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Abstract

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is in part driven by the tyrosine kinase
bcr-abl, but imatinib does not produce long-term remission. Therefore, second-generation ABL inhibitors are currently
in clinical investigation. Considering different target specificities and the pronounced genetic heterogeneity of Ph+
ALL, which contributes to the aggressiveness of the disease, drug candidates should be evaluated with regard to
their effects on the entire Ph+ ALL-specific signaling network. Here, we applied an integrated experimental and
computational approach that allowed us to estimate the differential impact of the bcr-abl inhibitors nilotinib, dasatinib,
Bosutinib and Bafetinib. First, we determined drug-protein interactions in Ph+ ALL cell lines by chemical proteomics.
We then mapped those interactions along with known genetic lesions onto public protein-protein interactions.
Computation of global scores through correlation of target affinity, network topology, and distance to disease-relevant
nodes assigned the highest impact to dasatinib, which was subsequently confirmed by proliferation assays. In future,
combination of patient-specific genomic information with detailed drug target knowledge and network-based
computational analysis should allow for an accurate and individualized prediction of therapy.

Citation: Rix U, Colinge J, Blatt K, Gridling M, Remsing Rix LL, et al. (2013) A Target-Disease Network Model of Second-Generation BCR-ABL Inhibitor
Action in Ph+ ALL. PLoS ONE 8(10): e77155. doi:10.1371/journal.pone.0077155

Editor: Linda Bendall, Westmead Millennium Institute, University of Sydney, Australia

Received March 21, 2013; Accepted August 30, 2013; Published October 10, 2013

Copyright: © 2013 Rix et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Austrian federal ministry for science and research bmwf under the GEN-AU program projects PLACEBO and
BIN III (GZ BMWF-70.081/0018-II/1a/2008, FFG project numbers 820961 and 820962), the Austrian Science Fund (FWF; P18737-B11) and the NIHR
Biomedical Research Centre Funding Scheme, UK. CeMM is supported by the Austrian Academy of Sciences (ÖAW). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: We have the following competing interests: Bosutinib was a kind gift of Oridis Biomed. There are no further patents, products in
development or marketed products to declare. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials, as detailed
online in the guide for authors.

* E-mail: gsuperti@cemm.oeaw.ac.at

☯ These authors contributed equally to this work.

¤a Current address: Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United Statse of America
¤b Current address: IMBA - Institute for Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria

Introduction

Philadelphia chromosome-positive (Ph+) leukemias express
the oncogenic fusion tyrosine kinase BCR-ABL, which drives
the disease through constitutive anti-apoptotic and proliferative
signaling. Ph+ leukemias are divided into chronic myeloid
leukemia (CML) [1] and a subset of acute lymphoblastic
leukemia (ALL) [2]. CML is successfully treated with the BCR-
ABL tyrosine kinase inhibitor imatinib (Gleevec, STI-571),
which is widely appreciated as the paradigm for targeted
therapy [3]. Even though resistance against imatinib is
observed in several cases [4], many of these can be
adequately addressed through the employment of more potent

second-generation BCR-ABL kinase inhibitors, such as nilotinib
(Tasigna, AMN107) [5], dasatinib (Sprycel, BMS-354825) [6],
bosutinib (SKI-606) [7] and bafetinib (INNO-406, NS-187) [8].
In addition, nilotinib and dasatinib have been described to exert
superior effects in freshly diagnosed patients with CML [9,10].
Therefore, these agents are expected to replace imatinib as
frontline therapy in the near future.

Tyrosine kinase inhibitors (TKI) have also had a significant
impact on the therapy of Ph+ ALL as the introduction of
imatinib greatly improved initial responses of patients. Though
it is enhanced by combination of imatinib with conventional
chemotherapy, remission is short-lived and relapse remains a
daunting challenge [11-13]. This is caused by many of the
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same mechanisms relevant in CML, such as BCR-ABL point
mutations that confer resistance to imatinib [14,15]. In addition,
in about 20-30% of all CML patients who progress to blast
phase, the transformed clone resembles Ph+ ALL (lymphoid
blast phase of CML). In both instances, the focus of the
medical and research community has turned again towards
next-generation TKI [13]. Likewise, combinations of nilotinib
and dasatinib with chemotherapy are starting to show some
promising results in the treatment of Ph+ ALL [12].

Being a more heterogenous disease than CML [16], Ph+ ALL
shows on average 8 to 9 gene copy number alterations in
addition to the expression of BCR-ABL. The most prominent
deletions were observed for the transcription factor genes
IKFZ1 (encoding IKAROS) and PAX5 as well as for CDKN2A,
which encodes the tumor suppressor cyclin-dependent kinase
inhibitor 2A [17]. Deletion or mutation of IKZF1 or CDKN2A
have been described to have a negative prognostic impact
[18,19]. Thus, it appears that the particularly aggressive
character of Ph+ ALL is not owed to the constitutive tyrosine
kinase activity of BCR-ABL alone, but also to the contributions
of other genetic factors. Accordingly, given that many kinase
inhibitors are known to be highly pleiotropic drugs, it is not clear
how effective the second-generation BCR-ABL inhibitors will be
in the long-term and which one will be best suited for therapy of
treatment-naïve Ph+ ALL with wild-type BCR-ABL. Kinase
inhibitor target profiles are routinely investigated on a kinome-
wide level either by large-scale in vitro kinase inhibition or

kinase binding competition assays [20]. For a systems-type
appreciation of TKI action, however, it is advantageous to
employ a cell-specific approach. At the same time, it should
include a genome-, transcriptome-, or proteome-wide
dimension. For instance, one method that is widely used
determines drug-induced transcriptomic signatures [21].

Here, we chose a systems biology approach that integrated
proteomics and computational methods to predict TKI action in
a Ph+ ALL-specific context (Figure 1A). First, we characterized
the global protein binding signatures of nilotinib, dasatinib,
bosutinib and bafetinib in Ph+ ALL cells by chemical
proteomics, an unbiased, post-genomic drug affinity
chromatography technology enabled by downstream mass
spectrometry (MS) [22-25]. In parallel, we compiled protein-
protein interaction (PPI) data from several public databases
and generated Ph+ ALL disease-specific PPI network models,
which were based on previously reported copy number
alterations [17]. Correlation of the obtained drug-target profiles
with the Ph+ ALL PPI network models allowed for the correct
prediction of dasatinib as the most efficient drug as determined
by subsequent validation experiments.

Figure 1.  Schematic outline of the integrated chemical proteomics and computational biology strategy.  A. Drug-protein
interaction networks are generated by chemical proteomics while the protein-protein interaction (PPI) network is derived from public
databases and modified to represent the specific disease. The interaction networks are correlated through a random walk approach
across the PPI network using proteins from the drug-protein network as entry points. The resulting correlation scores are
subsequently validated by cell proliferation assays. B. Chemical structures of the four second-generation BCR-ABL tyrosine kinase
inhibitors dasatinib (Sprycel, BMS-354825), nilotinib (Tasigna, AMN107), bosutinib (SKI-606) and bafetinib (INNO-406, NS-187) as
well as their coupleable analogues c-dasatinib, c-nilotinib, c-bosutinib and c-bafetinib that were used for immobilization and
subsequent chemical proteomics experiments.
doi: 10.1371/journal.pone.0077155.g001
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Materials and Methods

Biological Material
BV-173 and SUP-B15 were obtained from the German

Collection of Microorganisms and Cell Cultures (DSMZ), Z-119
cells were a kind gift from the originator Dr. Zeev Estrov (MD
Anderson Cancer Center). BV-173, Z-119, and SUP-B15 cells
were cultured in RPMI 1640 medium and 10% (SUP-B15: 20%)
fetal calf serum (PAA laboratories, Pasching, Austria).
Peripheral blood was collected at diagnosis from six patients
with Ph+ ALL. For molecular characteristics of patient samples
see Table S1 in File S1. Mononuclear blood cells (PBMCs)
were obtained using Ficoll and subsequently pooled. The study
was conducted in accordance with the Declaration of Helsinki
and was approved by the institutional review board (Medical
University of Vienna). Written informed consent was obtained
before blood donation in each case. Antibodies used were
mouse monoclonal anti-phosphotyrosine 4G10 (Upstate
Biotechnology), monoclonal mouse anti-c-ABL (Ab-3)
(Calbiochem), rabbit polyclonal anti-actin (Cytoskeleton),
IRDye 800 donkey anti-rabbit IgG (LI-COR Biosciences) and
peroxidase-conjugated AffiniPure goat anti-mouse IgG
(Jackson Immuno Research Laboratories).

Compounds, Immobilization and Affinity Purification
Nilotinib and dasatinib were purchased from LC Laboratories

(Woburn, MA). Bosutinib was a kind gift of Oridis Biomed
(Graz, Austria). Bafetinib, pc-bafetinib, c-dasatinib and pc-
nilotinib were synthesized by WuXi AppTec (Shanghai, China).
c-Bosutinib was synthesized by Vichem Chemie Ltd.
(Budapest, Hungary). In analogy to c-bafetinib, pc-nilotinib was
esterified with N-Boc-glycine, deprotected with trifluoroacetic
acid and the resulting c-nilotinib was immobilized on NHS-
activated Sepharose 4 Fast Flow resin (GE Healthcare Bio-
Sciences AB, Uppsala, Sweden) [26]. c-Dasatinib, c-bosutinib
and c-bafetinib were immobilized as reported previously.
However, the final drug concentration was 25 nmol/50 µl beads
for all four drugs [26-28]. Affinity chromatography and elution
with formic acid were performed in biological duplicate as
described [29]. Modifications included the reduction of the
incubation period from 2 hrs to 1 hr as well as omittance of N-
dodecyl-β-D-maltoside from the lysis buffer. The HEPES-NaOH
buffer was composed of 50 mM HEPES (pH 8.0), 0.5 mM
EDTA and 100 mM NaCl. After incubation, beads were washed
with 100 bed volumes of lysis buffer and subsequently with 50
bed volumes of HEPES-NaOH buffer. Competition experiments
were performed in singlicate by incubation of an aliquot of each
cell lysate with the respective drug affinity matrix in the
presence of 20 µM free drug. For BV-173 lysates, we applied 5
mg, for Z-119 lysates 4.5 mg of total protein per experiment at
a concentration of 5 mg/300 µl. For the patient PBMC pool-
derived lysate we applied 0.69 mg of total cell lysate. All mass
spectrometry experiments were performed at least in
duplicates.

Sample Preparation, Mass Spectrometry (MS) and MS
Data Processing

Preparation of samples, MS analysis and data processing
were performed as reported [29]. In addition, the sequence of
BCR-ABLp190 was appended to our in-house database prior to
database searching with Mascot (Matrix Science, London, UK)
and Phenyx (GeneBio S.A., Geneva, Switzerland) [30] to
account for the unique BCR-ABL isoform observed in Ph+ ALL.
Peptide and protein identifications obtained by both search
engines were combined with score thresholds chosen to
achieve a maximal false discovery rate (FDR) of 1% on the
protein groups (proteins sharing peptides). Namely, single
peptide protein identifications were accepted provided Mascot
ion score ≥ 40 or Phenyx z-score ≥ 4.75 and P-value < 0.001.
Multiple peptide protein identifications were imposed Mascot
ion score ≥ 14 or Phenyx z-score ≥ 4.2 and P-value < 0.001.
For a protein passing the criteria above, all the additional
peptides with Mascot ion score ≥ 10 or Phenyx z-score ≥ 4
were additionally accepted and taken into account in the
protein group 1% FDR estimation. Conflicting spectral
identifications between the two search engines were discarded
for security and as a practical way to validate the FDR on a
routine basis.

Kinase Inhibition Analysis
Nilotinib and non-esterified c-nilotinib (pc-nilotinib) were

assayed in vitro for inhibition of recombinant full-length c-ABL
(Upstate Biotechnology, Lake Placid, NY) as described
previously [26]. In vitro kinase inhibition for MAP2K1, MAP2K2,
MAPK9 and binding assays for MAP3K2 were performed on
the Invitrogen Z’LYTE® or LanthaScreen® platforms,
respectively.

Target Deconvolution Analysis
Specificity of protein binding was determined by differential

analysis of competition pulldowns. Based on the spectral count
(SC) ratio between uncompeted and competed experiments, a
threshold of 2.0 and a minimum average spectral count of 10.0
were applied. For proteins not identified in the competition
experiment, a minimum average spectral count of 1.0 was
required to be considered specific. Additionally, proteins absent
in at least two drug-protein interaction datasets, thus
suggesting specificity, were included. Subsequently, a score Ai

= SCi * SeqCovi was computed for each specific protein i to
describe apparent abundance in the eluate, which correlates
with binding strength and protein expression (SCi=spectral
count, SeqCovi=protein sequence coverage). For combining
the two cell line-dependent datasets, the maximum of both
scores was applied to represent the optimal binding potential.
Non kinase target scores were reduced by the application of a
factor 0.25 to account for their very likely secondary binder
nature.

Human protein-protein interaction network
This PPI network was obtained by integrating data found in

the IntAct, MINT, BioGRID, HPRD, and DIP databases as of
October 2011. All the protein identification codes were mapped

Network Model of BCR-ABL Inhibitors in Ph+ ALL
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to UniProtKB accession codes. The resultant PPI network
contained 13461 distinct proteins and 90363 pairwise
interactions. We performed subsequent network computations
restricting to the largest connected component that was
comprised of 13350 distinct proteins and 90292 interactions.

Cell Proliferation Assays
Cells were placed into 96 well plates (1x105 cells/well) and

incubated in RPMI 1640 medium in the presence or absence of
various concentrations of kinase inhibitors at 37°C for 48 hours.
Then, 3H-thymidine (0.5 µCi/well) was added. After twelve
hours, plates were recovered, frozen and stored at -20°C until
use. After thawing, cells were harvested on filter membranes
(Packard Bioscience, Meriden, CT) in a Filtermate 196
harvester (Packard Bioscience). Filters were air-dried, and the
bound radioactivity was measured in a beta-counter (Top-
Count NXT, Packard Bioscience). All experiments were
performed in triplicates.

Target specificity P-values
Comparing the target profiles of the 4 compounds in BV-173

and Z-119 cells we reported specific, significant identifications
of kinases for a cell type or a compound. In every case, the
reported P-values was computed exploiting the biological and
technical replicates available (4 in total for each compound in
the cell lines; 2 for dasatinib in the patient pool). We computed
the abundance score for each replicate and compared the
resulting values with a (non parametric) one-sided Kolmogorov-
Smirnov test. We only performed “coherent” comparisons in the
tests. For instance, assessing FGR presence in dasatinib
patient pulldowns we compared the 2 values available for these
samples with the 8 values, i.e. 0, available for dasatinib in the
cell lines (data for the other drugs were not used). Similarly,
assessing CDK specificity for nilotinib, we compared the 8
values available for this compound in the 2 cell lines with the
24 values (3 drugs, quadruplicates, 2 cell lines) corresponding
to the other drugs (again 0 in this example).

Results

Cellular target profiling by chemical proteomics
identifies 79 protein kinases binding to dasatinib,
nilotinib, bosutinib, and bafetinib in Ph+ ALL cells

Dasatinib, nilotinib, bosutinib, and bafetinib were chosen,
since they were engaged in clinical trials in various phases or
used in practice for Ph+ ALL when this study was initiated. In
order to perform a comprehensive comparison of these TKI in
this specific context, we investigated two widely used human
BCR-ABL-positive ALL cell lines, BV-173 and Z-119. While
Z-119 expresses the BCR-ABLp190 isoform, which accounts for
approximately two thirds of Ph+ ALL cases, BV-173 features
the BCR-ABLp210 isoform that is found in the remaining Ph+
ALL patient population, as well as in CML [11]. We further
collected PBMCs from six Ph+ ALL patients at diagnosis (Table
S1 in File S1), which due to the small overall sample size
available were only used for experiments with dasatinib.
Although not included in later computations, this experiment

provides an appreciation of the degree of similarity between
target profiles from cell lines and Ph+ ALL patients. In a next
step, we determined the cell-specific target profiles of the four
TKI by immobilizing previously established and validated drug
analogues as bait molecules and performing subsequent
shotgun chemical proteomics (Figure 1) [26-29]. For optimal
comparability, we also generated a coupleable nilotinib
analogue (c-nilotinib) (Figure 1B; Figure S1A in File S1), which
should bind to the ABL kinase domain in a fashion similar to
the other compounds with the linker moiety protruding into
solvent space from the hinge region [31,32]. In in vitro ABL
kinase activity assays, pc-nilotinib proved to be as potent as
nilotinib itself supporting its suitability as a probe compound
(Figure S1B in File S1).

This target profiling analysis showed 79 kinases to bind to
the four drugs across all cell types examined (Table 1; Tables
S2-S4 in File S1). In spite of significant overlap of the observed
profiles there were a number of notable differences, particularly
between the various drugs, but also between the cell types,
which were likely due to differences in the expression patterns.
Thus, some kinases were exclusively observed in the patient
pool (e.g. FGR, P<0.041 see Materials and Methods), in the
Z-119 (e.g. TESK2, P<0.019) or in the BV-173 cells (e.g.
CSNK2A1, P<0.0012; CSNK2A2, P<0.0022; EPHB3,
P<0.00034). Among the four drugs tested, nilotinib was most
selective displaying 19 kinase targets, while bosutinib was
most promiscuous showing 54 kinase targets. BCR-ABL was
identified with all four drugs albeit to different extent, which
reflected known differences in affinity for BCR-ABL [5-8]. Only
few other kinases interacted with all four drugs. These included
the mixed lineage kinase MLTK (ZAK) and the SRC family
kinases (SFK) LYN and LCK, which were expected with the
pan-SFK inhibitors dasatinib and bosutinib. However, they also
have been associated previously with bafetinib and nilotinib
[26,33,34]. Conversely, many kinases were interacting only
with individual drugs. Most noteworthy, as they have not been
identified in CML cell lines [24,26-28], were PDGFRB
(P<6.2E-6), ILK (P<6.2E-6), and TESK1 (P<0.035) as specific
targets of dasatinib, and CHEK2 (P<0.0012), MAP2K1
(P<6.2E-6), and MAP2K2 (P<6.2E-6) specific for bosutinib,
CDK9 (nilotinib, P<0.0093) and MAPK8, MAPK9 and MAPK10
(bafetinib and nilotinib, all 3 P<2.59E-5). In addition, MAP3K2,
which was found binding with dasatinib and bosutinib,
appeared as stronger bosutinib target in Z-119 and BV-173
cells (P<0.019). The majority of the observed kinases have
been validated previously (Figure S2 in File S1). For instance,
PDGFRB, ILK, TESK1, CHEK2, MAP2K1, MAP2K2, MAP3K2
and MAPK8 are known targets of the respective drugs. We
also determined the IC50 value of nilotinib for MAPK9 by in vitro
kinase assays to be 12.9 μM thereby validating this interaction.
The relatively weak IC50’s for MAP2K1 (bosutinib) and MAPK9
(nilotinib) suggest that the strong enrichment in our proteomics
analysis may in part be due to high protein abundance and/or
co-purification of these kinases with their known interaction
partners MAP2K2 and MAPK8, which are much stronger
inhibited by bosutinib and nilotinib, respectively [34].

Network Model of BCR-ABL Inhibitors in Ph+ ALL
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Table 1. Protein kinase targets of dasatinib, nilotinib, bosutinib and bafetinib in Ph+ ALL cells.

  Dasatinib Nilotinib Bosutinib Bafetinib

Gene name AC BV-173 Z-119 Patient Pool BV-173 Z-119 BV-173 Z-119 BV-173 Z-119

AAK1 Q2M2I8 -/- -/- -/- -/- -/- 21/34 27/40 -/- -/-
ABL1 P00519 34/42 (15/17) 2/3 3/3 -/- 27/33 (11/14) 20/25 (3/3)
ABL2 (ARG) P42684 25/29 16/20 -/- -/- -/-* 16/21 8/9 13/16 4/4
BCR-ABL N/A 66/42 22/13 (2/2) 7/4 -/-* 56/35 15/10 39/25 4/2
BLK P51451 14/29 10/22 -/- -/- -/- 7/17 3/6 3/6 -/-
BMP2K (BIKE) Q9NSY1 -/- -/- -/- -/- -/- 22/26 21/24 -/- -/-
BTK Q06187 43/66 43/70 19/36 13/21 7/10 40/65 36/59 11/19 -/-
CABC1 (ADCK3) Q8NI60 11/21 5/9 9/16 -/- -/- -/- -/- -/- -/-
CAMK2B Q13554 -/- -/- -/- 2/6 -/- 8/26 -/- -/- -/-
CAMK2D Q13557 -/- -/- -/- 4/11 -/- 24/54 -/- -/- -/-
CAMK2G Q13555 -/- -/- -/- 2/6 -/- 18/42 13/30 -/- -/-
CDK5 Q00535 -/- -/- -/- 2/7 -/- -/- -/- -/- -/-
CDK9 P50750 -/- -/- -/- 5/15 2/7 -/- -/- -/- -/-
CDK13 (CDC2L5) Q14004 2/1 2/1 2/1 -/- -/- -/- -/- -/- -/-
CDK18 (PCTK3) Q07002 -/- 2/5 -/- -/- -/- -/- -/- -/- -/-
CHEK2 O96017 -/- -/- -/- -/- -/- 6/13 9/21 -/- -/-
CSK P41240 26/65 16/41 12/30 11/31 6/15 16/41 10/29 9/25 -/-
CSNK2A1 P68400 8/31 -/- -/- -/- -/- 5/17 -/- 2/5 -/-
CSNK2A2 P19784 4/19 -/- -/- -/- -/- 3/12 -/- -/- -/-
EPHB3 P54753 8/10 -/- -/- -/- -/- 5/6 -/- -/- -/-
EPHB4 P54760 22/27 27/36 -/- -/- -/- 25/35 22/30 -/- -/-
FER P16591 -/- -/- -/- -/- -/- 14/17 6/7 -/- -/-
FES P07332 -/- -/- -/- -/- -/- -/- 2/3 -/- -/-
FGR P09769 -/- -/- 5/13       
FLT3 P36888 -/- 2/2 -/- -/- -/- -/- -/- -/- -/-
FRK P42685 2/3 2/3 -/- -/- -/- 2/3 2/3 -/- -/-
FYN P06241 12/25 15/29 -/- -/- -/- 12/25 10/20 2/3 -/-
GAK O14976 24/23 19/17 4/4 -/- -/- 40/39 33/32 -/- -/-
HCK P08631 8/16 4/6 3/6 2/3 -/- 10/21 5/9 2/3 2/3
IKBKE Q14164 -/- -/- -/- -/- -/- 13/23 2/3 -/- -/-
ILK Q13418 15/36 20/45 13/25 -/- -/- 3/6 -/- -/- -/-
IRAK3 Q9Y616 -/- 3/7 -/- -/- -/- -/- -/- -/- -/-
IRAK4 Q9NWZ3 2/5 4/9 -/- -/- -/- 6/13 8/18 -/- -/-
KDR (VEGFR2) P35968 -/- 2/1 -/- -/- -/- -/- -/- -/- -/-
LCK P06239 17/47 14/36 6/14 5/11 -/- 15/39 13/32 14/36 7/18
LIMK2 P53671 8/14 3/6 -/- -/- -/- -/- -/- -/- -/-
LYN P07948 29/65 31/65 11/25 9/19 2/4 29/63 27/65 17/39 16/33
MAP2K1 (MEK1) Q02750 -/- -/- -/- -/- -/- 15/39 13/37 -/- -/-
MAP2K2 (MEK2) P36507 -/- -/- -/- -/- -/- 19/44 16/46 -/- -/-
MAP2K5 Q13163 -/- -/- -/- -/- -/- 5/13 -/- -/- -/-
MAP3K1 Q13233 15/12 -/- -/- -/- -/- 21/19 7/5 -/- -/-
MAP3K2 Q9Y2U5 6/10 4/6 2/3 -/- -/- 15/26 14/26 -/- -/-
MAP3K3 Q99759 5/9 2/3 -/- -/- -/- 9/16 9/15 -/- -/-
MAP4K1 (HPK1) Q92918 -/- -/- -/- -/- -/- 13/18 9/13 -/- -/-
MAP4K2 (GCK) Q12851 -/- -/- -/- -/- -/- 22/35 10/16 -/- -/-
MAP4K3 Q8IVH8 -/- -/- -/- -/- -/- 3/4 -/- -/- -/-
MAP4K4 O95819 -/- -/- -/- -/- -/- 6/5 4/3 -/- -/-
MAP4K5 (KHS) Q9Y4K4 13/16 11/15 -/- -/- -/- 23/33 20/26 -/- -/-
MAPK8 (JNK) P45983 -/- -/- -/- 17/56 13/41 -/- -/- 5/12 3/8
MAPK9 (JNK2) P45984 -/- -/- -/- 16/43 13/35 -/- -/- 8/24 5/12
MAPK10 (JNK3) P53779 -/- -/- -/- 10/20 -/- -/- -/- 4/7 -/-
MAPK14 (p38a) Q16539 14/48 16/64 8/18 13/48 11/42 -/- 3/7 14/51 15/57
MAPKAPK2 P49137 -/- -/- -/- -/- -/- -/- -/- 2/6 -/-

Network Model of BCR-ABL Inhibitors in Ph+ ALL
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Differential drug profile analysis reveals 144 specific
drug-binding proteins and distinct protein complexes

For a proteome-wide understanding of the respective drug-
protein interaction networks, we broadened our analysis by
including non-kinase targets. Therefore, we performed drug
affinity chromatography experiments in the presence of soluble
drug (Tables S5 and S6 in File S1), which competes with the
respective drug matrix for specific targets and their interaction
partners while non-specific proteins remain unaffected. Next,
we compared the average spectral counts of regular
(uncompeted) and competition experiments and determined
proteins that were specific for each drug (Figure 2). Proteins,
which were not sufficiently competed by the respective soluble
drug, but were otherwise specific with regard to other TKI, were
rescued for this analysis. We thus identified 144 proteins,
including the 79 mentioned kinases, that were specifically
binding to any one or more given TKI in BV-173 and Z-119
cells. Assuming that protein kinases were direct drug binders,

we generated hybrid drug-protein/protein-protein interaction
networks for each cell type with these 144 proteins by mining of
publicly available PPI databases (IntAct, HRPD, MINT,
BioGRID, DIP) (Figure 3, Figure S3 in File S1). The majority of
non-kinase proteins displayed at least one known interaction
with another selected protein, which might serve as validation
of the specificity assessment and support the assumption that
these proteins are indirect drug binders. To confirm this, we
considered that true indirect drug interactors should be in
interaction with affinity-enriched kinases more frequently than
random. Considering the targets we could map on the PPI
network only, the 75 mapped kinases featured 4020 direct
interactions. Forty-four of the 63 mapped non-kinases were
among the kinase interactors. Given that the interactome
contained 13350 proteins, we found a hypergeometric P-value
of 2.57e-7.

This analysis also revealed several distinct protein
complexes, such as the well characterized integrin-linked
kinase (ILK) complex [35], which interacted with dasatinib. We

Table 1 (continued).

  Dasatinib Nilotinib Bosutinib Bafetinib

Gene name AC BV-173 Z-119 Patient Pool BV-173 Z-119 BV-173 Z-119 BV-173 Z-119

MAPKAPK3 Q16644 -/- -/- -/- 3/10 -/- -/- -/- 6/23 2/5
MLKL Q8NB16 -/- -/- 3/8       
MLTK (ZAK) Q9NYL2 19/29 12/17 -/- 11/17 7/10 15/23 10/14 16/25 11/16
MST4 Q9P289 -/- -/- -/- -/- -/- 5/17 5/17 -/- -/-
PDGFRB P09619 16/16 25/25 -/- -/- -/- -/- -/- -/- -/-
PKMYT1 Q99640 11/31 5/14 -/- -/- -/- 11/31 10/29 -/- -/-
PRKAA1 (AMPK1) Q13131 -/- -/- -/- -/- -/- 9/18 11/24 -/- -/-
PTK2 (FAK) Q05397 -/- -/- -/- -/- -/- 16/17 7/8 -/- -/-
PTK2B (PYK2) Q14289 -/- -/- -/- 12/14 5/5 18/22 22/27 24/30 20/23
RIPK2 O43353 17/37 12/25 -/- -/- -/- -/- -/- -/- -/-
SGK223 Q86YV5 12/11 -/- -/- -/- -/- 8/7 -/- -/- -/-
SIK2 (QIK) Q9H0K1 11/15 5/6 -/- -/- -/- 8/10 2/2 -/- -/-
SIK3 (QSK) Q9Y2K2 -/- 5/5 -/- -/- -/- -/- -/- -/- -/-
SLK Q9H2G2 -/- -/- -/- -/- -/- 19/18 16/12 -/- -/-
SRC P12931 11/23 11/24 -/- -/- -/- 10/21 9/19 -/- -/-
STK10 (LOK) O94804 -/- -/- -/- -/- -/- 26/30 19/23 -/- -/-
STK24 (MST3) Q9Y6E0 -/- -/- -/- -/- -/- -/- 3/8 -/- -/-
STRADA (LYK5) Q7RTN6 2/3 -/- -/- -/- -/- -/- -/- -/- -/-
SYK P43405 -/- -/- 2/3       
TBK1 Q9UHD2 -/- -/- -/- -/- -/- 16/26 15/24 -/- -/-
TEC P42680 8/14 17/29 2/3 -/- -/- -/- -/- -/- -/-
TESK1 Q15569 5/8 -/- -/- -/- -/- -/- -/- -/- -/-
TESK2 Q96S53 -/- 3/6 -/- -/- -/- -/- -/- -/- -/-
TYK2 P29597 3/2 -/- -/- -/- -/- -/- -/- -/- -/-
ULK3 Q6PHR2 -/- -/- -/- -/- -/- 14/31 9/21 -/- -/-
YES1 P07947 13/26 15/29 -/- -/- -/- 9/15 10/18 2/3 -/-

* The presence of BCR-ABL and ABL2 in the Z-119 c-nilotinib eluate was confirmed by quantitative mass spectrometry across the four different drugs using 4-plex isobaric
tag for relative and absolute quantitation (iTRAQ) (data not shown).
Values in front of the slash indicate the number of unique peptides identified, values following the slash represent the overall amino acid sequence coverage in percent
(individual values for all the replicates available are reported in Tables S2-S4 in File S1). Values in parenthesis indicate that this protein was unambiquously identified in
another cell type used in this study, but that it was grouped in this cell type with a different reporter protein that shares the same peptides, but displays in total more peptides.
Therefore, it cannot be decided by MS, if the protein is present in this sample or not. AC: SwissProt accession code.
doi: 10.1371/journal.pone.0077155.t001
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also prominently observed several members of the AP2
adapter complex [36,37], which was specifically enriched by
bosutinib (Figure 3A). A noteworthy protein complex involved
BCR-ABL and the adaptor protein GRB2, the
phosphatidylinositol-5-phosphatase INPPL1 (SHIP-2) and the
tyrosine phosphatase UBASH3B (STS-1), which have been
previously described in CML (Figure 3B) [37]. Thus, we were
able to capture relevant PPIs underlining the appropriateness
to incorporate this information into the network model.

Correlating drug targets and genetic alterations
In order to estimate protein abundance in the drug eluates

and thus the impact of the individual, cell-specific drug-protein
interactions in the chemical proteomics analyses, we applied

an eluate abundance score A based on the product of the
observed amino acid sequence coverage and the number of
spectral counts for each identified specific protein (Tables S7
and S8 in File S1) [38]. The A score is similar to other global
abundance scores, in particular emPAI [39], that demonstrated
reasonable correlation with true abundance. It allows for a
semi-quantitative comparison of proteins within and across
samples independent of size, enzymatic function or if they are
direct or indirect drug binders.

Given a drug and a set of protein targets, we determined a
drug treatment model over the human PPI network by means
of a diffusion process. Briefly, the so-called drug treatment
model is a probability distribution over all the proteins (nodes)
of the PPI network and these probabilities account for the

Figure 2.  Graphical representation of binding specificity assessment.  Using the example of dasatinib and BV-173 cells, the
average spectral counts obtained from chemical proteomics were compared with the respective competition experiments in the
presence of 20 µM free drug in a double-logarithmic plot. Specific ( ♦) and non-specific (◊) binders were identified by definition of a
specificity gate (grey area) with a ratio threshold of 2 and a minimum average spectral count of 10. For proteins that were not
identified in the competition experiment, the minimum average spectral count was lowered to 1.
doi: 10.1371/journal.pone.0077155.g002
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likelihood of being influenced by the drug treatment. To
compute the latter probability distribution the drug targets were
mapped on the PPI network and assigned initial probabilities
proportional to the abundance score A defined above. Non
drug targets were assigned an initial probability of 0. A diffusion
process propagated those initial probabilities to the entire
network integrating direct protein interactions of the drug
targets and the global network topology (interactions between
non targets) (Figure 4A, S1 in File S2). The diffusion was
implemented as a modified random walk with restart [40,41].
The initial probabilities were written as a vector x0 (one
component for each protein in the PPI network) and the
diffusion was computed by the iteration xi+1=(1-α)Pxi+αx0,
where P was a diffusion matrix derived from the PPI topology,
α was set to 0.3, and the iteration was run until convergence.
The limit (asymptotic) probability distribution, covering the
whole PPI network, defined the treatment network model. This
procedure has been shown to efficiently associate proteins to
functionally related other proteins [42,43] and it has the
potential to capture synergistic effects arising from multiple
targets of a single compound, which is a desirable
characteristic for promiscuous small molecules such as the four
kinase inhibitors considered here, Additional details, precise
mathematical definitions, and proof of convergence are

provided in Supplementary Methods (Figures S2-S3 in File S2,
Table S1 in File S2).

An average Ph+ ALL disease network model was computed
following the same principles: From Mullighan et al., we
extracted the 11 potential deletions to compute initial
probabilities proportional to deletion frequencies (IKZF1, 84%;
CDKN2A, 53%; PAX5, 51%; C20orf94, 23%; RB1, 19%;
MEF2C, 14%; EBF1, 14%; BTG1, 14%; DLEU, 9%; FHIT, 9%;
ETV6, 7%), with non-deleted genes having 0 probability [17].
BCR-ABL was added to this list with a probability
corresponding to 100% frequency. Considering future
utilization of genomic information for personalized therapy, for
cell lines where detailed genomic information on the copy
numbers of above disease genes was available in the recently
released Cancer Cell Line Encyclopedia (CCLE,
www.broadinstitute.org/ccle), we used this information to
generate cell line-specific Ph+ ALL disease network models
instead of the average patient model (Table S9 in File S1). For
this purpose, we considered genes to be deleted, if the copy
number was below -0.5, and amplified, if the copy number was
above +0.5. All the deleted genes were given the same weight
in the initial node probabilities.

To measure the correlation between a drug and a disease
network, we introduced a correlation score (Figure 4B). Let be

Figure 3.  Hybrid drug-protein/protein-protein interaction networks of specific drug binding proteins.  Individual cellular
target profiles of nilotinib (green), dasatinib (red), bosutinib (yellow) and bafetinib (blue) were intersected with each other and
overlaid with PPI data from public databases. Protein kinases and the oxidoreductase NQO2, as a validated target of nilotinib and to
lesser extent of bafetinib, were considered to be direct drug binders (solid lines) and color-coded according to the drug they were
interacting with. Shared kinase targets display a split color code. All other non-kinase proteins were assumed to be indirect binders
(dashed lines) and displayed in grey. The analysis reveals distinct protein complexes, which are enriched by particular drugs and
which are highlighted with the respectively colored background. A. Z-119 drug-protein interaction network. B. BV-173 drug-protein
interaction network.
doi: 10.1371/journal.pone.0077155.g003
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the probability of protein i in the disease network model, i.e.
after diffusion of the initial node probabilities, and the
equivalent in the drug treatment network model. We define

where ci is a coefficient equal to 1 for non-deleted genes and
1-percentage/100 for the 11 deleted genes. The set S

 represents the proteins (network nodes) to consider in the
summation. We determine S to contain the n largest products .
Results in Table 2 were obtained with n=500, i.e. approximately
5% of the nodes. Other values of n gave very similar relative
correlation scores.

Figure 4.  Diffusion and scoring methods.  A. Schematic representation of a diffusion process in a “toy” network. The proteins
(nodes) labeled 1 and 12 are drug targets (in practice they could have distinct weights based on the abundance score but here they
have the same for simplicity). After completion of the diffusion process, the entire network is assigned probabilities
(black=maximum, white=minimum). Nodes close to the targets typically receive higher probabilities and, due to the network
topology, synergistic effects are obtained for nodes close to several targets (marked as “S”) or linked in multiple ways to a single
target (marked as “T”). B. Principle of scoring illustrated in part of the network: two diffusion processes are performed separately on
the PPI network (partially featured): one yields a model of the drug treatment effect (red) and the second one yields a model of the
influence of the disease (green). Combining the two set of scores allows for the computation of a correlation score (blue) that
measures the adequacy of a drug treatment for a disease.
doi: 10.1371/journal.pone.0077155.g004

Table 2. Network correlation scores P-values.

Cell line Average patient BV-173 Z-119 SUP-B15
BCR-ABL  - p210 p190 p190

Profile Max BV-173 Z-119 Max

Dis.Model Average CCLE Average CCLE

Nilotinib 3.2E-1 2.7E-1 5.0E-1 4.4E-1

Dasatinib 2.9E-3 5.3E-4 4.9E-1 2.1E-2
Bosutinib 2.9E-2 1.3E-2 3.2E-1 7.7E-2

Bafetinib 1.8E-2 5.0E-3 6.1E-1 7.0E-2

Scores for correlation of drug-protein and disease-specific protein-protein interaction networks are dimension-less numbers. To bring all the scores of the 4 different drugs to
a common scale we report their significance compared to a list of nonrelated diseases, the higher the impact of a drug on the disease network, the lower the reported P-
value. Significant results (P-values ≤ 5%) are in bold and best significant result is underlined. BCR-ABL: Indicates BCR-ABL mutant. Profile: Target profile applied for
correlation analysis as determined by chemical proteomics (Max stands for the maximum of the BV-173 and Z-119 profiles). Dis.Model: Disease-model applied for
correlation analysis (Average stands for an average Ph+ ALL patient disease model with relative probabilities of disease gene deletions as reported by Mullighan et al.);
CCLE stands for Cell line-specific Ph+ ALL disease-model taking into account the disease gene copy number as extracted from the Cancer Cell Line Encyclopedia (CCLE).
The average patient model is used when no gene copy number information was deposited in CCLE.
doi: 10.1371/journal.pone.0077155.t002
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Finally, since every drug targeted a different number of
proteins with different abundance scores, it was necessary to
operate normalization. This was achieved by scoring the
treatment network models against a list of diseases[42]
different from Ph+ ALL to obtain a null distribution for each
kinase inhibitor. P-values corresponding to the actual Ph+ ALL
cell types provided the normalized correlation scores (see File
S2).

The correlation of the drug and disease networks produced
scores for each TKI that allowed us to postulate which one of
them would be the most efficient in the Ph+ ALL disease
setting. Of all four drugs, dasatinib displayed the highest
probability to affect the average Ph+ ALL disease network
(dasatinib > bafetinib > bosutinib > nilotinib), as well as in the
individual cell lines (Table 2).

Dasatinib shows the strongest antiproliferative effects
on Ph+ ALL cell lines

Next, we asked whether our target and disease network-
based prediction would correlate with cellular drug effects in Ph
+ ALL cell lines. In a first step, we determined the drug-
dependent phosphotyrosine signatures of BV-173 and Z-119
cells by immunoblot analysis when applying each drug at the
respective maximal plasma concentration observed in patients.
In correspondence to our prediction scores, dasatinib showed
the strongest impact on tyrosine phosphorylation (Figure 5).
Although all four drugs equally effectively abrogated
phosphorylation of BCR-ABL in both cell lines (with the
exception of bosutinib in BV-173 cells), several other signals
that were lost upon dasatinib treatment were not affected to the
same extent by bafetinib, bosutinib and nilotinib. This was
particularly the case for the phosphotyrosine signature of
bosutinib in BV-173 cells (Figure 5A), which suggests either a
weak overall potency or that much of the net effect of bosutinib
in these cells can be attributed to inhibition of serine/threonine
kinases, which is supported by previous phosphoproteomics
studies in CML (Bantscheff, Nat.Biotech., 2007; Winter, NCB,
2012). Interestingly, also dasatinib has a strong impact on the
serine/threonine phosphorylation landscape (Bantscheff,
Nat.Biotech., 2007; Pan, MCP, 2009), although this is different
from bosutinib as these two drugs target very different serine/
threonine kinases.

To investigate the effects of TKI treatment on cell fate, we
furthermore performed proliferation assays using [3H]thymidine
incorporation and determined the IC50 values for each drug in a
small panel of Ph+ ALL cell lines. Dasatinib was the most
potent inhibitor of proliferation of BV-173 and Z-119 cells
displaying subnanomolar IC50 values (Table 3, Figures S4-S6
in File S1). The remaining TKI were less effective than
dasatinib in their antiproliferative effects. However, with the
exception of bosutinib all second-generation TKI tested were
more potent than imatinib. These tendencies and drug rankings
also translated to another Ph+ ALL cell line, SUP-B15, which
expresses the BCR-ABLp190 isoform. Superior dasatinib
potency was further confirmed in a cell apoptosis assay in
triplicates by means of Annexin V/PI staining for BV-173 and
Z-119 cells (Fig. S7AB in File S1).

Discussion

In this study we have addressed the question, which of the
four second-generation TKI in clinial trials, nilotinib, dasatinib,
bosutinib or bafetinib, has the most advantageous target profile
in the context of Ph+ ALL. Ph+ ALL features a complex genetic
background on top of the expression of the oncogenic tyrosine
kinase BCR-ABL [17]. This genetic complexity supposedly
reduces the long-term effectiveness of BCR-ABL-directed
therapy with imatinib [13]. We therefore compared the four TKI
in light of their impact on a Ph+ ALL PPI network, taking into
account the additional gene copy number alterations that
distinguish Ph+ ALL from CML rather than focussing on
classical BCR-ABL signaling alone [17].

We performed a network analysis based on a diffusion
procedure. A similar approach has been employed recently to
predict drug side effects with regard to heart arrhythmias [44].
To this end, the authors were successful by focussing on the
cognate drug targets. However, the well-documented
pleiotropic nature of kinase inhibitors, which were the focus of
interest here, made it necessary for our study to first determine
the proteome-wide Ph+ ALL target profiles of each drug by
chemical proteomics.

Some of the described genetic lesions in Ph+ ALL have been
previously demonstrated to be also of functional relevance. For
instance, IKAROS, encoded by IKZF1, has been shown to
redirect BCR-ABL signaling from SFK activation to SLP65,
which is downstream of the pre-B cell receptor tumor
suppressor [45]. In this way, loss of IKAROS promotes
oncogenic signaling of BCR-ABL in part by phosphorylation
and activation of the SRC family kinases LYN, HCK and FGR.
These kinases have been previously demonstrated to be
required for induction of Ph+ ALL while being dispensable for
CML [46]. In a similar way, BTK has been shown to be
constitutively activated by BCR-ABL in Ph+ ALL cells thereby
bypassing the pre-B cell receptor and providing a continuous
survival signal [47].

LYN and BTK have been identified with all four TKI in the
present chemical proteomics screen. However, there were
pronounced differences in the purification yields as indicated by
the abundance score A. In fact, the scores for dasatinib and
bosutinib for these kinases were among the highest that were
observed for all drug-protein interactions and yet higher than
the ones for BCR-ABL. Consistenly, dasatinib and bosutinib
are known to be highly potent inhibitors of all SFK and BTK
with in vitro kinase assays showing single-digit nanomolar
IC50’s [6,7,24,48]. Bafetinib, although also a LYN inhibitor (IC50

= 51 nM), is less potent than these while nilotinib displays only
micromolar inhibition of LYN [26,34]. Neither bafetinib nor
nilotinib have been implicated as significant BTK inhibitors.
However, as identification of proteins by chemical proteomics
depends not only on affinity, but also on abundance, BTK
purification by these drugs might be due to the combination of
high BTK expression levels and low drug affinity. Post-
translational modifications, such as phosphorylation or
ubiquitination, mutations and differential splicing might also
have an impact on protein conformation and drug affinity. It is
notable that BV-173 cells have been described previously to
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feature BTK phosphorylation as well as truncated BTK isoforms
with altered biochemical properties [47,49]. The ‘A’ scores,
which were developed to represent target abundance in the
eluate, are directly incorporated in the subsequent random
walk analysis. In addition, LYN in particular is strongly

connected to the reported gene deletions as it is separated
from four deleted nodes (CDKN2A, RB1, FHIT, ETV6) by only
one other protein (Table S10 in File S1), i.e. it is interacting
with proteins that are directly affected by the loss of one of the
disease genes. Although the overall network correlation scores

Figure 5.  Differential drug effects on cellular tyrosine phosphorylation.  Cells were treated for 30 min with bafetinib (800 nM),
bosutinib (400 nM), dasatinib (100 nM) and nilotinib (4 µM), which are concentrations equivalent to reported maximum patient
plasma concentrations, and DMSO control. Effects of individual drugs were determined by immunoblot analysis for BCR-ABL (α-
ABL) and total phosphotyrosine (α-pY). Actin served as loading control. A. Dasatinib had the strongest impact on cellular tyrosine
phosphorylation in BV-173 cells while the effects of bafetinib, nilotinib and particularly bosutinib were less pronounced. B. Dasatinib
completely abolished cellular tyrosine phosphorylation in Z-119 cells. BCR-ABL levels were not appreciably affected, but it’s
phosphorylation (marked by arrow) was inhibited by the drugs in either cell line.
doi: 10.1371/journal.pone.0077155.g005

Table 3. Effects of various targeted drugs on Ph+ ALL cell lines*.

 BV-173 Z-119 SUP-B15
Imatinib 23.5 65.2 338.4

Nilotinib 1.0 5.3 3.5

Dasatinib 0.1 0.2 0.4

Bosutinib 22.0 86.9 706.5

Bafetinib 0.6 0.6 0.9

* Results were obtained through measurement of 3H-thymidine uptake of the cell lines; IC50 values are given in nM (detailed cell proliferation curves in Figures S4-S6 in File
S1).
doi: 10.1371/journal.pone.0077155.t003
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cannot be fully explained by effects on single nodes, but are
the sum of the global drug effects, the observed LYN and BTK
enrichment patterns may explain to some extent the score
differences between dasatinib on the one hand and nilotinib
and bafetinib on the other hand. Bosutinib, however, has only
slightly lower ‘A’ scores for LYN and BTK than dasatinib. The
difference between dasatinib and bosutinib might therefore be
attributed to the contribution that is made by serine/threonine
kinases to the bosutinib network score, which would be in line
with the relatively weak effect of bosutinib on tyrosine
phosphorylation in BV-173 cells. Additionally, this could be at
least in part due to other dasatinib targets, such as TEC or ILK,
which are not or only marginally seen with bosutinib. For
instance, the entire ILK/LIMS1/PARVIN/RSU1 complex is
engaged specifically by dasatinib, produces relatively high ‘A’
scores and is well connected to disease genes through ILK and
LIMS1 (e.g. FHIT, RB1, IKZF1) (Table S10 in File S1).
Interestingly, we have identified BCR-ABL, LYN, BTK, TEC and
ILK as dasatinib interactors also in the pool of Ph+ ALL patient
PBMCs and subsequently confirmed their expression in each
individual patient from the pool by qPCR (Table S11 in File S1),
which highlights their potential relevance in the context of
mediating network-wide drug effects in Ph+ ALL.

One would intuitively expect that the drug with the widest
target spectrum, in this case bosutinib, would produce the
strongest network effects. However, the network correlation
analysis suggested dasatinib to have the most favorable drug-
protein interaction profile in Ph+ ALL. This was consistent with
the demonstrated important role of, for instance, BCR-ABL,
LYN and BTK in Ph+ ALL and the fact that dasatinib displayed
the strongest impact on these kinases.

Overall, nilotinib, bosutinib and bafetinib were predicted to be
inferior to dasatinib. This prediction was well reflected by the
IC50’s in cellular proliferation assays and was further improved
when based on more detailed genomic information as
accessible in the CCLE database. This suggests that
incorporation of patient gene signatures, as they will become
available in the future, has the potential to produce valuable
predictions for individual Ph+ ALL patients. Notably, these
observations also correlated well with published, in part
preliminary reports from clinical trials with the individual drugs
applied as monotherapies or in combination with chemotherapy
[12,13,50-53].

Being critical about the correlation analysis also revealed two
points worth discussing for future applications. First, although
nilotinib is a potent kinase inhibitor, as e.g. observed in Table 3
and Figure S7C in File S1, and its couplable derivate pc-
nilotinib showed well preserved potency in a c-ABL kinase
assay, when linked to beads this compound might have
modified binding abilities as indicated by low BCR-ABL spectral
counts in Table 1 and poor scores in Tables 2 and S1 in File
S2. In addition, post-translational modifications on BCR-ABL
and its interaction partners in Ph+ ALL cells, as well as the
different BCR-ABL isoforms themselves, may influence drug
binding properties compared to c-ABL. This highlights the
importance of performing experiments in the correct cell type,
ideally from patient biopsies, and having detailed information
about genetic alterations is likely to be essential as well. As a

matter of fact, our correlation analysis performed better with
BV-173 than with Z-119 cells (Tables 2 and 3). Z-119 cells
respond to kinase inhibitors very differently compared to
BV-173 cells, as can be for instance appreciated from Figure
S7C in File S1, and their genetic alterations were not mapped
in detail (we used an average patient model) whereas for
BV-173 the CCLE database provided detailed genetic data. To
use the correct cell type has the potential to reveal changes at
the compound-target interaction level and the genetic
alterations can inform on possible downstream signalling
changes when mapped onto the appropriate network.

In summary, we here present a systems biology-derived
network model for assisting implementation of personalized
therapy in Ph+ ALL with second-generation BCR-ABL
inhibitors. This model is based on the comprehensive,
proteome-wide survey of the drug-target profiles of nilotinib,
dasatinib, bosutinib and bafetinib in the context of the complex
Ph+ ALL-specific protein-protein interaction network.
Correlation analysis elected dasatinib as the most effective
network drug for Ph+ ALL. This prediction was validated by
cellular proliferation assays. First clinical reports show that
dasatinib indeed has favorable efficacy. This type of study was
designed to serve the community to evaluate these drugs
based on their cellular target profile. In future, as it will not
always be feasible to test their effects directly on patient cells, it
should be useful to annotate these networks with mutation and
expression data to derive a patient-specific simulation.
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