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Abstract

Inspired by theories of higher local order autocorrelation (HLAC), this paper presents a simple, novel, yet very powerful
approach for wood recognition. The method is suitable for wood database applications, which are of great importance in
wood related industries and administrations. At the feature extraction stage, a set of features is extracted from Mask
Matching Image (MMI). The MMI features preserve the mask matching information gathered from the HLAC methods. The
texture information in the image can then be accurately extracted from the statistical and geometrical features. In particular,
richer information and enhanced discriminative power is achieved through the length histogram, a new histogram that
embodies the width and height histograms. The performance of the proposed approach is compared to the state-of-the-art
HLAC approaches using the wood stereogram dataset ZAFU WS 24. By conducting extensive experiments on ZAFU WS 24,
we show that our approach significantly improves the classification accuracy.
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Introduction

As is well known, wood is a hard, fibrous structural tissue that

constitutes the stems and roots of forest trees. Forests contain

roughly 90 percent of the world’s terrestrial biodiversity. They

preserve the integrity of this biodiversity by storing carbon,

regulating the planetary climate, purifying water and mitigating

natural hazards such as floods [1]. In addition, wood renews itself

by extracting energy from the sun, in a continuous sustainable

cycle [2]. Humans have used wood for many purposes over the

millennia, primarily as a fuel or to construct items of civilization

such as houses, tools, weapons, furniture, packaging, artworks, and

paper. Studies have shown that manufacturing from wood uses less

energy and results in less air and water pollution than manufac-

turing from steel and concrete. Because the features and

characteristics of timbers (including appearance, price, physical

and chemical properties) vary widely, classifying wood types is an

important practical problem with direct industrial applications.

Wood analyses assist the furniture industry, wooden panel

production, and even archeology, where they are crucial in

identifying fraud [3]. However, wood species are difficult to

classify correctly because wood compositions are complex, and

existing species are highly diverse [4].

Currently, wood recognition relies excessively on experts, who

base their judgment on readily visible characteristics such as color,

odor, density, presence of pitch, or grain pattern. However, wood

experts are not always available, and the accuracy of classification

largely depends on the operator’s experience and attention. Thus,

an automated wood recognition method that accurately classify

wood types from images is urgently required.

Wood is a heterogeneous, hygroscopic, cellular and anisotropic

material. The cell walls of wood tissues are composed of micro-

fibrils of cellulose and hemicellulose impregnated with lignin [5].

While most softwood species comprise tracheids cells, the structure

of hardwoods is more complex, with features such as vessels

(pores), wood rays, fiber, parenchyma and growth ring [6]. The

characteristics and arrangement of these fibrous cells affects the

strength, appearance, permeability, resistance to decay, and many

other properties of the wood. Several researchers have used these

wood characteristics to distinguish among wood species. For

example, Piuri, et al. (2010) [7] classified wood types from features

revealed in fluorescence spectra. Javier, et al. (2011) [8] used the

thermograms curves obtained by thermogravimetric analysis (TG)

and differential scanning calorimetry (DSC) to classify different

wood species. Rojas, et al. (2011) [9] proposed a technique called

stress-wave sounds to obtain information suitable for identification

and classification of wood samples.

However, all of these methods have given up the traditional way

of recognizing wood species, which are based on wood anatomical

features recognized by experts. Currently, image based methods

have retained their popularity in computer-aided wood recogni-

tion research because they can integrate all known aspects of wood

anatomy. Generally, there are three kinds of images can be used in

wood recognition, which are macroscopic structure, micrograph

and stereogram, as shown in Fig. 1. Since the appearance of each

tree species is unique, the computer may be able to identify tree

species directly from wood images. The International Association

of Wood Anatomists (IAWA) has published a list of microscopic

features for softwood and hardwood identification [10,11]. Some

of the listed features can be unambiguously assigned to a species by

a computer [5,6].

This idea has inspired researchers to develop computational

techniques for classifying and recognizing wood species. These

methods firstly extract semantic features, such as pores, wood rays,

fiber, parenchyma, and growth rings. For example, Pan (2012) and

Abhirup (2011) proposed a wood classification system based on the
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pores in microscopic images [12,13]. Wang (2010) proposed a

method to extract tree-rings for obtaining anatomical features such

as spring or summer growth [14]. However, the success of these

methods relies on correct image segmentation, which remains an

elusive goal in computer vision field so far [15]. Until this problem

is solved, the applicability of these methods remains limited.

To avoid the imperfection caused by image segmentation,

recent studies [16–19] have focused on texture features. Texture

analysis can extract the attributes or features from an image that

differentiate one species from another. So, various feature

extraction and classification methods, such as local binary pattern

(LBP) [20], scale-invariant feature transform (SIFT) [21], have

been proposed in the past several years for the purpose of texture

analysis. More recently, methods based on higher order local

autocorrelation (HLAC) have gained popularity in texture

analysis. HLAC features, first proposed by Otsu [22], are derived

from autocorrelation features identified from higher-order statistics

(HOS) [23]. For practical computation, the original HLAC

features were restricted to the second order case, represented by

25 mask patterns within a 363 displacement region. Many

extensions to the original HLAC method have since been

proposed.

Firstly, HLAC based methods with scale and rotation invariant

are obtained by modifying the autocorrelation function [24],

introducing multi-scale space theory [25–27], and Log-polar

image [28]. Then, to extract more detailed information from

image, later researchers altered the image functions that partic-

ipate in the autocorrelation operation. They differ considerably

from the early HLAC methods, in which features are extracted

only from binary images. For example, Matsukawa and Kurita

(2009) introduced Probability Higher-order Local Auto-Correla-

tions (PHLAC) based on probability images [29], which extends

bag-of-features technique in scene classification [30,31]. Kobaya-

shi and Otsu (2008) proposed Gradient Local Auto-Correlations

(GLAC) and Normal Local Auto-Correlation (NLAC) [32],

gradient-based techniques that utilizes the second statistics of

spatial and orientation autocorrelations to discriminate specimens

more powerfully than standard histogram based methods.

Generally, the local information in HLAC features is collected

by counting the matching number while the mask pattern scans

the image. Increasing the size and number of mask patterns

enables more detailed local information. For example, applying 8-

order HLAC, Toyoda and Hasegawa achieved 223 dimensions

within a 363 displacement region [33,34]. However, although

larger displacement regions gain more useful features, the benefits

of this approach are offset by high computational cost. Matsukawa

and Kurita (2010) obtained larger mask patterns by varying the

spatial interval among the reference points, which make the

features become robust against smaller spatial difference and noise

[35].

Since the above-mentioned HLAC methods count the number

of matches between image and mask, they cannot avert the

increasing complexity caused by larger displacement and higher

order. In this paper, we propose a novel HLAC-based method

called Mask Matching Image (MMI) method, that retains the status of

template matching while acquiring more local autocorrelation

information than existing methods. In the MMI, various statistical

and geometric features can be defined. Unlike previously proposed

Figure 1. The three types of images used in computer-aided wood recognition.
doi:10.1371/journal.pone.0076101.g001

Figure 2. Process of acquiring, selecting and normalizing a single wood sample in the ZAFU-WS 24 wood dataset.
doi:10.1371/journal.pone.0076101.g002

A Statistical Model
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HLAC methods, which use a single feature for classification

purposes (i.e., the number of image/mask matches), our proposed

MMI method permits higher-order data over a larger displace-

ment, thereby enabling a stronger classification capability.

Moreover, since the MMI features can be obtained at low

computational cost, the method can be implemented in hardware

and deployed in practical application systems.

Unlike the majority of wood recognition methods, our method

relies on wood stereogram images. Although the extraction of

color and texture features from macroscopic images demands few

hardware requirement [3], macroscopic information may be

Figure 3. Texture images from ZAFU WS 24 dataset used in the experiments. From left to right and top to bottom: Salix wilsonii Seem,
Juglans cathayensis ver. Formasana, Juglans regia Linn, Castanea henryi (Skam) Rehd. et Wils, Castanea seguinii Dode, Castanopsis fordii Hance,
Castanopsis tibetana Hance, Castanopsis sclerophylla (Lindl.)Schott, Fagus lucida Rehd. et Wils, Quercus acutissima Carruth, Quercus variabilis Blume,
Aphananthe aspera Planch, Celtis biondii Pamp, Celtis bungeana Bl., Ulmus changii Cheng, Ulmus parvifolia Jacq, Litsea cubeba (Lour.) Pers, Sassafras
tsumu, Photinia prunifolia (Hook. et Arn.) Lindl, Padus racemosa, Evodia fargesii Dode, z.ailanthoides Sieb. et Zucc, Toxicodendron succedaneum
(Linn.) O.Kuntze, Meliosma flexuosa Pamp.
doi:10.1371/journal.pone.0076101.g003

Figure 4. Eight images of a single wood species (Quercus acutissima Carruth).
doi:10.1371/journal.pone.0076101.g004

A Statistical Model
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insufficient for identifying a wide range of wood speices. For

instance, pores of diameter less than 100 mm can be observed only

under a microscope [36]. However, the steps of wood slicing

involved in microscopic image prepration (preliminary prepara-

tion, softening and embedding, sectioning, and staining) are quite

complex [37]. Since stereogram images are obtained directly from

the stereoscope without requiring wood slicing, stereogrammatry

can avoid these problems.

Materials and Methods

2.1 Wood Stereogram Dataset
To assist wood recognition research, we have compiled a wood

stereogram dataset, ZAFU WS 24 (freely downloaded from http://

home.ustc.edu.cn/,hangjunw for scientific research purpose).

This dataset contains stereograms of twenty four wood species

located in the Zhejiang A&F University, and wildly distributed

throughout Zhejiang Province, China. Stereogram images of cross

section surfaces of wood samples were captured with an

OLYMPUS SZ61TRC stereo-microscope and a MD50 digital

imaging system. 20 images were collected for each wood species;

thus, the ZAFU WS 24 dataset contains 480 separate stereograms.

Furthermore, assuming that a rectangle region between the tree

growth rings was imaged for each sample, these regions can be

scaled to 1006100 pixels and saved as 256 gray-level images. The

requirement for selecting certain region is that the corresponding

Figure 5. 223 masks. (order 0–8; displacement 363 pixels) [34]
doi:10.1371/journal.pone.0076101.g005

Figure 6. Larger masks obtained through dilation.
doi:10.1371/journal.pone.0076101.g006

Figure 7. Large mask pattern realized by varying spatial
interval.
doi:10.1371/journal.pone.0076101.g007

A Statistical Model
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height should be exactly one growth ring, and its picture quality is

high (excluding fractures, scratches and other flaws of a non-

timber nature). The process of acquiring, selecting and normal-

izing a single image from our dataset is illustrated in Fig. 2.

Fig. 3 shows the wood species samples from the ZAFU WS 24

dataset that is used in the following experiments. For comparison,

the eight samples of a single wood species (Quercus acutissima Carruth)

are shown in Fig. 4. From these two figures, we observe that visual

features vary widely among wood species. These differences may

be caused by variant sizes, density, arrangement, and distribution

of the cellular organizations, such as pore, ray, and axial

parenchyma within the wood. However, the regularity of these

organizations within a given tree species enables wood experts to

accurately identify wood species.

2.2 HLAC Based Method Overview
2.2.1 Conventional HLAC feature. Otsu’s HLAC feature is

derived from Nth-order autocorrelation functions, described as

follows [22]:

Figure 8. MMI implementation.: (a) Original image; (b) and (c) are MMI outputs of (a) using the 2nd and 7th masks in Fig. 5, respectively.
doi:10.1371/journal.pone.0076101.g008

Figure 9. Example of length histogram of Fig. 8(b).
doi:10.1371/journal.pone.0076101.g009

A Statistical Model
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Figure 10. The experimental results of 30 test experiments.
doi:10.1371/journal.pone.0076101.g010

Table 1. Average classification results of HLAC and MMI
using two mask groups and two classifiers.

Methods kNN SVM

HLAC 25 72.222263.6837 83.194461.8709

HLAC 223 73.694463.2730 86.833362.1150

MMI 25 (SSMMI) 74.555663.1618 84.472261.6153

MMI 223 (SSMMI) 76.3333±3.0529 87.6667±2.0105

doi:10.1371/journal.pone.0076101.t001

Table 2. Performance of MMI using different features.

Methods kNN SVM

SSMMI 223 75.027863.0987 86.750062.5366

LH 223 83.8889±2.7624 85.277862.8478

SSMMI 25 73.805663.1156 86.8056±2.7602

LH 25 82.487963.1543 86.500063.0669

doi:10.1371/journal.pone.0076101.t002

A Statistical Model
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rN
f (a1,:::,aN )~

ð
P

f (r)f (rza1) � � � f (rzaN )dr, ð1Þ

where r is the image coordinate vector and ai are the

displacement vectors; f(r) is the image intensity function on the

retinal plane P. To realize efficient and effective feature

evaluation, f(r) is restricted to binary images. Then, the Nth-order

autocorrelation function counts the number of pixels satisfying the

following logical condition:

f (r) ^ f (rza1) ^ � � � ^ f (rzaN )~1 ð2Þ

To avoid the huge number of features captured by large

displacement in higher-order autocorrelation, the original HLAC

features are extracted within the region of a small local

displacement (363) using second-order autocorrelation. The

features are represented by 25 masks, the first 25 masks labeled

with 0, 1 and 2, as shown in Fig. 5. Thus, the features are easily

obtained by scanning these local masks over the binary image and

summing the pixels that satisfy Eq. (2).

2.2.2 Extending the HLAC Features. To achieve a more

detailed image characterization, we investigated various means of

extending HLAC features. A direct approach is to increase the

orders number. For example, Toyoda [33] extracted the features

from 223 masks constructed from 7 orders, as shown in Fig. 5.

Another extension is to enlarge masks to support large displace-

ment regions (as shown in Fig. 6), and extracting the features with

low resolution or low frequency. Although this approach enables

extraction multi-resolution features from different sized masks, it

ignores the variational regions among the reference points in the

masks, and thereby introduces error. To reduce this error,

Matsukawa and Kurita enlarged the mask pattern by expanding

the reference points within the limit size (see Fig. 7) [35]. This

approach restricts the displacement vectors ai in Eq. (1) to the

subset: aij [ f+Dr|p,0g, where p and Dr are the pixel and

spatial intervals, respectively. When autocorrelations in local

regions are calculated at different Dr, the HLAC feature becomes

robust against small spatial difference and noise.

All of the methods for extending HLAC discused above seek

detailed information from images with minimal computation by

introducing larger masks while restricting the number of

displacements. However, these methods cannot avert the problems

caused by larger displacement and higher order autocorrelations

Table 3. Comparison of MMI with GLAC [32] and HLACLF
[39].

Methods kNN SVM

SSMMI 25 73.805663.1156 86.8056±2.7602

LH 25 82.4879±3.1543 86.500063.0669

GLAC 78.472263.5765 84.361162.9660

HLACLF 25 54.805664.8625 69.083364.2792

HLACLF 223 46.444465.0663 68.500063.9172

doi:10.1371/journal.pone.0076101.t003

Figure 11. Comparison of different classes of original and MMI images.
doi:10.1371/journal.pone.0076101.g011

A Statistical Model
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in practical applications. Our proposed MMI method base on the

mask matching technique, retains the rich texture information in

the image. This information is conveniently embodied in the

histogram. Nevertheless, the histogram method fails in many

applications because it loses structure information of the object. In

the next section, we introduce several statistical and geometric

features unsed in our MMI approach. Unlike previous HLAC

methods, which use a single feature (i.e. the number of mask

matches), the MMI method allows features with larger displace-

ment and higher order data, thereby enhancing the texture

classification capability.

2.3 Feature Extraction from MMI
In this section, we discuss feature extraction from MMI in

detail. MMI naturally retains the information obtained by HLAC.

Therefore, the method inherits the desirable object recognition

properties of HLAC, such as shift-invariance and additivity [22].

The MMI code can be downloaded from http://home.ustc.edu.

cn/,hangjunw/code.htm.

2.3.1 Definition of MMI. Let f be a binary image, and define

r = (x, y)t as a position vector in f, where (x,y) [ V5R2. The MMI

at pixel (x, y) for mask i is then defined as

MMIi(x,y)~f (x,y)6Mi, ð3Þ

where 6 is an autocorrelation operation, Mi is the ith mask,

which may be ranked as shown in Fig. 5; i M [1,N], and N is the

number of the masks. The MMI outputs for the 2nd and 7th masks

of Fig. 5 are illustrated in Fig. 8.

Conventional HLAC methods count only those masks that

match the original image (for binary images) or sum the products

of the corresponding pixels intensities (for gray images). In MMI,

we may define several statistical and geometric features, such as

those presented by Chen in [38], to obtain more useful

information from images for classification.

2.3.2 Statistical features of MMI. Here we define the

statistical features of MMI. Let Dk be a connected subgraph of V
and |Dk| indicate the area of the domain, where k~1,2,:::,L; L is

the number of connected subgraphs. For any i, j [ ½1,L�,
Di\Dj~1. Thus we define five simple statistical features:PL
j~1

Dj

�� ��, L, max
1ƒjƒL

Dj

�� ��, min
1ƒjƒL

Dj

�� ��, and 1
L

PL
j~1

Dj

�� ��. The first feature,

PL
j~1

Dj

�� ��, is adopted in existing HLAC methods. For classification

purposes, these simple statistical features can be collated into a set

of comprehensive features, denoted as simple statistical features of

MMI (SSMMI). This feature set is expressed as follows:

SSMMI~
XL

j~1

Dj

�� ��, L, max
1ƒjƒL

Dj

�� ��, min
1ƒjƒL

Dj

�� ��, 1

L

XL

j~1

Dj

�� �� !
ð4Þ

2.3.3 Length histogram features of MMI. In addition to

statistical features, MMI permits a number of geometric features.

We present a new histogram feature, termed length histogram (LH),

which combines the width histogram and height histogram to effectively

represent geometric features. The geometric features of MMI are

defined below.

Definition 1: Let V be the set of intensity values used to define

adjacency, a term in graph theory that describes the relationship

between two edges or vertexes. For a binary image, we set V = {1}

if two adjacent pixels are labeled with 1. Thus, we define h-

adjacency and v-adjacency as fellows:

Figure 12 Comparison of identical image classes on mask matching images.
doi:10.1371/journal.pone.0076101.g012

Figure 13. Different configurations of MMIs containing 16 pixel points.
doi:10.1371/journal.pone.0076101.g013

A Statistical Model
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1) h-adjacency: A pixel p at coordinate (x, y) and a pixel q, both

containing values from V, are h-adjacent if the coordinates of q

are (x+1, y) or (x21, y).

2) v-adjacency: A pixel p at coordinate (x, y) and a pixel q, both

containing values from V, are v-adjacent if the coordinates of q

are (x, y+1) or (x, y21).

Definition 2: A horizontal (or vertical) line segment from pixel p

located at (x, y) to pixel q located at (s, t) is a sequence of distinct

pixels with coordinates:

x1, y1ð Þ, x2, y2ð Þ . . . xn, ynð Þ ð5Þ

where (x1, y1) = (x, y) and (xn, yn) = (s, t); (xi, yi) are h-adjacent and v-

adjacent to (xi21, yi21), respectively, and n is the length of the line

segment. Note that the values of other pixels adjacent to p and q

are not members of V.

Definition 3: The Width (or Height) histogram is a function, mi, that

counts the number of horizontal (or vertical) line segments of length i

(also called bins). The graphical represntation is merely one way of

representing a histogram.

Width and height histogram of the image in Fig. 8(b) are shown

in Fig. 9. The width and height of the image is 100 pixels.

Results and Discussion

3.1 Experimental results on ZAFU WS 24 dataset
The experiments in this study were conducted on grayscale

dataset images. All experiments were implemented thirty times

using randomly selected training and test images, and the average

recognition rates was recorded for each run. The experimental

results are reported as the mean and standard deviation of the

thirty repeats. At last, the performances of the MMI features were

assessed by two classifiers, k-Nearest Neighbors (kNN) and

Support Vector Machine (SVM). All experiments yielded the

same parameters: k = 1 with L1-norm distance (in kNN), and

c = 100, d = 100, r = 1, C-SVC with linear kernel (in SVM, built

from LIBSVM).

3.1.1 Effects of the MMI and the mask number. First, the

features recognition ability of MMI was compared for two mask

groups, 25 and 223 (see Fig. 5). The SSMMI was computed from

the five simple statistical features introduced in Section 2.3.2 (see

Eq. (4)). The classification rates of 30 test experiments were

evaluated by four methods: HLAC 25 (original HLAC with 25

masks), MMI 25 (MMI with 25 masks), HLAC 223 (original

HLAC with 223 masks), and MMI 223 (MMI with 223 masks).

The results of the kNN and SVM classifiers are shown in Fig. 10(a)

and 10(b), respectively. Among 20 samples of each species, 15 were

randomly selected as training samples, and the remaining 5

constituted the test samples. Evaluating the four methods on the

same training and test samples, we obtained the means and

standard deviations of the 30 experiments. The results are

summarized in Table 1.

From Fig. 10, we observe that the classification rates of fluctuate

within a certain range throughout the 30 tests, regardless of

methods. The classification rates may be affected by different

training and test samples among different methods. Overall,

however, the classification rates (from highest to lowest) is ordered

as MMI 223.MMI 25.HLAC 223.HLAC 25 (see also the

mean classification rates listed in Table 1). Also from Table 1, we

observe that MMI outperforms HLAC for the same mask group;

MMI 25 and HLAC 223 yield similar performances, while the

performance of MMI 25 is about 0.86% higher than HLAC 223 in

kNN, and 2.36% lower in SVM. On the other hand, the feature

length of MMI 25 is much smaller than that of HLAC 223. These

results suggest that the MMI features, more of which participate in

classification than in HLAC, play a strong role in the classification

process.

3.1.2 Effects of statistical and geometric features of MMI

on performance. In this experiment, we compare the perfor-

mances among the statistical (SSMMI) and geometrical (LH)

features of MMI. The performances are evaluated on two mask

groups (25 and 223).

The experiments were performed under the conditions

described in Section 3.1.1. The final results are listed in Table 2.

As shown in Table 2, both SSMMI and LH yield high

classification rates. Coupled to the SVM, the performance of

Figure 14. Example of length histogram (average of all samples).
doi:10.1371/journal.pone.0076101.g014

A Statistical Model
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SSMMI and LH are nearly identical; the former exceeds the latter

by a mere 1.2222% and 0.0556% on 223 and 25 masks,

respectively. However, under kNN, LH outperforms SSMMI by

approximately 9%. In addition, the overall performance of LH is

higher under kNN classification, indicating that kNN, as a simple

and rapid classifier, is applicable to many real tasks.

The LH features are particularly advantageous because they are

insensitive to the number of masks because of their extended order

and displacement properties. Comparing 25 and 223 mask groups,

the performances of the 4 MMI features methods in Table 2 are

relatively close, and the LH classification improves with fewer

masks. Thus, our method yields higher classification performance

with smaller mask numbers, and thereby considerably reduces the

spatio-temporal complexities of classification.

3.1.3 Comparison of performances among different

methods. In the third series of experiments, we compared our

proposed MMI methods with recently proposed HLAC based

methods: namely, GLAC [32] and HLACLF [39]. GLAC uses

spatial and orientational auto-correlations of local gradients to

extract richer structure information from images and obtain more

discriminative power than standard histogram based methods,

such as HOG [40] and SIFT [21]. Here, we adopted the

parameters specified in [32] (for more details on GLAC, refer to

[32]). In addition, HLACLF can extract the features from grey-

scale images using different masks, allowing closer image analysis

from the information of two-dimensional distributions, as well as

the directions information. To realize a consistent comparison

among the methods, we assume that images are never spatially

blocked. The results of this experiment are listed in Table 3.

According to Table 3, the proposed MMI methods outperform

GLAC and HLACLF with one exception: GLAC outperforms

SSMMI 25 under the kNN classifier. Here, the performance of

GLAC is similar to that of MMI because GLAC extracts features

from image gradients, which better describe image characteristics.

However, large differences appear between MMI and HLACLF.

Similar to 2DPCA [41], the later method extracts features from

the 2-D direction of patterns, and is essentially equivalent to the

line blocked HLAC method [39]. LH 25 outperforms HLACLF

223 by 36.0435% under the kNN classifier, while SSMMI 25

outperforms HLACLF 223 by 18.3056% under the SVM

classifier.

Two major problems exist in HLACLF. First is the high grey

value problem, which occurs when discriminative data in the grey

images are overwhelmed by useless data in accumulation for the

corresponding mask. The second problem related to image

alignment. Wood data will not align with stored images because

of inherent hashing of cell tissue around the tree rings, which

complicates image preprocessing even in the same wood species.

Nevertheless, the MMI methods can prevent both problems, since

they impose no directional constraints on feature extraction.

Instead, the features are identified from semantic object formed

after threshold or edge operation. Those characteristics of MMI

offer a distinct advantage.

3.2 Discussion
3.2.1 Further Interpretations of MMI. By conducting

experimental on the ZAFU WS 24 dataset (see Section 3.1), we

have verified the strong performance of our methods, on account

of the advantageous features of MMI. Here, we illustrate these

features with some simple visual examples.

1) Comparison of different classes of images.

First, we selected four image classes containing very different

shapes, as shown in Fig. 11 (a). The MMIs corresponding to the

images, using the second mask in Fig. 5, are shown in Fig. 11 (b).

From this figure, we observe that the conventional HLAC cannot

distinguish among the four image classes (all HLAC features sum

to16). However, by virtue of the number of the connected

subgraphs L, MMI clearly distinguish the image classes (yielding

corresponding values of 16, 4, 2, and 1). Moreover, the maximum

and minimum values of the connected subgraphs, max
1ƒjƒL

Dj

�� ��and

min
1ƒjƒL

Dj

�� �� in SSMMI (which are identical in this case, being 1, 4, 8

and 16, respectively, for the four image classes), are also readily

distinguish among the four classes. Consequently, by introducing

MMI features, the method guarantees that different image classes

yielding the same mask count contain different features, which

increases the discriminated capability of the method.

2) Comparison of the same classes of images.

Here we further discuss the case of two identical image classes.

The images shown in Fig. 12 (a) and (b) are the mask matching

images of one class, while those in Fig. 12 (c) and (d) belong to a

separate class. The mask counts, i.e. the sum of the products

corresponding to the second mask of the image, are 16, 32, 16, and

76, respectively for the four images. The same class may yield

different mask counts; conversely, different classes may yield the

same count. This situation is averted by introducing the MMI

features. For example, in Fig. 12, although the mask count varies

widely within a class, the masks contain the same number of

connected subgraphs. Thus, the MMI method is superior to

exsiting method at identifying such tasks. And the MMI feature

also is a type of scale invariant feature.

3) Effects of length histogram.

In general, the length histogram obtains geometric information

that can distinguish among objects of various shapes. An example

is shown in Fig. 13. The mask count of all 6 images is 16.

However, the 6 images vary significantly in shape. These shape

differences are difficult to distinguish using the SSMMI features

defined in Eq.(4). However, from the length histogram features,

statistical structure information of the image can be obtained from

both horizontal and vertical directions. For instance, the width

histogram features of the 6 images in Fig. 13 are (4,4); (2,4) (4,2);

(1,8) (5,2); (16,1); (1,8) (4,2); (1,8) (2,2) (6,1), respectively. Here, the

image features are separated by a semicolon. The first and second

components in each parenthesis denote the width and width

count, respectively. All features yielding zero count are omitted

from the width histogram. This histogram provides an intuitive

means of identifying differences among these six images. The

height histogram possesses similar characteristics. Therefore,

image classes of different textures are readily distinguished by

the length histogram.

3.2.2 Properties of Length Histogram. We have demon-

strated the efficacy of our proposed MMI method as a

classification system. Intuitively, MMI method is superior to

HLAC because it extracts more features that are relevant to the

classification process. In fact, the excellent properties of length

histogram (LH) render it suitable for a wide range of image texture

analyses.

1) Some structural information retained in LH. Although the

applicability of the standard histogram method is limited by

loss of object structure information, the length histogram

proposed in this paper contains partial structural information

of the image. This is achieved by counting the number of two
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co-occurrence pixels separated by a certain distance, which

captures geometrical characteristics of the objects appearing

in the image. Thus the structure information of object is

preserved in the LH.

2) Extending the order and displacement region of HLAC. The

LH features in MMI is equivalent to counting the number of

the matched pattern masks with high-order and large

displacement. Thus, the order and displacement of HLAC

can be gradually enlarged until the mask size reaches the

width and height of the image. However, this approach is

suitable only if the reference points in the mask are arrayed in

the continuous horizontal or vertical direction (see masks 2, 4,

6, 8, in Fig. 5).

3) Simple and efficient algorithm. Because the length histogram

requires a simple computation, it considerablely reduce the

computational cost of MMI method Regardless of the width

or height of the histograms, provided that the image is

scanned only once, we can obtain the frequencies of various

lengths of line segments in the image. Therefore, the efficiency

of the new feature extraction algorithm is proportional to

image size (the total number of pixels in the image). Since the

proposed method has proven effective and efficient in texture

classification and recognition, it is eminently suitable for

practical applications.

4) Sparse property. The MMI length histogram is generally

sparse. The length histogram shown in Fig. 14 is an average

length histogram of all sample pictures used in our

experiments. We note that most of the bins are empty, and

that the non-zero values are concentrated in a small portion of

the lengths (bins). This result indicates that the obtained LH

features are very sparse indeed. Thus, MMI method can

reduce the spatio-temporal complexity of the problem,

allowing more time for processes such as transformation and

classification.

Conclusions

Wood recognition is critically important for wood industries and

sciences because it clarifies the anatomic features and properties of

wood, which determine how the wood species is used. As a new

research area, wood recognition remains particularly challenging

in computer vision (CV) and pattern recognition (PR) fields.

Because trees are found throughout a wide range of natural

environments, their wood features are highly variable. Such

variation can frustrate many identification procedures, and

confuse classification attempts by the apparent lack of consistency.

This paper presents a new efficient method for wood recognition

based wood stereogram images, called Mask Matching Image (MMI).

The method, an extension of HLAC, resolves the problems

inherent in HLAC by incorporating both statistical and geomet-

rical features. In particular, the length histogram embodies both

width and height histograms. This method enables the extraction

richer information from images with greater discriminative power

than is possible using previous HLAC-based methods. We have

confirmed the efficacy of MMI in extracting local texture

information, which is required for activities such as texture

classification, face recognition, and gait recognition.
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