feature of untreated HIV infection is the gradual
loss of global CD4* T-cells via apoptosis [25]. We compared
the gene expression profiles of CD4* and CD8" T-cells from
CHC patients to those of HIV or HBV patients using published
microarray data [9-11]. Interestingly, the expression of 65
genes was significantly changed in both CHC and HIV patients
(Table S3). Despite these commonly changed genes, the T-
cells gene expression patterns in these two groups of patients
differed greatly. First, the expression of interferon-stimulated
genes (ISGs) including interferon alpha-inducible protein 6

PLOS ONE | www.plosone.org

* p<0.05; **, p<0.01.

(IF16), interferon alpha-inducible protein 27 (IF127), interferon-
inducible protein 44 (IFl44), 2'-5'-oligoadenylate synthetase 1
(OAS1), and myxovirus resistance protein 1 (MX1), was
upregulated early during the acute phase of HIV-1 infection and
maintained through the chronic phase but was not upregulated
in CD4* T-cells from CHC patients. Second, many apoptosis-
related gene expression changes in CD4* T-cells from CHC
patients were not observed in CD4* T-cells from HIV-1 infected
patients (Figure 7A and Table S3). These results suggest that
HCV and HIV infection have different impacts on the
expression profiles of apoptosis-related genes in total CD4* T-
cells.

Like chronic HCV infection, chronic HBV (CHB) infection also
causes functional exhaustion of both antigen-specific and

October 2013 | Volume 8 | Issue 10 | e77008
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Figure 5. Overall gene expression profiles of CD4* or CD8* T-cells from CHC patients. (A), Scatterplot graph of CD4* and
CD8* T-cells with PCA (principal component analysis) mapping. CHC patients, n=10; HDs, n=5. (B), The number of genes
differentially expressed (fold-change 21.5, p<0.05) in CD4* and CD8* T-cells of HCV-l and HCV-h group when compared to those in
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genes changed in both the HCV-l and HCV-h groups. (C), Clustering analysis of significantly changed apoptosis-related genes in
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represent HCV-h samples.

doi: 10.1371/journal.pone.0077008.g005
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Figure 6. Correlation between the expression levels of apoptosis-related genes and clinical parameters in CHC

patients. (A), Correlation of the expression levels of apoptosis-related genes in CD4* T-cells from CHC patients with clinical
parameters. (B), Correlation of the expression levels of the apoptosis-related genes in CD8* T-cells from CHC patients with clinical
parameters. The original fluorescent signal values for each gene detected in microarray assays were used for the correlation study.

doi: 10.1371/journal.pone.0077008.g006

global CD8* T-cells [13,15,26—28]. We previously identified
gene changes in total CD8* T-cells from CHB patients [9]. Only
15 genes were altered during both CHC and CHB infection,
and 6 of these genes displayed opposite changes in CHC and
CHB patients (Table S4). The ISG signature associated with
CD8* T-cells during acute and chronic HIV-1 infection [10,11]
was not shared with CD8* T-cells from CHC patients.
Importantly, the expression levels of the majority of the
apoptosis-related genes that were altered in CD8* T-cells from
CHC patients either were not changed or displayed opposite
changes in CD8* T-cells from patients chronically infected with
HBV or HIV-1 (Figure 7B and Table S4, Table S5). Taken
together, these results demonstrate that global CD8* T-cells
express a unique apoptosis-related gene signature during
chronic HCV infection that differs from that observed during
chronic HBV or HIV-1 infection.

PLOS ONE | www.plosone.org

Discussion

Although the functional exhaustion of HCV-specific T-cells
during CHC is well established, the functional status of total
CD4* and CD8* T-cells in CHC patients remains poorly
understood. In this study, we examined the functional status
and gene expression profiles of total CD4* and CD8* T-cells in
a group of long-term treatment-naive CHC patients. Total CD4*
and CD8* T-cells from CHC patients exhibited enhanced
activation-induced apoptosis but proliferated normally. The
plasma levels of IFN-y, IL-9, and IP-10 in these patients were
significantly elevated, and pre-incubation of primary T-cells
from healthy donors with these cytokines sensitized T-cells to
activation-induced apoptosis. Furthermore, although the overall
gene expression pattern in CD4* and CD8* T-cells from CHC
patients was indistinguishable from that from HDs, CHC
patients’ T-cells expressed unique apoptosis-related gene
signatures that differed from those in T-cells from patients
chronically infected with HIV-1 or HBV. Our data provide
important insight into the functional status of global T-cells
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during chronic HCV infection and suggest that the host
environment during chronic HCV infection alters T-cells
function.

The enhanced activation-induced apoptosis of total CD4*
and CD8*" T-cells from CHC patients is likely due to the
combined effects of several cytokines, including IFN-y, IP-10,
and IL-9. The role of IFN-y in priming T-cells for activation-
induced death has been firmly established [29,30]. Moreover,
elevated IFN-y in CHC patients modulates macrophage
activation, and IFN-y can directly act on T-cells or indirectly
induce T-cells death by promoting the production of galectin-9

PLOS ONE | www.plosone.org
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by monocytes and macrophages during chronic HCV infection
[31]. Galectin-9 induces the apoptosis of HCV-specific CTLs by
interacting with its cellular receptor, T cell immunoglobulin
mucin-3 (Tim-3) [31]. Elevated IP-10 in CHC patients is a
predictor of poor therapeutic outcome [32,33]. A previous
report also showed that in combination with IL-2 and IFN-a,
IP-10 induces the activation-independent apoptosis of primary
human T-cells [34]. Our data clearly demonstrate that IP-10
also sensitizes primary human T-cells to activation-induced
apoptosis.
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Surprisingly, we found that a high concentration of IL-9
promotes activation-induced apoptosis in T-cells. IL-9, a
common yc-sharing cytokine, is a T-cells growth factor [35,36].
Neutralization or genetic deletion of IL-9 in mouse models
dramatically reduced the effector T-cells population, suggesting
a role for IL-9 in promoting T-cells survival and proliferation
[37,38]. However, in our study, T-cells cultured in high
concentrations of IL-9 were more sensitive to activation-
induced apoptosis. Two possible mechanisms might account
for this observation. First, high concentrations of IL-9 might
induce an altered expression pattern of pro- versus anti-
apoptotic genes in human T-cells. IL-4, another yc-sharing
cytokine, was recently shown to induce the upregulation of the
pro-apoptotic genes Bcl-2-like protein 11 (Bim) and Bcl-2-
associated X (Bax) in T-cells [39]. Second, IL-9 may act
indirectly by inducing pro-apoptotic cytokines in other PBMC
populations. The precise mechanisms by which IL-9 primes
human T-cells for activation-induced apoptosis require further
investigation. Nevertheless, high plasma IL-9 levels are
associated with poor treatment outcomes in HIV/HCV-
coinfected patients [40] and in patients with chronic heart
failure [41]. Together, these data suggest that high plasma IL-9
levels are pathogenic during chronic HCV infection.
Importantly, our results strongly suggest that these cytokines
act together on both global T-cells and HCV-specific T-cells.
Thus, to restore the impaired survival of antigen-specific T-cells
in CHC patients, it will be essential to neutralize the pro-
apoptotic activities of these cytokines.

Although the overall gene expression patterns of CD4* and
CD8* T-cells in CHC patients were largely indistinguishable
from those of HD T-cells, the expression pattern of apoptosis-
related genes in T-cells from CHC patients was dramatically
altered and was sufficient to distinguish CHC patients from
HDs. Consistent with the normal lymphocyte compartment but
enhanced activation-induced apoptosis observed in the CHC

patients, these results suggest that CHC-induced host
inflammation primarily affects apoptosis. Furthermore, the
expression of multiple apoptosis-related genes was
dysregulated in CD4* T-cells from CHC patients. The

expression of some of these genes, such as BCL2A1, was also
perturbed in global CD8* T-cells from CHC patients.
Interestingly, one-third of these genes were significantly
correlated with clinical parameters in CHC patients. For
example, the expression of DAPK1 was significantly positively
correlated with ALT and AST values. DAPK1 is induced after T-
cell stimulation and inhibits T-cells activation [42]. The
expression of superoxide dismutase 2 (SOD2), a protein that
inhibits  radiation-induced apoptosis [43], was strongly
correlated with ALT, TBIL and DBIL values, suggesting that
apoptosis-related genes may contribute to pathology during
HCV infection.

Importantly, the gene signature in T-cells from CHC patients
differed from those in T-cells from HIV-infected and HBV-
infected patients. The gene signature of CD4* T-cells from HIV-
infected patients is characterized by the induction of ISGs
[10,11]. We recently demonstrated that three apoptosis-related
genes —Apoptotic protease-activating factor 1 (APAF1),
mitogen-activated protein kinase 4 (MAP2K4), and tumor
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protein p53 (TP53) — were upregulated in PBMCs from HIV
rapid progressors [44]. Similarly, CD8" T-cells from HIV-1
infected patients also exhibit upregulation of 1ISGs. Although
apoptosis is enhanced in T-cells from HIV-1 patients, the
changes in the expression of apoptosis-related genes are
different from those observed in CHC patients, suggesting that
these changes are virus-specific. Thus, specific strategies are
needed to prevent virus-induced T-cells loss in chronic HCV
infection.

In conclusion, our data suggest that activation-induced
apoptosis is a primary functional failure for global CD4* and
CD8* T-cells in long-term chronic HCV infection, accompanying
with unique apoptosis-related gene expression signature.
Several cytokines elevated in the HCV patients’ plasma,
including IFN-y, IP-10 and IL-9, are responsible for
sensitization of global T-cells to activation-induced cell death.
However, it remains to be investigated whether these cytokines
directly lead antigen-specific T-cells to activation-induced
apoptosis.

Supporting Information

Figure S1. Correlations between the HCV RNA titer and
other clinical parameters among the CHC patients. Shown
are the correlations between HCV RNA titers and ALT, AST,
DBIL, TBIL, age and gender. None has achieved statistic
significance.

(TIF)

Figure S2. Clustering analysis of genes with CV>0.5. (A),
Clustering result for CD4* T-cells is presented. (B), Clustering
result for CD8" T-cells is presented. The blocks in blue
represent HD samples, the blocks in yellow represent HCV-I
samples, and the block in red represents HCV-h samples.

(TIF)

Figure S3. List of altered gene pathways in CD4* and CD8*
T lymphocytes of CHC patients. Shown are the results of
pathway analysis by GeneGo for significantly changed
expression of genes (fold change 21.5, p<0.05) of CD4* (A)
and CD8* (B) T-cells. Note that the pathways in HCV-l and
HCV-h patients differed from each other.

(TIF)

Table S1. Genes involved in critical biological processes
with up- or down-regulated expression from CD4* T-cells
in HCV-h or HCV-I groups compared to healthy donors.
(DOCX)

Table S2. Genes involved in critical biological processes
with up- or down-regulated expression from CD8* T-cells
in HCV-h or HCV-I groups compared to healthy donors.
(DOCX)

Table S3. Common genes of CD4* T-cells shared by HCV

and HIV-1infection.
(DOCX)
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Table S4. Common genes of CD8* T-cells shared by HCV
and HBV infection.
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Table S5. Common genes of CD8* T-cells shared by HCV
and HIV-1 infection.
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