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Lack of CD47 Impairs Bone Cell Differentiation and Results in
an Osteopenic Phenotype in Vivo due to Impaired Signal
Regulatory Protein « (SIRP«) Signaling®
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Background: CD47 and its receptor SIRP« are suggested to regulate bone metabolism.
Results: Lack of CD47 prevents stromal cell SIRP« signaling, which impairs bone marrow stromal cell differentiation, subse-

quent osteoclast differentiation, and bone homeostasis.

Conclusion: CD47 and SIRP«a both mediate normal bone cell and bone tissue formation.
Significance: CD47/SIRPa may be a future molecular target to modulate bone homeostasis.

Here, we investigated whether the cell surface glycoprotein
CD47 was required for normal formation of osteoblasts and
osteoclasts and to maintain normal bone formation activity in
vitro and in vivo. In parathyroid hormone or 1&,25(OH),-vita-
min D3 (D3)-stimulated bone marrow cultures (BMC) from
CD47~'~ mice, we found a strongly reduced formation of multi-
nuclear tartrate-resistant acid phosphatase (TRAP)* oste-
oclasts, associated with reduced expression of osteoclastogenic
genes (nfatcl, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The
production of M-CSF and RANKL (receptor activator of nuclear
factor kf3 ligand) was reduced in CD47~'~ BMC, as compared
with CD47*"'* BMC. The stromal cell phenotype in CD47~/~
BMC involved a blunted expression of the osteoblast-associated
genes osterix, Alp/Akp1, and a-1-collagen, and reduced mineral
deposition, as compared with that in CD47"'* BMC. CD47 is a
ligand for SIRP« (signal regulatory protein «), which showed
strongly reduced tyrosine phosphorylation in CD47 '~ bone
marrow stromal cells. In addition, stromal cells lacking the sig-
naling SIRPa cytoplasmic domain also had a defect in osteo-
genic differentiation, and both CD47 /'~ and non-signaling
SIRP« mutant stromal cells showed a markedly reduced ability
to support osteoclastogenesis in wild-type bone marrow macro-
phages, demonstrating that CD47-induced SIRPa signaling is
critical for stromal cell support of osteoclast formation. In vivo,
femoral bones of 18- or 28-week-old CD47~'~ mice showed sig-
nificantly reduced osteoclast and osteoblast numbers and
exhibited an osteopenic bone phenotype. In conclusion, lack of
CD47 strongly impairs SIRPa-dependent osteoblast differenti-
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ation, deteriorate bone formation, and cause reduced formation
of osteoclasts.

Resorption of bone is essential for the regeneration of the
adult skeleton. After growth, old bone is continuously resorbed
by osteoclasts, resulting in bone cavities in which osteoblasts
form new bone matrix. This circular process is called remodel-
ing and is a strictly controlled process, which is in balance in a
healthy skeletal condition and unbalanced under pathological
conditions.

The osteoclast is a bone tissue-specific macrophage polykar-
yon created by the differentiation of monocyte/macrophage
precursor cells in, or in the vicinity of, bone tissue. Osteoclast
differentiation is coordinated by bone cells with mesenchymal
origin, which include stromal cells, osteoblasts, and matrix-em-
bedded late osteoblasts called osteocytes (1, 2). One of the three
known key molecules used by stromal cells/osteoblasts to con-
trol osteoclast formation is M-CSF, which binds to c-fms recep-
tors on osteoclast precursor cells and is crucial for the survival
and proliferation on these cells. A lack of osteoclasts is observed
in osteopetrotic op/op mutant mice, which lack functional
M-CSF (3). The other two cytokines of importance are RANKL
(receptor activator of nuclear factor kf ligand), which binds to
RANK (receptor activator of nuclear factor kB) on preoste-
oclasts, and the decoy receptor osteoprotegerin, which can
inhibit osteoclast formation by blocking the interaction
between RANKL and RANK (4). Similar to many cytokines and
hormones with the capacity to regulate osteoclast formation,
the osteotropic hormones parathyroid hormone (PTH)? and

2 The abbreviations used are: PTH, parathyroid hormone; BMC, bone marrow
culture(s); MEM, minimal essential medium; TRAP, tartrate-resistant acid
phosphatase; BMP-2, bone morphogenetic protein 2; PPARy2, peroxisome
proliferator-activated receptor y2; ALP, alkaline phosphatase; BS, bone
surface; ANOVA, one-way analysis of variance; BMM, bone marrow myeloid
precursor cell(s).
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1a,25(OH),-vitamin D3 (D3) target osteoblasts and stromal
cells causing increased expression and release of RANKL and,
therefore, indirectly increase the number of osteoclasts (5).
Binding of RANKL to its receptor RANK activates different
signaling cascades inducing nfatcl (nuclear factor of activated
T cells c1), the key transcription factor in osteoclastogenesis.
Nfatcl, in cooperation with several other transcription factors,
induces the transcription of osteoclast-specific genes, including
Trap/Acp5 (tartrate-resistant acid phosphatase), catK (cathep-
sin K), oscar (osteoclast-associated receptor), and ctr (calci-
tonin receptor) (5).

Osteoblasts are mononucleated cells derived from pluripo-
tent mesenchymal stem cells, which prior to osteoblast com-
mitment also can differentiate into other mesenchymal cell
lineages such as bone marrow stromal cells, fibroblasts, chon-
drocytes, myoblasts, and adipocytes, depending on the acti-
vated signaling transcription pathways. The bone morphoge-
netic protein 2 (BMP-2) is an example of a potent cytokine, which
stimulates osteoblast differentiation and increases bone forma-
tion, whereas the peroxisome proliferator-activated receptor y2
(PPARY2) is essential in directing the differentiation of adipocyte
lineage cells. Activation of the transcription factor Runx2 (Runt-
related gene 2) is essential for osteoblast differentiation and bone
formation. In addition, the transcription factor osterix, sup-
posed to act downstream of Runx2, and other transcription
factors also contribute to the control of osteoblastogenesis. Dif-
ferentiated osteoblasts express matrix proteins (e.g. a-1-col-
lagen) and alkaline phosphatase (ALP), a protein associated
with mineralization, which also functions as a biochemical
marker for osteoblastic differentiation and bone-forming
capacity (6, 7).

CD47, a cell surface glycoprotein of the Ig superfamily and
ubiquitously expressed in the body, was originally discovered as
an integrin-associated protein important for regulation of at
least 81, B3, and B5 integrin members. In addition, CD47 has
been suggested to function as a receptor for thrombospondin
(8), and as a ligand for signal regulatory protein a (SIRP) (9).
SIRPa is also an Ig superfamily cell surface glycoprotein shown
to be highly expressed in myeloid cells, neurons, endothelial
cells, and fibroblasts, but not by T cells or B cells. By binding to
CD47 on other cells, SIRPa can regulate macrophage-macro-
phage adhesion, fusion, and formation of giant cells (10, 11).

We have previously shown that osteoclast formation is
reduced both in vivo and in vitro in the absence of CD47 (12).
These findings have been confirmed in vitro both by Ulugkan et
al. (13) and Maile et al. (14). However, Maile et al. did not find
any reduction in number of osteoclasts in vivo (14). To deter-
mine the role of CD47 in bone homeostasis, both in vitro and in
vivo, we here investigated whether CD47 is involved in oste-
oclast and stromal cell/osteoblast differentiation in murine
bone marrow cultures. In addition, we studied osteoblast num-
bers and bone homeostasis in CD47 '~ mice.

EXPERIMENTAL PROCEDURES

CD47 "~ Mice and SIRPo Mutant Mice—Generation of
CD47'~ has been described previously (15). Male CD47 '~
Balb/c mice, backcrossed to Balb/c (The Jackson Laboratory,
Bar Harbor, ME) for 16 or more generations, and their wild-
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type homozygous littermates were from our own breeding col-
ony. C57BL/6 SIRPa mutant mice, lacking most of the SIRP«
cytoplasmic domain were described previously (16, 17). Male
SIRPa mutant mice or their wild-type littermates, backcrossed
for >10 generations, were from our own breeding colony. Ani-
mals were kept in accordance with local guidelines and main-
tained in a specific pathogen-free barrier facility. The Local
Animal Ethics Committee approved all animal procedures.

Bone Marrow Cell Culture (BMC)—Bone marrow cells were
isolated from femurs and tibiae of Balb/c mice, 5-9 weeks of age
(CD47""* and CD47 ') and seeded on 48- or 12-well plates
(Nunc, Roskilde, Denmark) in a-MEM with 10% FCS (Invitro-
gen), L-glutamine, and antibiotics (Sigma Aldrich), with cell
concentration of 10° cells/cm® The number of mice used for
each experiment differed between 1-4 depending on the size of
the experiment. If more than one mouse was used, the bone
marrow cells were pooled. After 24 h (day 0) of incubation
(37°C, 5% CO,), the medium was replaced and either PTH
108 M (Bachem, Bubendorf, Switzerland), D3 108 m (Roche
Diagnostics, Mannheim, Germany), or BMP-2 125 ng/ml (R&D
Systems, Abdingdon, UK) were added to the cultures. At day 3,
medium and test substances were changed. On days 67, the
cultures were harvested, and the cells were either lysated for
further RNA isolation or fixed with acetone in citrate buffer and
subsequently stained for TRAP as described below.

Osteoclast Formation and Resorption on Bone Slices—Bone
marrow cells were isolated as described above. Thereafter, the
cells were seeded on bone slices in 96-well tissue culturing
plates (Nunc, Roskilde, Denmark) in a-MEM with 10% FCS
(Invitrogen), L-glutamine and antibiotics (Sigma Aldrich), with
cell concentration of 10° cells/cm?. The cells were incubated for
24h (37 °C, 5% CO,), and thereafter, the medium was changed
and D3 10~® M (Roche Diagnostics) was added. Medium was
changed every third day, and after 10 days of culture, the exper-
iments were harvested and stained for TRAP positivity, oste-
oclasts were counted in a light microscope, and resorption pits
were visualized by an external light source. Moreover, the
release of collagen type I fragments into the culture medium
during resorption was analyzed by CrossLaps according to the
manufacturer’s instructions.

Osteoblast Differentiation—Bone marrow cells were isolated
and plated as in above described BMC and plated in 24-well
tissue culturing plates (Nunc, Roskilde, Denmark). The cells
were cultured in a-MEM with 10% FCS (Invitrogen), L-glu-
tamine, and antibiotics (Sigma Aldrich). The medium was
changed every third day. At day 6, the culture medium was
replaced with osteoblastic differentiation medium (a-MEM
with 10% FCS, L-glutamine, antibiotics, 10 mm B-glycerol phos-
phate, and 50 ug/ml ascorbic acid). At days 7, 14, and 21, the
cells were fixed with acetone in citrate buffer and stained for
ALP or von Kossa as described below.

Bone Marrow Stromal Cell Culture—Bone marrow cells were
isolated and treated as in BMC except that they were plated in
60 cm? culture dishes (Nunc). The cells were cultured in
a-MEM with 10% FCS (Invitrogen), L-glutamine, antibiotics
(Sigma Aldrich). The medium was changed after 3 days. After 7
days, the adhering cells were detached, counted, and plated at a
concentration of 2 X 10* cells/cm?® in 24-well and 12-well tissue
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culturing plates (Nunc). The cells were either lysed for further
RNA isolation or stained for ALP or von Kossa at the stated
culture time.

Co-culture—Cells used for co-culture experiments were har-
vested from mice, 5-9 weeks of age, either Balb/c (CD47"'*
and CD47'~) or C57BL/6 wild-type or SIRPa@ mutants. Bone
marrow cells were isolated and treated as in BMC except that
they were plated in 60 cm? culture dishes (Nunc). The cells were
cultured in a-MEM with 10% FCS (Invitrogen), L-glutamine,
and antibiotics (Sigma Aldrich). Medium was changed every
third day, and after 14 days, the adherent cells were trypsinated,
counted, and seeded at 10° cells/cm?, in 96-well tissue culturing
plates (Nunc) and thereafter incubated for 24 h (37 °C, 5% CO,).
Meanwhile non-adherent bone marrow myeloid precursor
cells were isolated by flushing out bone marrow from femurs
and tibiae. Following lysis of erythrocytes, the remaining cells
were plated in 60 cm? tissue culture-treated culture dishes
(Nunc) and kept at 37 °C for 2 h. Thereafter, the non-adherent
cells were collected, counted, and seeded onto the stromal cells
at 6 X 10* cells/cm®. The co-cultures were stimulated with D3
10~® M (Roche Diagnostics, Mannheim, Germany). After 5-7
days, the cultures were harvested, fixed, and stained for TRAP
as described below.

TRAP staining was performed by use of the leukocyte acid
phosphatase kit (Sigma-Aldrich) according to the manufactur-
er’s instructions. TRAP™ cells with three or more nuclei were
considered osteoclasts, and the number of multinucleated oste-
oclasts was counted in a light microscope.

ALP and von Kossa Staining—QOsteoblast differentiation was
visualized with ALP staining by using Naphtol AS-MX phos-
phate, disodium salt, and Fast Blue BB (Sigma Aldrich) accord-
ing to histochemical standard procedure. Mineralization of
extracellular matrix was visualized by von Kossa staining
with 2% silver nitrate (Fisher Scientific UK) under UV light
for 30 min. The result of ALP and von Kossa staining was
photographed.

RNA Isolation and First-stranded ¢cDNA Synthesis—Total
RNA from adherent bone marrow cell cultures was isolated by
using the RNAqueous®-4PCR kit (Ambion, Austin, TX) accord-
ing to the manufacturer’s instructions. By using the high capac-
ity cDNA reverse transcription kit (Foster City, CA), mRNA
was reverse-transcribed to cDNA.

Quantitative Real-time PCR—To detect and analyze gene
expression, Tag-man (API PRISM 7900HT Sequence Detec-
tion System) was used. The expression of Trap/AcpS5, ctr, catK,
nfatcl, oscar, dc-stamp, c-fms, rank, rankl, m-csf, SIRP«,
runx-2, osterix, a-1-collagen, Alp/Akp1, PPARy and osteopro-
tegerin were analyzed in BMC. To control variability in ampli-
fication due to differences in starting mRNA-concentrations,
B-actin was used as housekeeping gene.

ELISA—The amount of synthesized protein of RANKL and
M-CSF in culture medium was assessed by measuring the levels
of the proteins in BMC using commercially available ELISA
kits. RANKL was measured according to manufacturer’s
instructions (R&D Systems) and M-CSF according to the man-
ufacturer’s instructions (AB Frontier, Seoul, Korea).

TRAP Activity Assay—BMC were washed three times in PBS
and lysed in Triton X-100 (0.2% in H,O). By using p-nitrophe-
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nol phosphate (1.7 mg/ml) as substrate at pH 4.9 in the pres-
ence of tartrate (0.17 M), the TRAP activity was determined.
The activity of the enzyme was assessed as the A,,5. The
enzyme assay was performed under conditions where the reac-
tion was proportional to amount of enzyme and reaction time.

ALP Activity Assay—Alkaline phosphatase was measured in
BMC stimulated with BMP-2 by using a commercially available
kit (Sigma Aldrich).

Flow Cytometric Analysis—Bone marrow stromal cells were
washed and resuspended in cold PBS. Fifty ul of the cells (1 X
10° cells) were seeded in a 96-well V-bottomed plate and cen-
trifuged at 1500 rpm for 3 min at 4 °C. Thereafter, the cells were
resuspended in 30 ul staining buffer (PBS + 2% FCS) contain-
ing saturating concentrations of Alexa Fluor 488-conjugated
anti-SIRPa mAb P84, or Alexa Fluor 488-conjugated rat IgG
isotype control mAb, for 30 min on ice. Cells were then
washed once with 200 ul of cold PBS, resuspended in cold
PBS/2% FCS/0.05% NaN,;, and analyzed by flow cytometry
(FACS Calibur, Becton Dickinson) and CellQuest software
(Beckton Dickinson).

Immunoprecipitation and Western Blot—Bone marrow stro-
mal cells, cultured for 14 days, were lysed with ice-cold lysis
containing 20 mMm Hepes (pH 7.4), 150 mm NaCl, 1 mm EGTA,
1% Nonidet P-40 (Pierce), 1% of proteinase inhibitor mixture
(Sigma), 0.5 um pervanadate, and 1 mMm phenylmethylsulfonyl
fluoride. Immunoprecipitation with the anti-SIRPa mAb P84
was done essentially as described previously. In brief, cell
lysates were incubated with mAb P84-coated protein G-Sep-
harose overnight at 4 °C. Washed immunoprecipitates were
boiled for 5 min in reduced SDS-PAGE sample buffer with
B-mercaptoethanol and separated on 10% SDS-PAGE, fol-
lowed by transfer to nitrocellulose under standard conditions.
Nonspecific binding was blocked by 3% nonfat dry milk in
TBST (50 mm Tris, 150 mm NaCl, 0.1% Tween 20 (pH 7.6))
followed by immunoblotting with anti-SIRPa mAb P84 or anti-
phosphotyrosine mAb 4G10 (Millipore). Primary antibodies
were detected with peroxidase-conjugated goat anti-rat or anti-
mouse mouse IgG, and detection of signals was by chemilumi-
nescence (ECL, Amersham Biosciences).

Phenotypic Studies—Histomorphometry and peripheral quan-
titative computed tomography were used to analyze the bone phe-
notype of male BalbC CD47 '~ mice at the age of 18 and 28 weeks
and compared with normal mice at the same age.

Histomorphometry—CD47""" or CD47 '~ mice were injected
with the fluorescent compound calcein (15 mg/kg; Sigma) 10 days
and 3 days prior to collection, respectively. At 18 and 28 weeks of
age CD47"'* and CD47 '~ were euthanized by cervical dislo-
cation. Both femurs were excised and bisected transversely at
the midpoint of the shaft. The distal halves of the right femora
were fixed and embedded, undecalcified in methyl-methacry-
late resin (Medim-Medizinische Diagnostik, Giessen, Ger-
many), and 5-um sagittal sections were prepared for analysis
using Q Win software (Leica Microsystems Pty., Ltd., Sydney,
Australia). Sagittal sections were stained for mineralized tissue,
and trabecular bone volume, trabecular thickness, and trabec-
ular number were calculated in a sample region extending 4.5
mm proximal to the distal growth plate and encompassing all
trabecular bone within the cortical boundaries. Osteoblast
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parameters (osteoblast surface, osteoblast number, and osteoid
surface) were estimated using sections stained with von Kossa
stain and toluidine blue. Only osteoblasts identified adjacent to
osteoid surfaces were included in the analysis. Bone formation
(mineralizing surface, MS) was estimated using the bone sur-
face (BS) coverage of single- and double-labeled (sLS and dLS)
fluorescent bands using the equation MS = ((0.5 X sLS) + dLS) X
100/BS, expressed as a percentage of bone surface. Mineral
apposition rate (MAR) was estimated by the distance between
the calcein labels divided by the time interval between injec-
tions of labels (MAR = interlabel distance divided by 7,
expressed in wm/day). Bone formation rate (BFR) was calcu-
lated after fluorescence microscopy (Leica Microsystems,
Heerbrugg, Switzerland) as BFR = MS/bone surface X MAR,
expressed in wm?/um?>/day. For measurements of osteoclast
surface and osteoclast number, sections were stained for TRAP
positivity.

Peripheral quantitative computed tomography was used to
analyze cortical bone of the tibia, using a Stratec XCT Research
SA scanner (Stratec Medizintechnik, Pforzheim, Germany).
Scans were conducted using a voxel size of 70 wm, scan speed of
5 mm/s and slice width of 1 mm on excised tibia, as described
previously (18). Bones were scanned in a single slice 4 mm distal
from the proximal margin of the tibia.

Micro-computed Tomography—A Skyscan 1174 scanner and
associated analysis software (Skyscan, Aartselaar, Belgium)
were used to visualize the three-dimensional bone structure of
the distal femoral metaphysis. Following fixation, representa-
tive bones were scanned in 70% ethanol. A 0.5-mm aluminum
filter was applied to the 50 kV x-ray source, with an exposure
time of 3600 ms and sharpening at 40%. Distal femora were
scanned at a 6.2 um pixel resolution acquired over an angular
range of 180°, with a rotation step of 0.4°. Following reconstruc-
tion, 67-um-thick images were created from a point 400 wm
from the most proximal aspect of the growth plate.

Statistical Analyses—The statistical analyses were performed
using one-way analysis of variance (ANOVA) with Levene’s
homogenicity test, and post hoc Bonferroni’s test or, where
appropriate, Dunnett’s ¢ test. Students ¢ test were used in the
histomorphometric analyses (SPSS, version 18). All experi-
ments were performed at least twice with comparable results,
and all data are represented as the means * S.E. Significance
levels were set to p < 0.05 (*), 0.01 (**), or 0.001 (***).

RESULTS

CD47 Is Required for Functional Osteoclast Differentiation in
Vitro—W e have previously shown that mice lacking CD47 have
reduced numbers of osteoclasts on trabecular bone surfaces in
vivo (12). To further elucidate the role of CD47 in osteoclasto-
genesis within the bone marrow, we studied CD47 '~ or
CD47"'" crude BMC, containing both mesenchymal/stromal
cells and hematopoietic cells, to mimic the in vivo situation.
Addition of PTH (108 M) or D3 (108 M) stimulated formation
of multinucleated osteoclasts in CD47"/* BMC (n = 96 + 15.8
and 142 = 14.1, respectively) (Fig. 1, A and B). In marked con-
trast, only a few multinucleated osteoclasts were detected in
PTH or D3-stimulated CD47 '~ cultures (n =4 *+ 1.1 and n =
8 * 3.2, respectively) (Fig. 1, A and B). When CD47 '~ BMC
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were cultured on bone slices, we found both fewer osteoclasts
(Fig. 1C) and dramatically fewer resorption pits reflected as an
82% reduced release of collagen type I fragments into the cul-
ture medium, as compared with that in CD47"/* cultures (Fig.
1D). Trap/Acp5 mRNA and TRAP protein expressions were
substantially increased in CD47"/* BMC in response to PTH
(10™®m) or D3 (10~ ® M), whereas no (D3), or only a slight (PTH)
(p < 0.001), increase in TRAP protein expression was seen in
CD47 '~ cultures (Fig. 2, A and B). Quantitative real-time PCR
analyses of CD47"'* BMC revealed that D3 substantially stim-
ulated the mRNA expression of ctr and catK, whereas D3 did
not increase ctr expression and only marginally increased catK
expression (p < 0.05) in CD47 '~ cultures (Fig. 2, C and D).
The mRNA expression of nfatcl, the master transcription fac-
tor regulating osteoclastogenesis, and the osteoclast-associated
receptor oscar, were both increased in D3-stimulated CD47" /™"
cultures but not in CD47~ '~ cultures (Fig. 3). D3 did not sig-
nificantly regulate the mRNA expression of the receptors c-fins
or SIRPa, and no significant difference was seen comparing the
two genotypes (Fig. 3). However, we found that the mRNA
expression of rank was up-regulated in CD47"'" BMC stimu-
lated with D3 (p < 0.001), whereas no such response to D3
was seen in CD47 '~ BMC (Fig. 3). Additionally, the mRNA
expression of dendritic cell-specific transmembrane protein
(dc-stamp), a protein of importance for osteoclast fusion was
substantially increased in response to D3 in the CD47"/* cul-
tures (p < 0.05; Fig. 3), whereas only a minor increase was seen
in CD47~'~ cultures (p < 0.05; Fig. 3).

Because production of M-CSF in BMC-cultures is pivotal for
osteoclastogenesis due to its capacity to increase survival of
osteoclast progenitor cells (3), we next investigated whether
this function was impaired in CD47 '~ BMC. These experi-
ments revealed that m-csf gene expression was significantly
reduced in unstimulated CD47 "/~ BMC cultures, as compared
with that in unstimulated CD47"'* BMC (p < 0.05; Fig. 44). By
comparing M-CSF protein levels in culture medium from
CD47"'* or CD47 '~ cultures, we confirmed a significantly
lower concentration of M-CSF, both in control and D3-stimu-
lated CD47 "/~ cultures (Fig. 4B). The effect of D3 on M-CSF
expression in BMC is to our knowledge unknown, but in our
experiments, D3 seems to decrease the M-CSF expression in
the normal mice. Analyses of RANKL expression in D3-stimu-
lated CD47"'" BMC revealed a significant increase in rankl
mRNA, as well as RANKL protein in culture medium, whereas no
such response to D3 was detected in CD47 /~ cultures with the
exception of a very slight but significant increase (p < 0.01) in the
protein levels of RANKL in CD47 "/~ culture medium (Fig. 4, C
and D). When stimulating BMC cultures with D3, the osteoprote-
gerin protein expression decreased in both CD47 /~ and
CD47"'™ cultures (data not shown), and thus, the RANKL/osteo-
protegerin-ratio increased in both genotypes.

CD47 Is Required for Osteoblastogenesis and Bone Formation
in Vitro—The strongly reduced production of M-CSF and
RANKL in CD47 '~ cultures indicated a stromal cell differen-
tiation defect when CD47 was absent. Therefore, we next ana-
lyzed osteoblastic differentiation in BMC and found that the
major transcription factors for osteoblast differentiation, runx2
and osterix, were increased over time in CD47"'" cultures
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compared with thatin CD47~/~ BMC. Data in Cand D are means = S.E. of four to six samples/group in one of two representative experiments. The mRNA expression
data shown in A, C, and D are quantitative values normalized to the housekeeping gene B-actin. The CD47*/* control was set to 100%. *, p < 0.05 and ***, p < 0.001,
using ANOVA with Levene’s homogenicity test and post hoc Bonferroni's test or, where appropriate, Dunnett’s t test. ns, not significant.

tially increased over time in CD47"'* BMC, no significant
increase of Alp/AkpI and only a small increase in a-1-collagen
were seen in CD47 '~ cultures (Fig. 5B). Thus, the mRNA
expression of Alp/Akpl and a-1-collagen were significantly

(Fig. 5A). However, in CD47 7'~ cultures, we observed no
increase in osterix mRNA expression and only a modest
increase in runx2 mRNA expression (Fig. 54). Moreover,
although the expression of Alp/Akp1 and a-1-collagen substan-
ACSEVEN
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lower in CD47 '~ BMC when compared with CD47"/* BMC.
Interestingly, at day 3 of culture, we found a slight up-regulation of
the adipocyte-specific gene PPARYy expression in CD47 '~ cul-
tures, as compared with CD47"/* cultures, whereas no difference
in PPARy expression was seen at day six of culture (Fig. 5C).

We further analyzed the stromal cell differentiation capacity
in CD47 '~ BMC by culturing the cells in osteogenic medium
supplemented with B-glycerophosphate and ascorbic acid.
Under these conditions, CD47"'" BMCs were positive for the
osteoblastic marker ALP at day 14 of culture, when small spots
of mineral deposits were also detected (Fig. 5D). In marked
contrast, less ALP-staining and no mineral deposits were
seen at day 14 in CD47 '~ BMC cultures (Fig. 5D). By 21
days of culture, the ALP expression and mineral deposits
increased in both CD47*/* and CD47 '~ cultures, but the
expression of ALP and formation of mineral were still much
lower in CD47~'~ cultures (Fig. 5D).

Because BMP-2 is a known stimulator of osteoblastic differ-
entiation (19), we next investigated the effects of exogenous
BMP-2 on BMC differentiation toward the osteoblastic lineage.
As shown in Fig. 5D, culture of CD47"/* BMC for 6 days in
osteogenic medium alone induced ALP protein expression, as
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compared with the virtual lack of ALP expression in CD47 '~
cultures. Addition of BMP-2 induced a robust increase in ALP
protein expression in CD47"’" BMC, whereas the ALP was
maintained at extremely low levels in BMP-2-stimulated
CD47~ '~ cultures (Fig. 6, A and B). Furthermore, there was a
marked difference in cellular morphology between the two gen-
otypes. In both unstimulated and BMP-2-stimulated CD47""™*
BMC, the vast majority of the cells showed spreading on the
plastic surface. However, cell spreading appeared to be strongly
reduced in unstimulated as well as BMP-2-stimulated CD47 '~
cultures (Fig. 6B).

Tyrosine phosphorylation of SIRP«, for which CD47 is a
ligand, is important in mediating adhesion-dependent cellular
functions (16). In endothelial cells, adhesion-dependent SIRP«
tyrosine phosphorylation requires CD47 (20). Therefore, we
next investigated whether impaired signaling through SIRP«
could be involved in mediating the reduced osteoblast differen-
tiation in CD47 "/~ cultures. Flow cytometric analysis of bone
marrow stromal cells showed that SIRPa was expressed at equal
levels by both CD47"/* and CD47 '~ stromal cells (Fig. 6C).
When SIRPa was immunoprecipitated from stromal cell cul-
tures of CD47"'" or CD47 '~ mice, a strong tyrosine phos-
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using mAb P84. The data are representative of two separate experiments with virtually identical results.

phorylation of SIRP«a was detected in CD47*'™" cells, whereas
the SIRPa phosphorylation was virtually blunted in CD47 /'~
cells (Fig. 6D). Thus, lack of SIRP« tyrosine phosphorylation in
CD47 '~ stromal cells could explain the reduced osteoblastic
differentiation in CD47 ’/~ BMC. To further challenge this
hypothesis, we investigated differentiation of bone marrow
stromal cells from SIRPa-mutant mice. These mice express
normal levels of CD47 as well as the SIRPa extracellular
domain, but the cytoplasmic SIRPa domain is deleted and
cannot be phosphorylated upon ligation of the receptor (17).
Interestingly, ALP protein expression was strongly reduced
in SIRPa mutant BMC cultured for 12 days, as compared
with that in SIRPa wild-type cultures (data not shown).
Thus, osteogenic differentiation of bone marrow stromal
cells requires CD47-dependent SIRP« signaling.

Based on these findings, we next hypothesized that the
absence of stromal cell CD47, and subsequent lack of SIRP«
signaling, could explain the impaired osteoclast formation in
D3-stimulated CD47 '~ BMC. To address this hypothesis, we
conducted D3-stimulated co-culture experiments combining
bone marrow stromal cells and bone marrow myeloid precursor
cells of either genotype (wild-type, CD47 '~ or SIRPa mutant).
These experiments revealed that wild-type and CD47 '~ myeloid
precursor cells generated equal numbers of multinucleated oste-
oclast on CD47 wild-type bone marrow stromal cells, whereas
myeloid precursors of both genotypes generated low numbers of

29340 JOURNAL OF BIOLOGICAL CHEMISTRY

multinucleated osteoclast on CD47 '~ stromal cells (Fig. 7A).
Similarly, SIRPa wild-type and SIRPa mutant myeloid precursors
gave rise to an equal number of multinucleated cells on SIRP«
wild-type bone marrow stromal cells, whereas SIRPa mutant stro-
mal cells showed a strongly reduced ability to promote multinu-
cleated osteoclast formation in both wild-type and SIRPa mutant
myeloid precursors (Fig. 7B).

Reduced Osteoclast and Osteoblast Numbers and Impaired
Skeletal Parameters, in CD47 "~ Mice—To investigate the bio-
logical impact of our in vitro observations, we next analyzed
osteoclast and osteoblast densities in femoral bones of 18- or
28-week-old male CD47"/* or CD47 '~ mice. We have previ-
ously reported a 37% reduction in TRAP™ osteoclast surface
and a 29% reduction in osteoclast number in the distal femoral
metaphysis of 18-week-old CD47 '~ mice, as compared with
that in age-matched CD47"/* mice (12). Herein, we further
analyzed the osteoclast density in 28-week-old mice and found
that CD47 '~ mice had a 38% (p < 0.01) reduction in osteoclast
numbers and a 46% (p < 0.01) reduction in osteoclast surface,
as compared with CD47"/* mice (Fig. 8, A and B). Importantly,
osteoblast numbers were also reduced in CD47 '~ mice, with a
55 and 47% reduction, respectively, in 18- and 28-week-old
CD47 '~ mice, as compared with age-matched CD47"/* mice
(p < 0.001 and p < 0.01, respectively; Fig. 8, C and D).

To further investigate the effects of reduced osteoclastogen-
esis and osteoblastogenesis in CD47 '~ mice, trabecular
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mice, using Student’s t test for unpaired analyses.

microarchitecture was evaluated both in adult and aged mice
bone. Histomorphometric analysis of the distal femurs revealed
that the trabecular bone volume was significantly reduced by
15% in 18-week-old CD47 '~ mice as compared with that in
CD47"'" mice (p < 0.01; Fig. 9, A and B). In 28-week-old
CD47 '~ mice, the trabecular bone volume was further
reduced to 45% of that in CD47"'" mice (p < 0.001; Fig. 9B).
These differences in trabecular bone microarchitecture were
also confirmed by micro-computed tomography (Fig. 9C). To
further investigate this intriguing observation, we next exam-
ined bone formation in 18-week-old CD47"'* or CD47 '~
mice using dual calcein labeling in vivo (Fig. 9D). These exper-
iments revealed that the bone formation rate was markedly
reduced in 18-week-old CD47~/~ mice, being 62% of that in
CD47""" mice (0.26 = 0.008 um?/um?®/day versus 0.10 + 0.030
wm?/um?/day, p < 0.001; Fig. 9D). This inhibition was consist-
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ent with a reduction of both osteoblast activity and surface
extent, with mineral apposition rate and mineralizing surface
reduced by 34 and 42%, respectively (p < 0.01; Fig. 9D). In
28-week-old CD47"'" mice, the mineralized surface, mineral
apposition rate, and bone formation rate were much lower, as
compared with that in 18-week-old CD47"/* mice (Fig. 9D),
and no difference in these parameters were seen between
CD47""* or CD47~'~ mice at 28 weeks of age (Fig. 9D). In line
with the reduced mineralization observed in 18-week-old
CD47~'~ mice, these mice were also found to have a 66%
reduction in osteoid surface, as compared with that in age-
matched CD47"'" mice (p < 0.001; Fig. 9D). In 28-week-old
CD47~'~ mice, osteoid surface was reduced by 43%, as com-
pared with that in CD47"'" mice (Fig. 9D).

We also investigated the cortical bone compartmentin 18- or
28-week-old CD47"/* and CD47 '~ mice, using peripheral
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* p < 0.05;**, p < 0.01; and ***, p < 0.001, as compared with that in CD47*/* mice, using Student’s t test for unpaired analyses. d, day.

quantitative computed tomography analysis. Although this
analysis showed a slight decrease in cortical area and thick-
ness in both 18- and 28-week-old CD47 '~ mice, the only
statistically significant difference was detected in cortical
area of 28-week-old CD47~'~ mice (Fig. 9D). Note that there
were no differences in bone marrow fat content in 28-week-
old CD47"* and CD47 '~ mice (data not shown).

DISCUSSION

The mechanisms regulating bone homeostasis are multiple
and still not fully understood. In the present study, we have
shown that CD47 is required to activate its receptor SIRPa in
stromal cells/osteoblasts, which is critically important within
the bone marrow for the ability of stromal cells/osteoblasts to
promote formation of osteoclasts. Lack of CD47/SIRP« signal-
ing in the stromal cell compartment impairs osteoblast differ-
entiation in vivo and in vitro. This functional defect not only
impairs osteoid formation and mineralization in vivo but also
results in impaired formation of osteoclasts. Together, this sug-
gests an explanation to the osteopenic bone phenotype of
CD47~'~ mice.

Investigations of osteoclast formation in vitro are based on a
number of different experimental systems, which show impor-
tant variations. One system is based on selection of monocyte/
macrophage progenitors from the bone marrow and differenti-
ation of these cells toward the osteoclastic lineage by addition of
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M-CSF and RANKL to the culture medium (bone marrow mye-
loid precursor cell (BMM) cultures) (21). Another system can
be used to mimic more physiological conditions in vivo, which
is based on the culture of crude bone marrow (BMC cultures),
containing both stromal cells (with osteoblast progenitor
potential) and hematopoietic progenitor cells (which can dif-
ferentiate into pre-osteoclasts) (22). In the latter system, which
is used in this paper, stimulation with PTH or D3 will induce
stromal cells/osteoblasts to produce RANKL, resulting in a
natural indirect stimulation of pre-osteoclast differentiation
and osteoclast maturation. The importance of stromal cells
can be bypassed if M-CSF and RANKL are added to this type
of culture.

Our previous data suggest that the physical interaction
between CD47 and SIRPa is important for osteoclast formation
in BMM cultures because functional blocking antibodies
against either CD47 or SIRP« impaired osteoclast formation in
CD47""* cultures, and that CD47 '~ BMM cultures generated
less osteoclasts than CD47*/* cultures (12). Uluckan et al. (13)
also showed impaired generation of osteoclasts from CD47 '~
BMM cells but that the osteoclast formation defect could be
rescued by pre-incubation with M-CSF and by increasing the
levels of RANKL. We have confirmed the rescued osteoclast
formation in CD47 '~ BMM cultures by pre-incubating the
cells with M-CSF and by adding increased concentrations of
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RANKL or a highly efficient truncated form of RANKL (data
not shown). This is an interesting observation, suggesting that
M-CSF-mediated early differentiation of pre-osteoclasts can
rescue the osteoclast phenotype in CD47 '~ mice if sufficient
RANKL levels are provided.

In the present study, we found that osteoclast formation was
virtually abolished in CD47 '~ BMC stimulated with PTH or
D3 in vitro. In this more complex system, the observed defect
cannot only be explained as a pre-osteoclast fusion defect, since
gene expression levels of nfatcl, oscar, Trap/AcpS5, the ctr, and
catK, all important markers of differentiation along the oste-
oclastic lineage (5, 23), were strongly impaired as well, whereas
the expression levels of the M-CSF receptor c-fins or that of
SIRPa were not impaired in CD47 '~ BMC. Rather, our data
suggest that a key defect in CD47 '~ BMC is associated with
impaired function and differentiation of stromal cells along the
osteoblastic lineage. These cells, when stimulated with PTH or
D3, are induced to produce M-CSF and RANKL, which are
pivotal to drive osteoclast differentiation and formation in this
system and also in vivo (4). Itis therefore interesting to note that
D3-stimulated M-CSF and RANKL expression in CD47 '~
BMC were both strongly reduced at the gene as well as protein
levels and that these cultures showed a very low TRAP activity.
The importance of this finding is emphasized by data from
Maile et al. (14), showing that addition of exogenous M-CSF
and RANKL to a crude CD47 ’~ bone marrow cultures ren-
dered the same TRAP staining levels as in CD47"'™ cultures.

The lack of M-CSF and RANKL expression in CD47 '~
BMC pointed toward a phenotypic change in the bone marrow
stromal cells when CD47 was absent. To further understand the
mechanism behind this, we investigated the hypothesis that the
stromal cell defect was due to the absence of CD47-mediated
induction of SIRP« signaling. We found a strongly decreased
tyrosine phosphorylation of SIRP« in bone marrow stromal
cells when CD47 was absent. Together with the results from the
co-culture experiments, showing that bone marrow stromal
cells lacking either CD47 or the signaling domain of SIRP«
could not efficiently support osteoclast formation, this clearly
suggests that SIRPa signaling in bone marrow stromal cells is
necessary for osteoclastogenesis. The fact that osteoclast for-
mation was intact in bone marrow macrophages, lacking either
CD47 or the SIRPa signaling domain, when cultured on wild-
type bone marrow stromal cells, further suggest that the
impaired osteoclast formation in CD47/~ BMC cultures was
unlikely due to lack of CD47/SIRP« interaction in pre-oste-
oclasts but that the defect was rather isolated to the stromal
cells.

In 2011, Maile et al. (14) showed an impaired osteoclast for-
mation in CD47 '~ crude bone marrow cells cultured in the
presence of M-CSF and RANKL. The authors suggested that
the physical interaction between CD47 and SIRPa induced
SIRP« tyrosine phosphorylation, recruitment of SHP-1, and
subsequent dephosphorylation of non-muscle cell myosin IIA,
which, altogether, would be important to promote fusion and
formation of osteoclasts (14). It is hard to interpret these data
because the osteoclast formation was driven by addition of
exogenous M-CSF and RANKL to the crude bone marrow cul-
ture, which based on data from the present study and that of a
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previous study (13) can compensate for the lack of CD47. The
reason why Maile et al. (14) only detected late fusion defects
when CD47 was missing in the cultures could be that the early
osteoclast precursors proliferated and differentiated in the
presence of M-CSF. In marked contrast, data by van Beek et al.
(24) in 2009 showed that bone marrow cells from SIRPa mutant
mice (lacking the signaling SIRPa cytoplasmic domain, but
expressing the extracellular CD47-binding domain of SIRP«)
generated normal numbers of osteoclasts with the same num-
ber of nuclei, as compared with that in wild-type bone marrow
cultures, when cultured with exogenous M-CSF and RANKL
(24). Notably, van Beek et al. (24) used a truncated form of
mouse RANKL with a much lower EC,, value then the human
RANKL that was used by Maile et al. (14), which could be one
explanation behind the normal osteoclast formation in SIRP«
mutant bone marrow cultures.

The stromal cell phenotypic change apparent when CD47
was missing did not only impair osteoclast differentiation but
also affected the osteoblast differentiation pathway. At the gene
expression level, we found an impaired expression of runx2 and
a-1-collagen and a virtually blunted expression of osterix and
Alp/Akpl, whereas the expression of the adipocyte-associated
gene PPARy2 was found to be normal. To find out whether the
mechanism of action in CD47 /" cells was lack of SIRP« sig-
naling, we took advantage of the SIRPa mutant mice where the
cytoplasmic SIRPa domain is deleted and cannot be phosphor-
ylated. Culture of bone marrow stromal cells from these mice
showed dramatically decreased alkaline phosphatase activity.
These findings support the hypothesis that CD47 has a pro-
found effect on osteoblastic differentiation by inducing activa-
tion of SIRP« signaling. Further studies of the downstream sig-
naling from SIRP« in stromal cells are necessary to understand
how the receptor is linked to the master regulator of osteoblast
differentiation, RUNX-2.

The strong in vitro phenotype in CD47 '~ BMC suggested
that there should also be an obvious bone phenotype in these
mice in vivo. We previously reported that 18-week-old
CD47~'~ mice had reduced numbers of osteoclasts in vivo (12),
which we in the present study confirmed to also be the case in
28-weeks old CD47 '~ mice. By looking at the osteoclast phe-
notype per se, one would assume that CD47 /~ mice would pres-
ent with an osteopetrotic bone phenotype. However, in agreement
with the data from our in vitro BMC experiments, analyses of the
skeleton in 18-week-old CD47 '~ mice indeed demonstrate an
osteopenic bone phenotype including a reduced trabecular bone
volume, bone mineral density, bone formation rate, mineral appo-
sition rate, and osteoblast number. Furthermore, aged 28-week-
old CD47 '~ mice showed a persistent osteopenic bone pheno-
type with reduced numbers of osteoblasts and osteoclasts. Our
bone phenotype datain CD47/~ mice, on the Balb/c background,
are in part confirmed by data from C57BL/6 CD47 '~ mice where
an osteopenic bone phenotype was demonstrated (14). Although
lack of CD47 was not associated with a reduced number of oste-
oclasts in the bones of C57BL/6 mice, which could possibly be
explained by strain differences (13, 14). Van Beek et al. (24) showed
that the SIRPa mutant mice had a decreased cortical bone volume,
suggested to be due to an increased bone resorbing activity of oste-
oclasts lacking SIRPa.
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In conclusion, in a physiologically relevant in vitro system
where stromal cells/osteoblasts regulate differentiation and
formation of osteoclasts, lack of CD47 or the signaling domain
of SIRPain stromal cells results in a dramatically impaired oste-
oclast formation. These findings identify a mechanism where
CD47 induces tyrosine phosphorylation of SIRP« in bone mar-
row stromal cells, which appears to be pivotal for normal osteo-
blast differentiation and ability to stimulate osteoclast forma-
tion. The biological importance of this mechanism is also
confirmed by the osteopenic bone phenotype in CD47 '~
mice.
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