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COMPLEX MOVEMENT DISORDERS IN FATAL
FAMILIAL INSOMNIA: A CLINICAL AND GENETIC
DISCUSSION

Fatal familial insomnia (FFI) represents a rare neurode-
generative autosomal dominant prion disease, usually
affecting patients between the fifth and sixth decades,
evolving rapidly to death.1,2 FFI results from a missense
mutation at codon 178 (D178N) of the PRNP gene
(located on chromosome 20p13) linked with methio-
nine at codon 129 of the mutated allele. Its major neu-
ropathologic features include severe neuronal loss with
astrogliosis of mediodorsal and ventral anterior thalamic
nuclei and inferior olivary nuclei, with variable degrees
of spongiosis, especially in subiculum entorhinal cortex.3

Neurologic manifestations include 4 main catego-
ries: 1) sleep disturbances: refractory insomnia, agrypnia
excitata, diurnal dreaming state, oneiric stupor, somnil-
oquy, and dream enactment; 2) motor disorders: dys-
phagia, cerebellar ataxia, dysarthria, and myoclonus; 3)
cognitive-behavioral: apathy, hallucinations, memory
dysfunction, temporal disorientation, and dementia;
and 4) dysautonomia. Movement disorders usually
comprise myoclonus and ataxia.1,2,4

Herein, we describe the first Brazilian patient with
molecularly proven FFI, presenting with an atypical
phenotype comprising complex movement disorders
and erratic ocular movements. We provide a discus-
sion on the phenomenology, genetic features, and
possible pathophysiologic mechanisms involved.

Case description. A 67-year-old Brazilian woman
from Portuguese ancestry presented to our hospital
with a 1-year history of diplopia, insomnia, excessive
daytime sleepiness, progressive gait ataxia, and slurred
speech, evolving to dysphagia, behavioral changes,
visual and auditory hallucinations, and myoclonus.
She had no dysautonomia. There was a remarkable
family history for an autosomal dominantly inherited
disease (figure). We were unable to evaluate other
affected family members. On neurologic examination,
there was Mini-Mental State Examination score of
12, gait ataxia, dysarthria, ideomotor apraxia, frontal
release signs, parkinsonism (tremor, bradykinesia,
rigidity, and postural instability), truncal tremor, gen-
eralized myoclonus, and spontaneous erratic multidi-
rectional REMs (video on the Neurology® Web site

at www.neurology.org). Serologic tests, including
Whipple disease, were negative. Paraneoplastic and
thyroid antibodies were normal. CSF showed mild high
protein concentrations and 14-3-3 protein was negative.
Brain MRI disclosed mild diffuse cortical atrophy. Brain
SPECT imaging was normal. Polysomnography showed
reduction in total sleep time, lack of REM sleep, and
increased arousals. Genetic testing for FFI was
performed and the genomic sequencing of PRNP
disclosed the prion protein gene mutation at codon
178 (D178N). The PRNP polymorphic codon 129
was in heterozygosity (M129V), with mutated allele in
frame withmethionine (N1781M129), confirming FFI
(figure). We started clonazepam for sleep disorders, with
poor improvement.

Discussion. FFI is an extremely rare neurodegener-
ative disorder, and there are few families described
worldwide. A clinical spectrum composed of complex
movement disorders including parkinsonism, truncal
tremor, and erratic ocular movements is discussed in
this article. This phenotype is similar to previous ones
observed in patients from the Basque Country.4

When the aforementioned neurologic features are
present, it is presumed that basal ganglia circuit may
be involved. Neuropathologic data from patients with
FFI have demonstrated that apoptotic neurons are
mostly found in thalamus and medullary olives, while
PET studies disclose severe thalamic and additionally
cortical hypometabolism. Interestingly, patients pre-
senting heterozygosity at polymorphic codon 129
(M129V) of PRNP, as described here, showed a more
widespread cerebral change, and apoptotic neurons
were also found in neocortex and striatum and a longer
disease duration.5

There are no clear detailed clinical descriptions or
pathophysiologic explanations for abnormal ocular
movements in FFI. Our patient has complex move-
ment disorders associated with involuntary, arrhythmic,
chaotic, and multidirectional saccadic eye movements,
rarely described in the disease.4 When the phenome-
nology described here is observed, a comparison to
opsoclonus-myoclonus syndrome (OMS) is inevitable.
Thus, we presume that a disinhibition of the fastigial
nucleus of the cerebellum or brainstem dysfunction
might be involved here, as well as in OMS, to better
explain abnormal ocular movements.6
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Another hypothesis is agrypnia excitata. This is a
condition characterized by loss of slow-wave sleep
and abnormal eye movement, associated with motor
and autonomic sympathergic activation, due to dys-
function in the thalamo-limbic circuits.7 Although
dysautonomia was not present in our patient, and
taking into account that there was loss of slow-wave
sleep, abnormal eye movement, and motor hyperac-
tivation, agrypnia excitata may also be considered a
possible explanation for motor hyperactivation in this
case, presenting with abnormal ocular movements
and truncal tremor.

On the whole, this case description calls attention
to an unusual phenotype in FFI, presenting with
complex movement disorders comprising parkin-
sonism, myoclonus, truncal tremor, ataxia, and
erratic eye movements. Remarkably, although the
D178N mutation in frame with 129M is defined
as FFI, some patients with this genotype show a clin-
icopathologic phenotype of Creutzfeldt-Jakob dis-
ease.6 Thus, the phenotypes described in prion
diseases are complex, which may indicate that other
genetic and environmental factors may contribute to
this variability.
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DE NOVO HUNTINGTON DISEASE CAUSED BY
26–44 CAG REPEAT EXPANSION ON
A LOW-RISK HAPLOTYPE

Huntington disease (HD, OMIM #143100) is a dom-
inantly inherited neurodegenerative disorder due to a
CAG repeat expansion in the HTT gene, encoding a
polyglutamine tract in the N-terminal part of the hun-
tingtin protein. Most cases are inherited from an affected

parent, but in about 10% of cases the condition appears
to be de novo.1 De novo or sporadic cases are usually due
to CAG repeat expansion of intermediate alleles. Inter-
mediate alleles have 27–35 CAG repeats, and the higher
the number of repeats, the higher the risk for expansion
into disease range, usually upon paternal transmission.2

In most cases, the change in repeat size is minor, and
gradual increases into the disease range over several gen-
erations is the basis of new genetic mutations and stable

Figure Pedigree and genomic sequencing of PRNP

(A) The mutation GTC to GTT in heterozygosis that codes for amino acid 178, replacing an
aspartate for an asparagine (D178N). (B) The PRNP polymorphic codon 129 is in heterozy-
gosity (M129V).
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disease prevalence. So far, the largest single-step expan-
sions reported were from 27 to 383 and from 35 to 582

CAG repeats. It has recently been shown that interme-
diate alleles and disease alleles share the same haplotypes,
which is expected if intermediate alleles are the main
source of new mutation cases. The high-risk haplotypes
are called A1 and A2, and are both prevalent among
Caucasians but rare in other ethnic groups.4

We describe a de novo case of HD that defies this
general rule. The patient is a 45-year-old white woman
with advanced HD with extensive involuntary move-
ments, unsteady gait, and dementia. Symptoms started
around age 33 with swallowing problems, restlessness,
asthenia, and poor concentration. Two years later, she
was no longer able to work as an accountant or do activ-
ities she previously enjoyed. Four years later, increasing
involuntary movements led to a diagnosis of HD, con-
firmed by finding 44 CAG repeats in the HTT gene.
Family follow-up revealed allele sizes of 15/15 in the
mother and 15/26 in the father (figure). This unex-
pected result led to uncertainty within the family con-
cerning paternity, and the parents asked for paternity
confirmation, which was verified. The HD alleles of the
patient and her parents were subsequently subcloned,
and an A . G polymorphism in the polyproline
(CCG) tract following the polyglutamine (CAG) tract
distinguished the father’s 26-CAG allele from his 15-
CAG allele; otherwise, the sequence surrounding the

CAG repeat was identical to consensus, including a
penultimate CAA following the CAG repeat. It turned
out that the father’s 26-CAG allele had expanded into
his daughter’s 44-CAG allele (figure), with no evidence
of paternal mosaicism. Single nucleotide polymorphism
haplotyping showed that the expansion had occurred
on a low-risk B haplotype (subtype B44), not a high-
risk A1 or A2 haplotype, as would be expected (figure).4

Our case shows that an expansion of 18 CAG repeats
may occur on a low-risk haplotype from an allele size
that would usually be considered stable.5 This suggests
that unknown predisposing factors, either genetic or
environmental, may contribute to CAG repeat expan-
sion in HD. The possibility that CAG repeats may
unexpectedly expand into the disease range is important
information when genetic counseling a family with a
truly de novo case of HD.
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Figure Family pedigree demonstrates paternal
expansion of an allele with 26 CAG
repeats into a pathologic allele with 44
CAG repeats

The CAG and CCG repeat lengths and haplogroups are
defined for each family member. The father’s alleles can also
be distinguished by 9 uninterrupted CGG triplets due to a
common A . G polymorphism turning a CCA into (the sec-
ond) CCG. For details on the determination of HTT hap-
logroups, see Warby et al.1 Symbols: circle 5 female;
square 5 male; black circle 5 patient.

1100 Neurology 81 September 17, 2013

http://neurology.org/
mailto:gunnar.houge@helse-bergen.no

