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Abstract

Ribosomal loci represent a major tool for investigating environmental diversity and community structure via high-
throughput marker gene studies of eukaryotes (e.g. 18S rRNA). Since the estimation of species’ abundance is a
major goal of environmental studies (by counting numbers of sequences), understanding the patterns of rRNA copy
number across species will be critical for informing such high-throughput approaches. Such knowledge is critical,
given that ribosomal RNA genes exist within multi-copy repeated arrays in a genome. Here we measured the repeat
copy number for six nematode species by mapping the sequences from whole genome shotgun libraries against
reference sequences for their rRNA repeat. This revealed a 6-fold variation in repeat copy number amongst taxa
investigated, with levels of intragenomic variation ranging from 56 to 323 copies of the rRNA array. By applying the
same approach to four C. elegans mutation accumulation lines propagated by repeated bottlenecking for an average
of ~400 generations, we find on average a 2-fold increase in repeat copy number (rate of increase in rRNA estimated
at 0.0285-0.3414 copies per generation), suggesting that rRNA repeat copy number is subject to selection. Within
each Caenorhabditis species, the majority of intragenomic variation found across the rRNA repeat was observed
within gene regions (18S, 28S, 5.8S), suggesting that such intragenomic variation is not a product of selection for
rRNA coding function. We find that the dramatic variation in repeat copy number among these six nematode
genomes would limit the use of rRNA in estimates of organismal abundance. In addition, the unique pattern of
variation within a single genome was uncorrelated with patterns of divergence between species, reflecting a strong
signature of natural selection for rRNA function. A better understanding of the factors that control or affect copy
number in these arrays, as well as their rates and patterns of evolution, will be critical for informing estimates of
global biodiversity.
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Introduction

The ribosome is a fundamental component of the eukaryotic
cell, and thus, nuclear genes encoding the ribosomal subunits
have long been the focus of intensive empirical study.
Ribosomal RNA genes (rRNA) are organized within the nuclear
genome as tandem repeat arrays, with each repeat containing
one copy of conserved coding regions (28S, 18S, and 5.8S
subunit genes) and rapidly evolving noncoding regions
encompassing the internal and external transcribed spacers
(ITS and ETS, respectively) and intergenic spacers (IGS) [1].
The process of concerted evolution acts as a homogenizing
force across rRNA repeats within a genome (thus conferring
high sequence identity between arrays within a species [2]),
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whereas this same process effectively allows divergence in
rRNA between reproductively isolated species.

Ribosomal RNA genes have been used as markers for
phylogeny reconstruction [3], diversity analysis [4,5], and
genome evolution studies [6]. These loci are amenable to PCR-
based assays due to their pseudo-orthology and the large
amount of existing data readily available in public sequence
databases. Despite their popularity and utility, we continue to
have a poor understanding of polymorphism and copy number
variation in rRNA loci across diverse eukaryotic taxa.
Quantifying this variation, and pinpointing the selective forces
that impact rRNA variation, will be paramount for building a
global view of biodiversity, population-level processes, and
speciation.
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Number of copies

Although ribosomal copy number variation is known to vary
greatly from species to species [7,8], the evolutionary forces
responsible for generating such variation have not yet been
definitively identified. Eukaryotic cells can possess tens [9] to
hundreds [1,10] to tens of thousands [11] of rRNA gene copies
across repeated arrays in the nucleus, with copy number
exhibiting a strong correlation with genome size regardless of
taxonomic group [12]. Only a fraction of the rRNA gene copies
are transcribed at any time [13,14], suggesting that the
intragenomic variation is not necessarily reflective of cellular
requirements. One clear example is Drosophila: although
species typically possess 200-250 rRNA array copies, deletion
studies of rRNA loci indicate that only 35-60 of these units are
needed to maintain normal viability in a laboratory setting [15].
In addition, because larger genome size is not necessarily
correlated with an increase in protein-coding genes [16], many
rRNA copies can remain transcriptionally inactive even during
peak periods of organismal growth [13]. Studies in Daphnia
obtusa [10] and Drosophila melanogaster [17] provide further
evidence that the rRNA locus is dynamically evolving, and the
number of rRNA repeats can expand and contract over short
evolutionary times. The excess rRNA copies have been shown
to reduce fitness, although the magnitude of the selective
disadvantage is currently under debate [5,18]. Regardless,
deletions within rRNA loci have been shown to affect
expression patterns across thousands of genes, suggesting an
important role in determining fithess (and maintaining a
spectrum of variation) in natural populations [19].

There are a number of proposed reasons why archaeal and
bacterial taxa (unlike eukaryotes) do not show a correlation
between genome size and number of rRNA copies [20]. First,
copy number variation in eukaryotes may be correlated to
eukaryote-specific aspects of recombination or gene repair [6].
Second, copy number variation in bacteria may be limited by
nutrient requirements, such that higher copy numbers of rRNA
will be favored within more variable and nutrient-rich
environments [21]. Third, based on the inverse scaling of
effective population size and genome size [22], copy number
variation may represent a genomic signal of selection, whereby
the relaxed efficiency of selection that accompanies reduced
effective population size in eukaryotes may be unable to
constrain the accumulation of slightly deleterious non-functional
rRNA units.

Variation across copies

Within a species, natural selection and concerted evolution
typically drive the dominance of one specific rRNA gene variant
within individual genomes in a population. The biased process
of gene conversion is the primary hypothesized force behind
rapid concerted evolution in rRNA, aided by mechanisms such
as chromosomal and sister chromatid exchanges [1]. However,
given the substantial variation that can exist within genomic
rRNA copies [23-25], eukaryotic taxa must be able to maintain
some level of rRNA variation that effectively falls under the
radar of selection. For example, Drosophila species possess 3
to 18 rRNA variants that occur in >3% of genomic ribosomal
loci [4]. In Drosophila species, intragenomic polymorphisms
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occur in both 18S and 28S genes with 10-20x higher variation
present in noncoding regions of the ribosomal repeats.
Purifying selection thus acts within Drosophila species to
prevent rare rRNA variants from expanding above 5% of the
total repeats present within a genome. Similarly, high levels of
intragenomic rRNA variation have now been recorded in plant
pathogenic fungi [26], despite initial evidence suggesting low
levels of sequence diversity in fungal species (where previous
methodology was unlikely to capture low level signals from
rRNA variants; [9]. Specific ratios of intragenomic rRNA
variants were further observed to change over time in Daphnia
[10], with proportional gene abundances shifting up to 33%
between time points.

In Drosophila, clusters of rRNA repeats exist as a pair of
functional but redundant loci on the X and Y chromosomes
[27,28]. To date, there is no evidence that Drosophila loci are
diverging from one another [1]. However, insights from other
eukaryotes such as Planaria [24], aphids [29], and
grasshoppers [23] suggest that genomic ribosomal repeats are
able to separate into distinct groups or subtypes, although it is
not known how commonly this phenomenon may occur across
species. For example, fungal species within the
Glomeromycota appear to maintain two structurally distinct
rRNA variants (L and S), enabled by the physical separation of
these loci within the nucleus [30]. The potential existence of
multiple, divergent consensus sequences per species has
critical implications for sequence-based approaches to
biodiversity [31], as it may greatly complicate our ability to
derive accurate biodiversity estimates if species are delimited
according to the relative abundances of unique rRNA
sequences [5]. In addition to multiple genomic rRNA loci, life
history traits such as high rates of sexual recombination may
encourage the persistence of multiple, and abundant, rRNA
variants within a species [9].

In the present study, we aimed to quantify and understand
the forces contributing to both intra- and interspecific variation
across ribosomal repeat arrays in nematodes. To this extent,
we used whole genome shotgun (WGS) data to analyze rRNA
repeats in six different species of Caenorhabditis. We aimed to
assess whether a valid estimate of rRNA diversity could be
applied across this diverse phylum, and investigate whether we
are able to predict variation in ribosomal array features across
different taxa. We also analyzed the rRNA repeats that arose in
a Caenorhabditis elegans mutation accumulation experiment in
order to test the role of selection in determining rRNA repeat
copy number. Although little work has been done on rRNA
copy number in nematodes, the genome sizes within this
phylum (50-250 Mb [32]; fall within the range of most
Drosophila species (130-364 Mb [33]; and thus we expected
our target nematode species to exhibit similar levels of rRNA
copy number.

Materials and Methods

Whole-Genome Shotgun (WGS) sequence reads were
obtained from GenBank for the nematode species
Caenorhabditis brenneri, C. remanei, C. briggsae, C. japonica,
Brugia malayi, and Pristionchus pacificus. Sequences were

October 2013 | Volume 8 | Issue 10 | e78230



rRNA Variation in Nematodes

Table 1. Genomic rRNA copy number estimated from whole genome shotgun data in six nematode species.

Species C. brenneri C. remanei C. briggsae C. japonica B. malayi P. pacificus
Genome Size (Mb) ~150 =& 104 ~135 90 169

Gene Count unknown ~26,000 19,500 unknown 18,500 23,500
Total Bases 21,261,492 11,679,749 3,853,734 4,943,716 9,773,484 11,396,247
Repeat Length 6,929 6,921 6,830 6,825 7,330 6,261

Mean Coverage 3,068 1,688 564 724 1,333 1,820
Coverage Depth 9.5 9.2 10 6.3 8.9 8.9

Repeat Estimate 323 183 56 115 150 205

doi: 10.1371/journal.pone.0078230.t001

subsequently filtered and quality trimmed using LUCY [34]. The
ribosomal reference sequence of each species was generated
by assembling the WGS sequences in AMOS (http:/
amos.sourceforge.net/) against the 18S, 5.8S, and 28S gene
sequences of C. elegans (genome assembly release WS185).
Reference bases were determined by the most frequent base
call at each position. To ensure the capture of all ribosomal
variants, all reads from WGS assemblies were aligned to the
reference genome at two levels of maximal divergence (95%
and 85%). Remaining gaps in the ribosomal reference were
filled in using a combination of low stringency BLAST [35] and
MUSCLE [36]. Total WGS coverage was determined by the
coverage for all rRNA repeat reads divided by the genome-
wide coverage at single copy loci. Since the level of coverage
likely varied across rRNA repeat units, this calculation
represents an average across the entire repeat array.

WGS sequence reads of each species were aligned against
their respective ribosomal reference sequence using AMOS
and the base calls at each position were documented. The total
copy number of rRNA repeats was determined by dividing the
total number of bases aligned by the estimated sequencing
coverage depth (total sequenced bases/estimated genome
size) for each of the WGS projects. In a similar analysis we
utilized 454 and lllumina shotgun reads from C. elegans
mutation accumulation (MA) lines [37] to evaluate whether the
reduced efficiency of selection impacted rRNA copy number.
MA line reads were also aligned to the C. elegans reference
genome sequence and analyzed using identical parameters
and approaches as previously described. To assess the
uniformity of coverage across the rRNA locus, we aligned the
reads from C. elegans natural isolate CB4856 (Short Read
Archive Project SRR101159 — [38]) , MA41, MA83, and MA99
[37] against the C. elegans reference repeat (GenBank
accession number X03680.1) using the Burrows-Wheeler
Aligner [39].

To assess error rates in WGS datasets, the observed
polymorphic positions in rRNA repeats were compared to the
expected distribution of true polymorphisms based on coverage
(e.g. for nX coverage, an average of n reads should be
observed for every true polymorphism). To account for
sequencing errors, we required a minimum of 50% of 1X
coverage depth to consider the base a polymorphism (with 10X
coverage, we required at least five identical base calls at that
position). This approach was chosen in order to differentiate
polymorphic positions from sequencing error. The average
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sequencing error rate of 454 technology is ~4% [40], while the
error rate of lllumina platforms is even lower at ~1% [41]; thus
our approach well exceeds the levels of known sequencing
errors for high-throughput sequencing platforms.

To further assess how selection impacts rRNA cluster copy
number, we performed additional analyses on two natural C.
elegans isolate strains CB4856 [38] and CB4858 [42]. These
were compared to data from MA lines to provide a quantitative
measure for the strength of selection in stabilizing rRNA copy
number. Following Denver et al. 2005 [43], at neutrality in
diploid organisms, we expect the ratio of standing genetic
variation (V,) to the standing mutational variation (V,,) in rRNA
repeats to be equal to the parameter 4N,, where N, is the
effective population size. Furthermore, if the amount of
standing variation is significantly lower than that expected from
mutational variation (V/V,, << 4N,), we assume that purifying
selection is operating on this locus. We calculated V; in rRNA
repeats of CB4856 to be 0.0009 (SEM = 3.9x10®) per site and
V., in MA41, MA83, and MA99 to be 2.99x10°% (SEM =
1.11x10%), 1.36x10° (SEM = 7.36x107), and 1.82x10% (SEM =
5.90x107) per site per generation respectively. The joint
average of V,, across the three MA lines is 2.06x10° per site
per generation, which yields a V/V,, of 43.69, and a N, to 10.9.

Results

The availability of several complete WGS datasets across
nematode taxa allowed for an accurate accounting of both copy
number and ribosomal sequence diversity. In the natural C.
elegans isolate (negative control) and three MA lines, we find
that the average coverage for 18S (positions 2694-3157), 5.8S
(positions 3311-3694), and 26S (positions 3695-7203) are
within one standard deviation of the average coverage across
the entire repeat. Although the ability to detect extremely small
sub-segment expansions may exceed the resolution of this
analysis, this data suggests that rRNA repeat expansions and
deletions generally involve the entire rRNA cluster. Analysis of
six nematode species (Table 1) did not recover any indication
of multiple dominant rRNA copies within a genome, supporting
a scenario of concerted evolution favoring one dominant rRNA
variant that is highly abundant amongst many fewer, low
abundance variants.

Neither copy number or level of polymorphisms appeared to
show any correlation with gene count or genome size in
nematodes (Table 1); however, our limited analysis may have
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Figure 1. Variation observed in nematode ribosomal arrays. (A) Divergence in rRNA repeats observed between the genomes
of C. elegans, C. briggsae, C. japonica, and C. remanei; here, base substitutions are denoted as transitions or transversions, while
complex polymorphisms represent any type of insertion, deletion, or inversion event. (B) Polymorphic positions in rRNA repeats
observed within the genomes of each Caenorhabditis species. Results suggest that the pattern of intragenomic polymorphisms is
unique across repeats within a species, whereas patterns of interspecific divergence reflect a strong signature of natural selection

for rRNA function.
doi: 10.1371/journal.pone.0078230.g001

precluded the identification of significant correlations such as
those previously identified in large datasets [12]. The estimated
number of rRNA gene copies varied substantially across taxa,
showing a >6 fold difference in repeat copy number across
nematode genomes (Table 1). Within a species, the number of
complete rRNA repeats appeared to vary widely, with
estimates ranging from 56 copies in C. briggsae up to 323
copies in C. brenneri. Within a nematode genome, higher
levels of polymorphism were observed within coding regions of
the 18S, 5.8S, and 28S genes as opposed to transcribed but
noncoding ITS regions (Figure 1B). The levels of observed
polymorphism varied substantially from species to species, and
the distribution of polymorphic sites along the ribosomal array
showed no overarching patterns across species. Both C.
briggsae and C. remanei exhibited lower levels of
polymorphism in rRNA repeats, with fewer numbers of
polymorphic positions observed along the entire length of the
array. Conversely, C. brenneri and C. japonica showed
extreme variation within rRNA arrays, with some gene positions
(18S, 5.8S) displaying >20% polymorphic positions across a
50bp sliding window. Our observations suggest that these
patterns of rRNA variation are unique, and potentially genome-
specific. However, our approach was unable to determine
whether such patterns represent signatures of selection or
random stochastic variation.

In a similar analysis of artificially evolved C. elegans
mutation accumulation (MA) lines [37], genome data further
enabled a robust test for evidence of selection acting on rRNA
repeat arrays. MA lines are repeatedly bottlenecked,
consistently reducing the effective population size and allowing
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all but the most deleterious mutations to accumulate. In MA
lines, ribosomal copy number exhibited a >2 fold increase in
just ~400 generations, with rates of copy number increase
calculated at 0.0284—0.3414 rRNA copies per generation
(Table 2). These patterns suggest that rRNA copy number is
typically constrained by selective pressures in natural
populations. To provide further evidence, we also compared
the ratio of standing genetic variation in rRNA copy number to
the mutational variation (Vg/Vm). Using direct estimates of
mutation rate (u) derived from MA experiments [37,44], and
silent-site diversity from population data [45], we have
previously estimated N, in C. elegans to be on the order of 108
[45]. Given that the estimated N, from V/V,, in rRNA repeats is
5 orders of magnitude lower than the null expectation, if we
assume that C. elegans isolate CB4856 is at mutation-
selection-drift equilibrium, our data supports the idea that
heavy purifying selection is maintaining rRNA copy number in
C. elegans natural isolates.

Divergence of ribosomal RNA consensus sequences
between four different species showed clear evidence of
selection for coding function within conserved gene regions
(fewer substitutions), while noncoding regions (ITS) and
expansion segments of ribosomal RNA genes (e.g. D2/D3 in
28S) exhibited a higher proportion of transversions and
complex polymorphisms (indels and inversions; Figure 1A).
These patterns indicate strong purifying selection acting on
ribosomal subunit genes, since conservation of ribosome
function is critical for maintaining normal cellular processes.
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Table 2. Ribosomal repeat copy number estimates in Caenorhabditis elegans displayed for N2 progenitor line and each

subsequent MA line.

Line N2 41* 83* 99* 523 526 529 538 545 553 574
MA Generations N/A 400 373 420 250 250 250 250 250 250 250
Technology llumina 454 454 454 llumina  lllumina  lllumina  lllumina  lllumina lllumina  lllumina
Coverage Depth 11.50 1.9 3.1 2.8 9.55 7.38 12.41 12.38 7.01 10.08 17.47
rDNA Coverage 1,295 392 387 716 1,265 1,224 1,727 1,866 839 1,228 2,532
Repeat Estimate 112.6 206 125 256 1324 165.8 139.2 150.7 119.7 121.8 144.9
Increase in rRNA repeats (unit/generation) N/A 0.2335 0.0332 0.3414 0.0792 0.2128 0.1064 0.1524 0.0284 0.0368 0.1292

doi: 10.1371/journal.pone.0078230.t002

Discussion

Implications of rRNA copy number variation

Regardless of the driving mechanisms for intragenomic
rRNA polymorphisms and copy number variation, the existence
of minor variant gene copies presents substantial challenges
for biodiversity estimates and the analysis of marker based
datasets [5,31]. High-throughput sequencing technology is able
to generate sequence reads representing individual PCR
amplicons, allowing a survey of the breadth of variation
maintained within a species. On the other hand, Sanger
sequencing of PCR products can summarize information from
a large pool of PCR products, wherein the signal from the most
abundant genomic rRNA copy will generate a unique species-
specific “barcode” and allow variant gene copies to remain
largely undetectable. At present, it is computationally
impossible to distinguish valid, low-level biological variation in
eukaryotes (variant rRNA genes) from PCR/sequencing error
or taxa representing the “rare biosphere” in high-throughput
sequencing datasets [46].

For marker gene studies, there is a practical need to quantify
and distinguish intragenomic ribosomal diversity from true
interspecific signatures. A broad survey incorporating divergent
lineages is urgently needed to deepen our understanding of
intragenomic ribosomal variation across the Tree of Life. These
data will significantly expand our existing knowledge base
beyond culturable organisms, and provide a basis for
formulating useful diversity metrics enabling interpretation of
intragenomic variation in environmental datasets.
Quantification of rRNA copy number across diverse genomes
could facilitate the application of normalization factors to
estimate abundances from environmental data: whereby
species X is represented by Y sequence reads, and its genome
contains an average of Z rRNA arrays. This methodology
would be similar to current approaches in bacterial/archaeal
marker gene studies [20], although additional factors such as
cell number would need to be considered in multicellular
eukaryotes.

The approach used in this study was not limited by
comparative alignments, and thus, our results provide a
significant advance in the understanding of copy number and
polymorphism in the rRNA repeats of diverse nematode
species. Here, we are able to show that alignment of WGS
sequence to an individual consensus unit of the rRNA array
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can capture the spectrum of intragenomic variation within an
organism. Given that rRNA copy number and polymorphism
will directly affect the interpretation of high-throughput
sequencing datasets (454/lllumina marker gene studies using
environmental rRNA amplicons), methods in the present study
were designed to be as inclusive as possible. The present
analysis encompasses a number of diagnostic rRNA loci
typically applied in environmental studies of eukaryotic diversity
(18S [47,48],; D2/D3, [49]. We find that WGS datasets provide
critical insights for the interpretation of environmental datasets,
and given the observed scale and distribution of polymorphism
in ribosomal arrays, it appears that intragenomic variation will
continue to present significant problems for the analysis and
interpretation of rRNA marker gene data, regardless of
diagnostic locus chosen.

Polymorphism across nematode rRNA repeats

In nematodes, genomic patterns of polymorphism in the
ribosomal gene array displayed a striking similarity to patterns
observed in yeast genomes [50], indicating that functional
conservation in gene regions and higher, more complex
substitution patterns in noncoding regions (Figure 1A) are
common across eukaryotic genomes. Although these strong
patterns of polymorphism were apparent in each
Caenorhabditis species, the biological explanation for these
observations is presently unclear. Previous studies in fungi [9]
have indicated a lack of correlation between rRNA diversity and
functional constraint, suggesting that intragenomic diversity
across repeats is not subject to selective pressure. Similarly,
there appears to be no correlation between ribosomal
polymorphism and rRNA copy number in yeast [51].
Polymorphic positions could potentially arise through genomic
forces [efficiency of recombination mechanisms, physical
separation of rRNA loci, likelihood of orphan events; 6]), or
alternatively represent patterns that are a consequence of
population-level processes and reproductive dynamics. In
yeast, the level of intra-strain polymorphism is correlated with
genome structure, whereby SNP patterns indicate a strong
differentiation between structured and mosaic genome
organization [50]. Therefore, ribosomal polymorphism may
have the potential to confer population-level information—and
in the case of yeast, allow for separation of “pure” and
hybridized strains.
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Secondary structure is critical for the integrity and proper
functioning of rRNA genes, and even structural modifications
within ITS regions can result in nonfunctional rRNAs [5], so it
seems unlikely that genomic polymorphisms reflect the
accumulation of rRNA pseudogenes. The accumulation of
nonfunctional rRNA copies is expensive in terms of fitness,
although some pseudogenes can coexist alongside functional
variant rRNA gene copies [5]. In fungi, variant gene copies that
persist within populations can even exhibit severe reductions in
structural complexity without loss of function [30]. In addition,
nonfunctional gene copies are less likely to accumulate in
small, compact nematode genomes [52,53], and it is well
known that the similar-sized Drosophila genome is
characterized by a relative lack of pseudogenes [54].

Transposable element insertions, multiple chromosomal loci
for rRNA arrays, or epigenetic influences (methylation or
silencing effects) are all mechanisms thought to limit concerted
evolution within a species. Evidence from Daphnia [55]
suggests that transposons inserted within rDNA loci can inhibit
homogenization across arrays, effectively maintaining cryptic
genetic variation in ribosomal RNA genes and even prolonging
the lifespan of deleterious mutations (rRNA variants with lower
thermal stability). Such novel transposition mechanisms may
also drive differences in chromosomal arrangement and
number of genomic rRNA loci within a species [56]. Evidence
of methylation has been reported in the grasshopper Podisma
pedestris [23], a species where ineffective concerted evolution
has maintained divergent groups of genomic rRNA loci.
Previous evidence has suggested that the silencing of rRNA
genes (e.g. through methylation and heterochromatization) can
significantly reduce the homogenizing forces of concerted
evolution [57]. In addition, reductions in rRNA copy number are
accompanied by a release of silencing factors such as Sir2
[58],, producing an increase in telomere silencing. Given that
rRNA genes are highly transcribed and tightly controlled, any
genomic modifications at rRNA loci (changes in gene copy
number, differential upregulation/suppression of rRNA variants)
will translate into “extra-coding functions” impacting a multitude
of cellular processes [6].

It is thought that selection will act above a threshold level of
divergence present within an individual ribosomal unit,
suggesting that a common level of diversity (falling under the
radar of selection) can exist within the genome of any given
species. Indeed, such low-level rRNA variation appears to be
typical across yeast strains isolated from disparate geographic
locations [50]; 80% of polymorphic positions in gene regions
(18S/26S) were reported to have frequencies <10% across
genomic rRNA arrays. Although members of a population tend
to share similar frequencies of intragenomic rRNA variants,
rare individuals may display markedly divergent proportional
abundances of ribosomal gene variants [59]. Maintaining a
diverse arsenal of variant rRNA copies (cryptic gene variation)
has thus been implicated as a type of pre-adaptation to new
environments [60] or host-associated habitats [25]. In free-
living eukaryotes, higher levels of intragenomic rRNA variation
may confer subtle advantages for opportunistic taxa that must
physiologically adapt to varying environmental conditions (e.g.
through long-distance dispersal).
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Copy number and selection

In the present study, the reduced efficiency of selection in
C.elegans MA lines resulted in a consistent expansion of
genomic rRNA copy number. While parent N2 strains
maintained ~112 rRNA repeats, the estimated copy number
increased to 119-256 repeats in ten independent lines
subjected to repeated bottlenecking for >250 generations
(Table 2). Significant changes in rRNA copy number have also
been observed in asexually propagated Daphnia obtusa lines
(bottlenecked strains exhibiting 53-233 repeats, from an
estimated ~160 copies in the stem mother [10]). Copy number
expansion is not exclusive to nematodes, and evidence for
copy reduction in Daphina suggests that the removal of
selective pressures can elicit differential responses in rRNA
loci. Insight from bottlenecked MA lines, and our quantitative
analysis of mutational variation (V/V,) in natural C. elegans
isolates, strongly suggests that rRNA copy number may
typically be constrained by selective forces in natural
populations. The dynamic nature (and thus instability) of the
rDNA locus makes it a particularly fragile site within the
genome—while DNA repair mechanisms may function to
reduce rRNA copy number through recombination-mediated
loss, gene amplification during replication can also effectively
increase the number of genomic rRNA repeats [6]. Such gain
or loss may occur as frequently as once per cell division [61].
Alternatively, rRNA expansion may occur via independent
mutations unrelated to mechanisms for homologous
recombination; reproducible expansion of rRNA repeats was
observed in yeast cells lacking the histone chaperone protein
Asf1 [62]. Thus, natural selection may lend favor to a narrow
range of repeat copy number, dictated by a mutation-selection
balance. Within a species, higher or lower overall copy number
could perhaps be determined by sequence-specific features in
dominant rRNA variants (e.g. a threshold needed to maintain
genome stability).

The tendency for rRNA copy number to expand in C. elegans
MA lines suggests a non-random pattern and specific rules
potentially governing this phenomenon. On a large scale,
genomic rRNA copy number may correlate with life history
traits and effective population size (N,). Species with very small
N, should exhibit higher rRNA copy number, as ribosomal loci
expand under the reduced efficiency of selection (assuming no
fitness cost is incurred for higher copy number). In contrast,
purifying selection may strictly limit the maximum number of
genomic rRNA loci in taxa with a large N, since higher copy
numbers may confer a fitness disadvantage amongst many
conspecific individuals. Higher rRNA copy number has been
linked with faster growth rates [63,64], but loss of rRNA copies
appears to be a frequent genomic event [61]; promoter sites
such as E-Pro [65] likely govern the recovery and expansion of
rDNA loci once copy number falls below a minimum threshold
and begins to impair fitness.

A growing body of evidence is now emphasizing the link
between genomic rRNA patterns and ecology [21]. Higher copy
number, and putatively higher expression of ribosomal RNA
genes, requires a substantial source of phosphorus—
oftentimes a limited nutrient in habitats with reduced food input
or low food quality. Elser et al. [66] have hypothesized that
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species assemblages and community interactions, as well as
biogeochemical nutrient cycling, are largely driven by genomic
variation across rRNA loci in different taxa. Under their
proposed scenario, higher rRNA copy number should allow for
fast growth and rapid exploitation of available ecological niches
—however, this strategy requires a significant amount of
phosphorus to satisfy cellular ribosomal transcription, and such
taxa may become locally extinct when high-quality food
sources become exhausted. In contrast, slower growing taxa
(with lower rRNA copy number and less phosphorus
requirements) can persist through adverse environmental
conditions and tolerate even the lowest quality food. The
plasticity of genomic rRNA loci may be further influenced by
trophic interactions, where genomic patterns are shaped
though environmental parameters and ecological forces.
Ultimately, copy number and polymorphism in ribosomal
RNA genes may be determined by a combination of genomic
forces (mutation, drift, and selection) and environmental
conditions (nutrient availability, competition). Although there is
a substantial body of literature on rRNA gene arrays, our
understanding of intra- and interspecific variation in these loci
remains rudimentary at best. The present study provides
further insight into genomic patterns and possible mechanisms
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