Table 21.
Performance comparison of our method vs. CMIM for the imbalanced E. coli data set when identical numbers of features are selected.
AUC | Precision | Recall | F1 | MCC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N4 | 0.691 > | 0.663 | 0.725 | 0.717 | 0.280 | 0.271 | 0.404 | 0.393 | 0.391 | 0.381 |
N5 | 0.690 | 0.686 | 0.737 | 0.710 | 0.295 > | 0.264 | 0.421 > | 0.385 | 0.407 > | 0.373 |
N6 | 0.701 | 0.697 | 0.742 | 0.715 | 0.287 > | 0.265 | 0.414 > | 0.387 | 0.403 > | 0.376 |
N7 | 0.714 | 0.693 | 0.735 | 0.711 | 0.275 > | 0.261 | 0.400 > | 0.382 | 0.392 > | 0.371 |
N8 | 0.705 | 0.690 | 0.742 | 0.709 | 0.288 > | 0.254 | 0.415 > | 0.373 | 0.405 > | 0.364 |
N9 | 0.707 | 0.701 | 0.726 | 0.720 | 0.293 > | 0.271 | 0.417 > | 0.394 | 0.401 > | 0.382 |
N10 | 0.711 | 0.702 | 0.724 | 0.692 | 0.294 > | 0.248 | 0.418 > | 0.364 | 0.401 > | 0.353 |
N11 | 0.714 | 0.698 | 0.732 | 0.690 | 0.278 > | 0.247 | 0.403 > | 0.363 | 0.393 > | 0.351 |
N12 | 0.712 | 0.690 | 0.725 | 0.683 | 0.292 > | 0.239 | 0.416 > | 0.353 | 0.400 > | 0.342 |
N13 | 0.714 | 0.688 | 0.733 | 0.678 | 0.287 > | 0.236 | 0.413 > | 0.349 | 0.400 > | 0.337 |