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Abstract
A highly enantioselective carboalkoxylation of alkynes catalyzed by cationic (DTBM-MeO-
Biphep) gold(I) complexes is reported. Various optically active beta-alkoxy indanone derivatives
were obtained in good yields and high enantioselectivities. Furthermore, this methodology was
extended to enantioselective syntheses 3-methoxycyclopentenones. The reaction is proposed to
proceed through an enantioselective cyclization of intermediates containing vinylgold(I) and
prochiral oxocarbenium moieties.

Gold(I)-catalyzed carboalkoxylation of alkynes affords a direct and atom-economical
synthetic approach to diversified cyclic enol ethers bearing stereogenic centers at the β
position.1,2 We2a and Rhee2d reported that carboalkoxylation occurs with efficient chirality
transfer from enantioenriched benzylic ethers (Scheme 1a) and N,O-acetals (Scheme 1b),
respectively. Despite the intensive development of homogeneous gold(I) catalyzed
enantioselective reactions, enantioselective carboalkoxylation of alkynes posed an unsolved
challenge.3 This could be attributed in part to the low reactivity of the ether C-O bond,
which necessitates the use of highly electrophilic catalytic systems and precludes many
others developed for enantioselective gold catalysis. In addition, our group’s previous work
pertaining to chirality transfer suggested that initial desymmetrization of sterically modest
ether linkages might be required.2a,4

Acetals are widely used protecting groups for aldehydes due to their chemical inertness
under many reaction conditions. Nevertheless, the use of transition metal catalysts affords
the opportunity to use them as reactive functionalities.5 In 2004, Yamamoto reported the
palladium and platinum catalyzed carboalkoxylation of alkyne using acetals.1b,1c Inspired by
their work, we reasoned that acetals might be better nucleophiles than benzylic ethers for
gold-catalyzed carboalkoxylation, due to the stronger resonance stabilization of
oxocarbenium ions. We also posited that an additional benefit of the increased electronic
stabilization could be a reduction of chirality transfer efficiency, which would provide
additional opportunities for enantioinduction. Hydrolysis of the initially formed enol ether
product would provide enantioselective access to 3-alkoxyindanones and cyclopentenones
(Scheme 1c). The prevalence of these structural motifs in natural products and bioactive
molecules makes them valuable targets for enantioselective synthesis.6 However, few
methods have been reported for their preparation, and no catalytic enantioselective
approaches are available.7 Herein, we report the highly enantioselective gold-catalyzed
carboalkoxylation of alkynylacetals as a concise and convenient means of accessing diverse
enantioenriched 3-alkoxyindanone and cyclopentenones. Furthermore, we present evidence
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for trapping of the vinylgold intermediate as the enantiodetermining step, in contrast to our
previous work with benzylic ethers.

We began our investigation by examining the carboalkoxylation of alkyne 1a with cationic
gold(I) catalysts bearing different chiral bisphosphine ligands (Table 1).8 Although these
catalyst systems all gave good yields, only DTBM-MeO-Biphep(AuCl)2/AgSbF6 induced
any significant enantioselectivity. (entry 4). To our delight, simply changing the solvent
from CH2Cl2 to CCl4, the ee improved dramatically to 94% without any loss in yield (entry
5). Other nonpolar solvents were screened. Among them, toluene gave the best result and the
desired indanone 3 was obtained in 88% yield and 94% ee (entry 7). Finally, decreasing the
loading of AgSbF6 to 2.5 mol % further increased both yield and enantioselectivity to 92%
isolated yield and 95% ee. (entry 8).

With these optimized conditions in hand, we next investigated the scope of the gold(I)-
catalyzed enantioselective carboalkoxylation reaction of alkynes (Table 2). Changing from a
dimethyl acetal to a diethyl acetal produced the corresponding indanone in slightly lower
enantioselectivity (3a vs. 3b). The impact of substituents on the aromatic ring was also
investigated. Substrates with electron-withdrawing group (Cl, F), electron-donating group
(MeO) and two substituents on the aryl ring all were well-tolerated (3c–3i). While the gold-
catalyzed reaction to form 7-substituted indanone 3j required prolonged reaction time,
excellent enantioselectivity was still obtained. On the other hand, the reaction of a
naphthalene-derived substrate proceeded smoothly under the standard reaction conditions
(3k).9 We next explored reactivities of internal alkynes. Phenyl (R2 = Ph) and alkyl (R2 =
iPr) substituted of the alkynes were unreactive. Electronic-withdrawing ester substrate (R2 =
CO2Me) afforded nearly quantitative yield of enol-ether product (3l) but the
enantioselectivity was moderate (60% ee).10

We next explored the possibility of generating 4-methoxylcyclopentenones from the gold-
catalyzed simple vinyl acetylenes (Table 3). Gratifyingly, the reaction displayed high
enantioselectivities for different ring size substrates. Although the yields for these substrates
were slightly lower compared to phenyl acetylenes, the rapid assemble of various bicyclic
cyclopentenones from easily prepared substrates11 greatly expands the synthetic versatility
of the gold-catalyzed reaction.

We envisioned two possible pathways to explain the origin of the enantioinduction. In the
first possibility, coordination of chiral cationic gold(I) to the alkyne moiety results in a
desymmetrizing alkoxylation of the triple bond.12 In analogy to the previously studied
chirality transfer of benzyl ethers,2a the resulting intermediate A bearing a chiral acetal-
derived cation would undergo rearrangement through chirality-preserving intermediate B-
chiral to provide C and subsequently 2a. In this case the first step would be the
enantiodetermining step (EDS). On the other hand, it is possible that oxocarbenium
intermediate B is sufficiently long lived to relax to an achiral conformation, B′-achiral, that
would undergo enantioselective cyclization to afford C. In this second possibility, the
nucleophilic addition of a vinylgold species to the oxocarbenium intermediate would be
enantiodetermining.5,13–15

In order to distinguish between these two plausible mechanisms, the gold-catalyzed reaction
of mixed acetal 4a (d.r. = 1.3:1) was examined (Scheme 3). We anticipated that the
sterically-hindered oxygen atom on the methyl lactate moiety would be unable to participate
in nucleophilic attack of the alkyne. If the first mechanism were operative, a kinetic
resolution would be expected to occur, to return diastereomerically enriched 4a and the
product 5a or 5b. As showed in scheme 3, the gold-catalyzed reaction of mixed acetal 4a
selectively gave the cyclized products 5a/5b and 3a and 4a were not detected in the crude
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reaction mixtures; therefore, if the chirality transfer pathway were operative, the products
(5a/5b) would be expected to form in approximately the dr of the starting material.
However, epimers 5a and 5b were formed with similar diastereoselectivity using (S) and (R)
catalysts, respectively. The observation that the catalyst controls the diastereoselectivity in
this process, irrespective of the the dr of the starting acetal, is more consistent with the
second mode of enantioinduction presented.16

In conclusion, we have developed the first gold-catalyzed enantioselective
carboalkoxylation of alkynes, including phenyl acetylenes and vinyl acetylenes, which
allowed a variety of highly enantioenriched 3-methoxyindanones and cyclopentenones to be
prepared.17 Mechanistic studies suggest that a vinylgold species and a prochiral
oxocarbenium are involved the enantioselectivity determining cyclization. Despite the
prevalence of vinylgold intermediates in gold-catalyzed reactions of allenes and alkynes,18

this reaction constitutes a rare example of enantioselective carbon-carbon bond formation
from this organometallic species.
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Scheme 1.
Ether nucleophiles in gold(I)-catalyzed carboalkoxylation
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Scheme 2.
Two Possible Pathways
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Scheme 3.
Mixed Acetal Study.
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Table 1

Optimization of the Reaction Conditions

entrya L Solvent yield (%)b ee (%)c

1 L1 CH2Cl2 75 8

2 L2 CH2Cl2 77 2

3 L3 CH2Cl2 71 5

4 L4 CH2Cl2 74 24

5 L4 CCl4 74 94

6 L4 Benzene 80 89

7 L4 Toluene 88 94

8d L4 Toluene 92 95

a
Reaction conditions: 1) 2.5 mol % gold catalyst, 5 mol % AgSbF2, 0.05 mmol 1a, 10 mg 4Å molecular sieve, 1 mL solvent. 2) 2.5 mol % PTSA •

H2O, 1 mL CH2Cl2, 0.1 mL H2O.

b
Isolated yields.

c
Determined by chiral HPLC. Absolute stereochemistry assigned by analogy to 3k, see the Supporting Information.

d
2.5 mol % AgSbF6 was used.
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Table 2

Substrate scope for aryl acetylenesa,b

a
Reaction conditions: 1) 2.5 mol % (R)-DTBM-MeO-Biphep(AuCl)2, 2.5 mol % AgSbF6, 0.2 mmol 1, 50 mg 4Å molecular sieve, 2 mL toluene.

2) 2.5 mol % PTSA • H2O, 4 mL CH2Cl2, 0.4 mL H2O.

b
Isolated yields. ee was determined by chiral HPLC. Absolute stereochemistry assigned by analogy to 3k, see the Supporting Information.

c
Ar = 4-bromobenzenesulfonyl, 5.0 mol % gold catalyst and 10 mol % AgSbF6 was used.

d
Enol ether hydrolysis was not performed.
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Table 3

Substrate Scope for vinyl acetylenesa,b

a
Reaction conditions see table 2.

b
Isolated yields. ee was determined by chiral HPLC.
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