Table 23.
Performance comparison of our method vs. CMIM for the balanced E. coli data set when identical numbers of features are selected.
AUC | Precision | Recall | F1 | MCC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N4 | 0.780 | 0.769 | 0.733 | 0.719 | 0.701 | 0.696 | 0.717 | 0.707 | 0.446 | 0.424 |
N5 | 0.779 | 0.771 | 0.730 | 0.715 | 0.706 | 0.696 | 0.718 | 0.705 | 0.445 | 0.419 |
N6 | 0.762 < | 0.771 | 0.735 | 0.716 | 0.663 | 0.684 | 0.696 | 0.699 | 0.425 | 0.413 |
N7 | 0.783 | 0.769 | 0.737 | 0.711 | 0.696 | 0.696 | 0.716 | 0.703 | 0.448 | 0.413 |
N8 | 0.781 | 0.767 | 0.723 | 0.709 | 0.711 | 0.697 | 0.717 | 0.703 | 0.439 | 0.412 |
N9 | 0.782 | 0.767 | 0.715 | 0.720 | 0.703 | 0.700 | 0.709 | 0.710 | 0.423 | 0.421 |
N10 | 0.781 | 0.767 | 0.725 | 0.705 | 0.702 | 0.702 | 0.713 | 0.704 | 0.436 | 0.409 |
N11 | 0.777 | 0.765 | 0.719 | 0.706 | 0.700 | 0.700 | 0.709 | 0.703 | 0.426 | 0.408 |
N12 | 0.776 | 0.764 | 0.715 | 0.703 | 0.695 | 0.698 | 0.705 | 0.700 | 0.418 | 0.404 |
N13 | 0.776 | 0.765 | 0.731 | 0.704 | 0.695 | 0.700 | 0.712 | 0.702 | 0.439 | 0.406 |