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Abstract

Prognosis plays a pivotal role in patient management and trial design. A useful prognostic model
should correctly identify important risk factors and estimate their effects. In this article, we discuss
several challenges in selecting prognostic factors and estimating their effects using the Cox
proportional hazards model. Although a flexible semiparametric form, the Cox’s model is not
entirely exempt from model misspecification. To minimize possible misspecification, instead of
imposing traditional linear assumption, flexible modeling techniques have been proposed to
accommodate the nonlinear effect. We first review several existing nonparametric estimation and
selection procedures and then present a numerical study to compare the performance between
parametric and nonparametric procedures. We demonstrate the impact of model misspecification
on variable selection and model prediction using a simulation study and a example from a phase
I11 trial in prostate cancer.
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1. INTRODUCTION

Prognosis plays a critical role in patient treatment and decision making. What is of interest
to researchers is to examine the relationship between host, tumor-related, baseline
explanatory variables and clinical outcomes (Halabi and Owzar, 2010). These factors, and
those which are considered to be significant, are termed prognostic. The evaluation of
prognostic factors is one of the key objectives in medical research. Historically, the impetus
for the identification of prognostic factors has been the need to accurately estimate the effect
of treatment adjusting for these variables (Halabi and Owzar, 2010).

In using a time to event outcome, one main objective is to characterize the relationship
between the event time Y'and a set of baseline covariates X = (X, ..., XX)) 7. This task is
often done via the proportional hazards model (Cox, 1972), which consists of a unspecified
baseline hazard function and a parameterized component. In general, the Cox’s model can
be written as:

AY[X)=Ao(Y)exp[n(X)], ()

where Ag(-) is the unspecified baseline hazard function and the log-relative risk function n(-)
is commonly taken as a linear form n(X) = X', where B = (B, ..., Bp) T'is a p-dimensional
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unknown regression parameters called the log-hazard ratio. The model in (1) is commonly
referred to as a semiparametric model in which the primary interest is making inference on
the finite number of parameters p.

Despite its widespread use, the Cox’s model relies on the linear assumption, which in many
practical situations, may be rigid and unrealistic. For instance, in an example of a Veteran’s
Administration lung cancer trial (Kalbfleisch and Prentice, 2002), the estimated log-relative
hazard function of age has a convex shape. Such an important effect may not have been
identified if the covariate effect is assumed to be linear. In a breast cancer study,
Verschraegen et al. (2005) argued that the effect of tumor size on mortality is best described
by a Gompertzian function. More recently, there has been a great interest in examining the
nonlinear covariate’s effect when analyzing genomics data (Volpi et al., 2003).

To address nonlinear covariate effects, one common practice is to categorize a continuous
variable into several discrete quantiles (Zeleniuch-Jacquotte et al., 2004). However, such
discretization does not fully exploit the data and the final fitted curve is not smooth, but
rather a step function. Another common practice is to transform the variable using some
common mathematical functions, such as logarithm, polynomial, etc. Unfortunately,
transformation methods depend heavily on researchers’ knowledge and could introduce
additional modeling bias. As a result, more flexible modeling techniques are required to
allow for nonlinear covariate effect.

Basis expansion and regression spline methods are popular nonparametric techniques used
to characterize nonlinear effects (O’Sullivan, 1988; Gray, 1992; O’Sullivan, 1993). These
methods are appealing for their low computation costs and ease of implementation. In
addition, their computation difficulties are essentially the same as that of a parametric model
since the nonlinear effects are described through some augmented variables. These methods,
however, depend on the proper choice of basis function, degree of freedom and number of
interior knots. Moreover, investigators will often face a dilemma between balancing model
complexity and model goodness-of-fit. The more basis functions are used, the better one can
approximate the true underlying function, but it is at the price of increasing both
computation intensity and model complexity.

The smoothing splines method was first proposed in least squares regression to improve
some limitations in basis expansion. It used all observed data points as interior knots and
broadens the search range for a solution to an infinite dimensional space, without the extra
computational intensity. This method has been further extended to survival model by Gu
(1996, 1998), in which an asymptotic result was established.

Apart from handling possible model misspectification, another vital step in contemporary
statistical modeling is to select a set of important covariates. Variable selection is routinely
performed for several purposes, including better predicting the survival outcomes and
understanding the relationship between covariates and survival outcomes. The development
of novel selection procedures, such as the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1997) and the smoothly clipped absolute deviation (SCAD) (Fan and
Li, 2002), center around the penalized methods. A generic penalized log-partial likelihood
estimation procedure can be written as min

p
min — 1, (8)+2:D_J(18;]),

=1

where /,(B) is the log-partial likelihood function, [:) is a generic non-negative penalty
function and A, is a regularization parameter that governs the sparsity of the parameter
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estimates. Fan and Lv (2010) gave a comprehensive review on the popular penalty
functions.

Penalized methods have become very popular in modern statistical modeling because they
simultaneously select and estimate regression parameters by shrinking some parameter
estimates to exact zeros. Despite the fact that gains are expected in terms of estimation
stability and prediction accuracy in a penalized framework, Tibshirani (1997) noted that
penalized regression methods should be used with caution due to their linearity assumption.

Our motivating example stems from a phase |11 clinical trial of men with metastatic castrate-
resistent prostate cancer who developed progressive disease following first-line
chemotherapy. We refer to the data as the TROPIC (de Bono et al., 2010). One of the main
objectives of the TROPIC trial is to identify and estimate the effects of the baseline variables
on patients’ survival outcomes.

We restrict our attention to patients without missing covariates. The list of 14 baseline
variables and their summary statistics are presented in Table I. Among 434 patients with
complete data, 282 died before the end of the follow-up period. We fit penalized Cox’s
models with LASSO and adaptive LASSO penalty to explore the sparse structure. Among
14 candidate prognostic factors, we are particularly interested in baseline PSA since it is
considered an important prognostic variable in men with advanced prostate cancer (Halabi et
al., 2003; Kelly et al., 2012). The size and concordance of the final LASSO model are 12
and 0.716, respectively; whereas those of the final adaptive LASSO model are 13 and 0.713.
Although both penalized models select most of the 14 variables, we suspect that the survival
model could be more sparse since some of the parameter estimates are very small. In
addition, we are more concerned about the parameter estimate for baseline PSA, which is
either very small or exactly zero. We question if the linear effect is appropriate for baseline
PSA. However, the post-fitting diagnosis was however not conclusive. As the martingale
residuals plots shows in Figure 1, the scatter does not reveal any specific trend and the fitted
smooth curve is almost flat.

The purpose of this article is to provide a broad reviews of the existing nonparametric
modeling procedures while keeping the methodological background minimal for a basic
understanding. We aim at introducing the latest developments in statistical methodology to
the applied side of medical research. The nonparametric procedures successfully address the
impact of model misspecification on selecting important covariates and predicting time to
event outcomes. Although the consequence of misspecification is comprehensible from a
conceptual level, we demonstrate the superiority of modern nonparametric procedure using
simulations and real trial data. Specifically, we compare the famous LASSO (Tibshirani,
1997) procedure with its nonparametric counterpart, the component selection and smoothing
operator (COSSO) (Leng and Zhang, 2006), to examine the consequence of making a linear
assumption on the log-relative hazard, when the covariates follow nonlinear functions. We
refer to Tibshirani (1997) and Zhang and Lu (2007) for more discussions on the
methodological part of LASSO, and Lin and Zhang (2006) and Leng and Zhang (2006) for
COSSO. Since neither methods require any prior knowledge on the covariates, they are ideal
procedures to explore the sparse structure of the survival model. To the best of our
knowledge, this is the first paper that rigorously performs such comparisons. This paper also
underscores the importance of examining the assumptions behind any statistical procedure
and choosing the appropriate analysis tool.

The remainder of this article is organized as follows. In Section 2, we provide a general
discussion of several nonparametric Cox’s models. Next, we demonstrate the usefulness of a
nonparametric procedure via simulations in Section 3 and then we present the results of the
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simulations in Section 4. We then illustrate the concepts by using a real life example in
Section 5, and in Section 6 we discuss our findings and present recommendations.

2. NONPARAMETRIC PARTIAL LIKELIHOOD ESTIMATION

Let {(); 9 X)) : /=1, ..., n} be the observed triplet, where y;is the observed event time, 6,
is the censoring status and X;is a p-dimensional covariates. Let J(1) < ... < }qn) be Adistinct
event times, we then denote R;={/: y;= »}, /=1, ..., N, as the risk set at time ).
Furthermore, we use the notation X, to represent the baseline covariates for the +th
observation whose event time is /.

To simplify further exposition and to alleviate the difficulty of estimating a multivariate
function n(x,), we only consider the popular additive model where the function is composed

o o . N=N"P ey
of the addition of individual main effects, n(wl)—zj:ﬂb ("), Lin and Zhang (2006)
discussed incorporating multi-way interactions into the estimation problem. The reader is
referred to Hastie and Tibshirani (1990) for more discussions on additive models.

Early nonparametric procedures model nonlinear effects by assuming the nonlinear function
can be spanned by a set of basis functions. Let ¢1(9), ..., () be a set of basis functions
taken from a basis dictionary, for instance, the polynomial basis {o«# = # k& N}, we can

. . . NEINER LAY @) _
model the effect of the /:th variable by letting 7;(z:” )= _,_, Buéi(x;"), where B /= 1,

., k, are unknown parameters (Eubank, 1999). Since the nonlinear function is known up to
k parameters, the estimation problem is significantly reduced to estimate a finite number of
unknown parameters. Estimating the unknown parameters is carried out by minimizing the
minus log-partial likelihood plus a ridge type of penalty which is added to avoid over-
smooth and produce a more stable estimator. More specifically, the minimization problem is
given by:

Pk
mm Z {ZZ%@(% J)) —log Z exp {Zzﬂﬂ@(z } } +’\nz Z Bi1Bir o, ¢, dz), (3)

j=li=1 meER; j=1i=1 j=11<i<r<k

where A, is a regularization parameter that governs the smoothness of the function.
O’Sullivan (1988) considered a B-spline basis and proposed an estimation and tuning
procedure for (3). Under suitable regularity conditions, O’Sullivan (1993) established a
consistency result and proved the convergence rate matched that of the linear nonparametric
regression.

The fitted curve is relatively insensitive to the choice of basis function. Common choices of
basis functions include but are not limited to B-spline basis, Fourier basis, etc (Hastie et al.,
2008). The success of basis expansion depends on whether the log-relative hazard function
can be well-approximated by the chosen basis functions. It is impossible to verify the
assumption in practice. A number of fully nonparametric methods have been proposed to
improve the limitation of approximating an arbitrary function using finite basis (Wahba,
1990; Evgeniou et al., 2000). The key notion of fully nonparametric methods is making a
qualitative assumption on the function, rather than deciding a predetermined form or basis.
Such a qualitative assumption usually leads to infinite dimensional collections of smooth
functions. Of several fully nonparametric methods, smoothing splines is the most
extensively studied one which is pioneered by Wahba and her colleagues (Wahba, 1990; Gu,
2002; Wang, 2011). In a smoothing splines framework, Gu (1996, 1998) proposed to
estimate the log-hazard function by solving the minimization problem:
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N P
min — Y {n(w@)) —log > exp[n(wm)]} A0 Inil1% @
=1

y 7
nes =1 meR;

where Zis a reproducing kernel Hilbert space (RKHS), Il-I12 is the squared RKHS norm, and
0, /=1, ..., p,are all smooth parameters.

The elegance of the smoothing splines method is that the minimizer of (4) has a finite
representation even though we search over an infinite dimensional Hilbert space for a
solution (Kimeldorf and Wahba, 1971). More specifically, the function that minimizes (4)
can be written as:

n p ) '
n(m):ZZHjKj (zgj), I(]))Ci, ©)

i=1j=1

where ¢;, /=1, ..., i, are unknown parameters and K, -) is the reproducing kernel.
Although the smoothing splines model was originally proposed to tackle the nonlinear
effects of continuous variables, it can handle categorical variables in an unified fashion. The
only difference between continuous and categorical variables is the specification of a kernel
function. The reader is referred to Wahba (1990) for more discussions on reproducing
kernels.

There is another class of procedures in between the parametric and nonparametric
approaches called the partially linear model. A partially linear model allows the log-relative
hazard function to consist of a linear component and a nonparametric component (Cai et al.,
2007; Ma and Kosorok, 2005). Suppose the baseline covariates X can be separated into two
non-overlapping parts: X1 and X», where the variables in the first part have linear effects and
those in the second part have nonlinear effects, then the log-hazard function in a partially
linear model can be written as:

n(X) =1 (X1)+m2(X2)=XT y+n2(X2), (6)
where y are unknown regression parameters and n, is an unknown function.

These two components of variables are decided a prioribased on researchers’ judgement
except for the categorical variables, which are commonly included in the first part of the
variables. In a partially linear model, the objective is to simultaneously estimate y and n. Lu
and Zhang (2010) proposed an estimation procedure and established an asymptotic result for
partially linear model in a more general transformation model that includes the Cox’s model
as a special case. Du et al. (2010) proposed a joint estimation and selection procedure in the
semiparametric framework and provided a sound theoretical justification. Analogous to the
linear model, the regression parameters y in the parametric component are subjected to
SCAD or adaptive LASSO penalty. The variable selection in the nonparametric component
is performed in a nested fashion. A full model with interaction terms is first derived.
Whenever the Kullback-Leibler distance between a full model and a reduced model is small
enough, the reduced model will be selected.

Despite the various existing nonparametric estimation procedures, there are very few
methods for nonparametric variable selection. This partly reflects the challenge of censored
outcomes. Hastie and Tibshirani (1990) considered several nonlinear selection procedures
which were essentially the same as a stepwise search, while Lin et al. (2006) proposed a
hypothesis testing procedure to test covariate effects based on a smoothing splines model.
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More recently, regularization methods have been a great success in parametric models for
their improved stability in estimation and accuracy in prediction. Leng and Zhang (2006)
proposed a novel regularization method in nonparametric Cox’s model, which estimated and
selected function components simultaneously by solving the optimization problem:

N P
min — 3 {n(w@) —log > exp[n(wm)]} Ay willnill, @

i=1 meR,; j=1

where wj, /=1, ..., p, are known weights to avoid over-penalizing prominent function
components.

The novelty of (7) is the use of RKHS norms as penalty, which is referred to as the
COmponent Selection and Smoothing Operator (COSSO) penalty in nonparametric
literature. Leng and Zhang (2006) argued that the COSSO penalty can be viewed as a non-
trivial generalization of the famous LASSO penalty in linear model. Just as the L; penalty
can perform variable selection while the L, norm cannot in a linear model, the distinction
also holds in a nonparametric model. Although a different penalty is adopted, the above
optimization problem also enjoys several desirable properties such as those in a smoothing
splines model given in (4). One advantage is that the minimizer of (7) also has a finite
representation similar to that in (5). Later, in the numerical study, we will demonstrate the
performance of COSSO and compare it with LASSO under various situations.

We conclude this section by noting some caveats in using nonparametric procedures. By
design, nonparametric procedures are data-driven approaches that identify the underlying
association that might be otherwise missed. It may also be equally misleading if the
regularization parameter is not properly chosen. A nonlinear function can be estimated as a
linear function if the regularization parameter is too large and vice versa. In addition, a
nonparametric procedure is more sensitive to outliers than a parametric method due to its
local fitting feature. Finally, the curse of dimensionality or data sparsity could also affect the
performance of a nonparametric procedure. We will demonstrate the challenges of the
nonparametric procedure when the covariates are high-dimensional later in the simulation
section.

3. SIMULATION

We perform extensive simulations to demonstrate the impact of model misspecification, and
use COSSO and adaptive COSSO to select and estimate function components. We also
include LASSO and adaptive LASSO to compare to the nonparametric COSSO procedures.
The adaptive weights for COSSO are given by the reciprocal of empirical functional L,
norm; whereas those for LASSO are given by the reciprocal of absolute regression
parameter estimates from a full model as suggested by Zou (2006). The regularization
parameters in COSSO are tuned by approximate cross-validation as recommended by Leng
and Zhang (2006). The approximate cross-validation is a slight variation from a cross-
validation score derived by Gu (2002) based on a Kullback-Leibler distance for hazard
function. We employ 10-fold cross-validation to tune the regularization parameter in
LASSO for a more balanced comparison between the LASSO and the COSSO procedures.

3.1 Simulation Setup

In the simulation study, we first generate u§1>, .. ,ug”) independently from uniform(0,1).
We define 2V =u(" and 2 =pal V4 (1 — p») /2P j=2,... psothat
cor(z$), 2M)=pli=H, " :# k We use p = 0.6 throughout the simulation. Then we trim x)"s

3
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to (0,1). To examine the selection capability on categorical variables, we transform the first
two variables by letting, zEl):I(x§1)<0.5) and

2P =0 x 1(2® <0.25)+1 x 1(0.25 < 27 <0.75)+3 x 1(0.75 < z*)), where ) is an
indicator function taking value one if the argument is true.

We generate r7survival time from an exponential distribution with mean exp{-n(x)} and
consider two types of censoring time. To guarantee the independence between censoring
time and survival time, the first type of censoring time is taken from an independent
exponential distribution with mean V- exp{-n(x,)}, where V'is a random sample drawn
from uniform (&, a + 2); whereas the second type of censoring time is taken from an
independent uniform (0, 5). The constants aand b are chosen such that the censoring rate is
controlled at pre-specified level (Halabi and Singh, 2004).

We use four criteria to assess model selection: frequency of selecting the correct model
(Correct), frequency of selecting more than the important variables (Over), frequency of
missing at least one important variable (Under) and the selected model size (Size). In
addition, to demonstrate the model prediction, we further apply the final model on the
testing data generated in the same way as the training data and compute the concordance
index (Concordance) and the integrated time-dependent area under the curve (AUC) (Uno et
al., 2007). The sample size in the testing data is set at 5,000.

We consider four examples in the simulation study:

Example 1:

2
Ay;|a:)=1 - exp {z§1>+2x§3) Hlog(z!¥+0.1) — 9(=!”) — 0.5) } . ®

In the first example, we consider two nonlinear effects in the model. Though z§8> affects the
hazard function in a nonlinear fashion, the logarithm function is monotonic and only
moderately deviates from a linear function in the (0, 1) interval. Hence, we question whether

LASSO can identify this variable. Conversely, the quadratic effect of :cl(g) makes it much
challenging for LASSO to detect this signal.

Example 2:

: 2.5
Ay;|x;)=1 - exp 251)+2m§3) - 2x§8) - © O
1+exp [—12(xi - 0.7)]

In the second example, although there is still one nonlinear effect in the model, its
monotonicity will not be a problem for LASSO to detect the signal. The nonlinear effect is
included so that we can investigate how the misspecification would affect the model
performance.

Example 3:

Ayi|xi)=1 - exp {zi(l)JergB) — 2931(8) - Qm,gg)} . (10)

In the third example, we let all the covariate effects be linear so that LASSO does not suffer
from misspecification. The purpose of this example is to examine how much efficiency is
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lost when a complex nonparametric procedure is used when the true covariate effects are
linear.

Example 4:
. 2
)\(yi|wi):’yy?_1 - exp {'y <z§1)+2z§3)—I—log(xl(»s)-lro.l) - 9($1(»9) —0.5) )} .11

In the fourth example, we intend to examine the variable selection and prediction in a small-
n-large-p situation. We generate the survival time from a Weibull distribution and use y =
1.5 to enhance the signal strength. The covariate effects are the same as those in the first
example. In this example, we first screen the number of variables down to a more
manageable scale, | 7/log(n7)]. More specifically, we perform the principled sure independent
screening (Zhao and Li, 2012) and nonparametric independent screening method (Fan et al.,
2011) before before applying LASSO and COSSO, respectively.

The number of predictors are set at 20 for the first three examples and 1,000 for the fourth
example. To mimic the TROPIC data, we consider two sample sizes: 7= 200, 400, and two
censoring rates: 15% and 30%. Due to the computational intensity, we run each parameter
combination 500 times and summarize the average performance. All computations are
performed in the Renvironment using packages gl met version 1.8-2 and cosso version
2.1-0. Both packages are available from the Comprehensive R Archive Network (CRAN) (R
Core Team, 2012) at http://www.r-project.org.

4. SIMULATION RESULTS

Table Il presents the average results of the 500 simulations for Example 1. We first focus on
the scenarios when exponential failure times and exponential censoring times are assumed.
When the sample size is 200 and the censoring proportion is 15%, LASSO and adaptive
LASSO miss at least one important covariate 67% and 76% of the times, even though the
average selected model sizes are 7.56 and 6.95, respectively. On the other hand, COSSO and
adaptive COSSO select about the same model size, but their underselection rates are
significantly lower, which are 9% and 16%, respectively. As for the prediction accuracy, the
concordance index and the integrated time-dependent AUC for both COSSO and adaptive
COSSO are about 0.65 and 0.75. On the other hand, LASSO and adaptive LASSO provide
less accurate prediction as some important predictors are not selected. Their concordance
index and integrated time-dependent AUC are 0.64 and 0.72, respectively.

Similar results are noted for the other sample sizes and censoring rates. In addition, we
observe that there is only a slight difference between the two types of censoring time.
Overall, the simulation results demonstrate that both LASSO and adaptive LASSO suffer
from serious underselection in all circumstances despite the fact that their model sizes are
relatively larger. A common feature of using cross-validation as a tuning procedure is that it
is expected that all of the competing methods rarely identify the correct model and their
selected model sizes are greater than four. There exists, however, some differences between
the approximate cross-validation and A-fold cross-validation procedures. For instance,
although the former is named approximate cross-validation, it does not involve any data
partition during the computation. Furthermore, the 4-fold cross-validation usually computes
the partial likelihood contribution from each fold rather than the Kullback-Leibler distance.

The tuning procedure provides a guidance to determine a stopping point along the solution
path. Because the original notions of solution paths differ between LASSO and COSSO, we
simply refer to the solution path as a sequence that indicates the order in which the variable
is selected. The ideal procedure should put all of the four prominent covariates toward the
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beginning of the path, followed by the noise ones. Hence, a more direct approach to
compare the variable selection is to use the smallest model size to cover the four important
covariates. Apart from model selection, we are also interested in how the prediction
accuracy varies along the solution path.

In Figure 2, we compare the smallest model that includes all important covariates on the left
panel and illustrate the prediction accuracy at different model size on the right. From the
boxplot on the left panel of Figure 2, we note that some signals enter the (adaptive) LASSO
solution path when half of the predictors are already included. Therefore, it takes LASSO
and adaptive LASSO larger model sizes (about 10 or 11) to include all the prominent
covariates compared to COSSO. Since the cross-validation tuning on average selects a
model of size 7, this observation also explains why LASSO procedures experience serious
underselection. On the other hand, it only takes COSSO and adaptive COSSO a median
model size 7 to do the same, implying the superior performance of COSSO and adaptive
COSSO to their competitor. In terms of prediction accuracy, all procedures provide very
similar performance at model size 1. This is because the first covariate, ZV, is most
frequently chosen to enter the solution paths in the first place. As the model size increases,
the separation between the two approaches becomes apparent. Since (adaptive) COSSO
consistently identifies the true signals and correctly estimates their effects, it therefore
produces better prediction accuracy.

We continue the discussion based on the final models selected by cross-validation and
approximate cross-validation. The LASSO procedures choose a larger model size and results
in the larger standard errors for the selected model size than the COSSO procedures. To give
more insights into the variable selection, we plot the frequency of selecting each of the 20
variables in Figure 3. It is clear that LASSO and adaptive LASSO have no difficulty
detecting the 8th variable even though its true effect is nonlinear. However, the selection
frequency for the 9th variable drops to less than 40%, making it indistinguishable from the
other noise variables. Even in the cases when the 9th variable is selected, the average
estimated log-hazard ratios are 0.24 and 0.10 using LASSO and adaptive LASSO,
respectively. Such a positive slope estimate could lead to the misinterpretation of the effects
and decrease the prognostic accuracy of the model.

Using the first example, two facets of model misspecification are observed. First, it fails to
identify all of the prominent predictors and second, it compromises the prediction
performance. As a nonparametric procedure, COSSO imposes the least assumption and
provides a viable alternative. Moreover, it naturally provides a graphical tool to examine the
covariate effects. Figure 4 shows the average estimated function components along with the
true ones. We observe that the COSSO procedures produce very good estimates for the
important functional components.

The simulation results for Example 2 are summarized in Table I1l. We demonstrate that the
underselection rates for the LASSO procedures are much lower compared with those in
Example 1. LASSO procedures still tend to choose a larger model size, but it also covers all
of the informative predictors more often when the adaptive weights are not used. When the
adaptive weights are utilized, adaptive COSSO clearly benefits more than adaptive LASSO.
Moreover, adaptive COSSO not only selects the correct model more often, ranging from
14% to 30%, but also covers all important predictors using a smaller model size. In terms of
model prediction, although not missing any important variables from the model, the LASSO
procedures misspecify the effect of the 9th variable and therefore result in lower predictive
accuracy as presented in the columns Concordance and AUC.
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We display in Table IV the simulation results for Example 3 where all the covariate effects
are linear. The results indicate that even in the home court of LASSO, COSSO still produces
very competitive performance. Both LASSO and COSSO perform well in terms of model
selection. Not surprisingly, LASSO consistently selects a larger model size but it also has
the smaller underselection rate. As a result, LASSO produces higher prediction in all cases
but the efficiency gain vanishes when the sample size gets larger. We think that the
performance gap between LASSO and COSSO will eventually disappear as sample size
increases.

In the high-dimensional example, we use the sure screening rate (SS) to show the frequency
that all four prominent covariates are kept after the initial screening procedures. The
simulation results are summarized in Table V. Although we conduct a variable screening
before regularized methods, there are still 37 and 66 potential predictors when sample sizes
are 200 and 400, respectively. As a result, we tune the regularization parameter for LASSO
by BIC because cross-validation tends to select a much larger model.

When the sample size is 200, the sure screening rate is only about one half and hence all the
final models suffer from serious underselection. Of the four important covariates, the signal
of the 9th covariate is not strong enough to survive neither the parametric nor nonparametric
screening. Although the adaptive LASSO tends to select a larger size model than the
LASSO, its underselection rate is even higher. We suspect the initial parameter estimate
from the full model is far from the true and hence the adaptive weight does more harm than
good in this case. On the contrary, the adaptive weight benefits the COSSO procedure. Even
though the adaptive COSSO selects a considerably smaller model size, it helps filter out
noise variables and eventually improves model prediction. When we increase the sample
size to 400, the sure screening rate becomes much higher in all cases. However, the larger
the sample size, the more covariates will be kept after the initial screening. It is essentially
the same as the number of covariates rises as the sample size increases. As a result, COSSO
suffers from enlarged feature space and performs slightly worse than LASSO.

5. APPLICATION

We revisit the phase 11 clinical trial, TROPIC, by fitting an adaptive COSSO model due to
its superior performance that is observed in the simulation study. We use approximate cross-
validation as the tuning procedure for COSSO. Since the primary objective of the analysis is
to explore the potential nonlinear covariate effects, we use all of the patients data to estimate
and select function components. The final model identifies nine variables with a
concordance index of 0.723. Compared with the final LASSO and adaptive LASSO models
whose concordance indices are 0.716 and 0.713, respectively, the adaptive COSSO selects a
relatively parsimonious model but the concordance index is higher, suggesting possible
model misspecification. The selected variables and their estimated effects are plotted in
Figure 5. Among the five selected continuous variables, almost all show a near linear effect
except for baseline PSA, whose estimated log-hazard function suggests a quadratic effect.
Based on what we have learned from the simulation study, a covariate with non-monotone
effect is not likely to be identified by the LASSO method. This finding explains why
baseline PSA, which is an established prognostic factor of overall survival, has a small
estimated log-hazard ratio when LASSO and adaptive LASSO are initially implemented.

The estimated functional component also provides a useful guide to discretize continuous
variables. Discretization is usually done by using sample mean or sample quantiles without
using the information from log-hazard profile. For instance, instead of the mean and median
of PSADT, which are 5.0 and 3.6 days, respectively, a cut-off at 10.0 days will be
informative since the slope of the log-hazard function changes at this value. Similarly, for
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baseline PSA, we might consider two cut-offs, at, 750 and 1250, or a single cut-off at 750.
Dichotomizing baseline PSA using the mean, 296, or median, 124, could mislead the
association between this variable and overall survival.

6. DISCUSSION

There is a great need to correctly select and appropriately specify covariates’ effects in
predicting clinical outcomes. In this article, we discuss two main aspects of contemporary
statistical modeling: model specification and selection. Through extensive simulations, we
demonstrate the limitations of parametric selector when the true covariate effect is
misspecified. To the best of our knowledge, this is is the first study that rigorously performs
such comparisons. Misspecification results in not only poor prediction but probable
underselection depending on if the underlying function seriously deviates from a linear
function. Correct specification of a covariate, however, is practically infeasible. The lack of
a graphical exploratory tool, however, makes identifying nonlinear effects in the Cox’s
model a more challenging task than the least squares regression.

Although minimizing possible misspecification, the nonparametric procedure obviously
comes at a price of higher computational intensity. The COSSO optimization problem
requires that we iteratively solve a smoothing splines type problem and a quadratic
programming problem multiple times until the Newton-Raphson algorithm converges. For
instance, in our simulation Example 3 with 7= 200 and 30% censoring proportion, it takes
COSSO about 0.64 second to compute the solution for a given regularization parameter. On
the other hand, it only takes LASSO 0.01 second to finish the same task on a laptop
computer with an Intel i5-2520M CPU and 4GB memory. The capacity of the number of
covariate in nonparametric methods is usually in the order of tens. As the number of
covariates or the number of events increase, the computation burden rapidly increases. As a
result, when the number of covariates is greater than the sample size, existing nonparametric
methods can not be directly implemented without first applying variable screening (Zhao
and Li, 2012; Fan et al., 2011) or dimension reduction techniques (Li and Li, 2004; Li,
2006).

Assuming a traditional situation when the sample size is greater than the number of
covariates, we make the following recommendations based on the simulation results:

« If the covariate effects are all linear, LASSO and adaptive LASSO may be optimal.

« If the some of the covariate effects are nonlinear, then investigators need to
consider using COSSO procedure.

» If the covariate effects are unclear, smoothing splines and the COSSO methods
would better serve as exploratory tools to unravel the underlying covariates’
effects.

*  When applying both LASSO and COSSO on the same data, investigators should be
cautious if their solution paths are very different. This difference suggests a
possible nonlinear covariate effect, and hence COSSO should be used. Otherwise,
if their solution paths are reasonably similar, linear fit should suffice and LASSO
should be a better choice.

Prognostic models will continue to be used in medicine and to address important questions
that are relevant to patient outcomes. They must, however, be rigorously and carefully
designed to ensure reliable results. In summary, advances in computing and statistical
modeling make it possible for investigators to correctly identify prognostic factors of
outcomes and to increase the predictive accuracy even if the covariate effects are nonlinear.
The nonparametric procedures of COSSO are easy to implement and seem to work well if

Stat Med. Author manuscript; available in PMC 2013 November 20.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lin and Halabi

Page 12

the number of covariates is not too large relative to sample size. The main drawback of
using this method is the computational intensity.
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Figure 1.
Martingale residuals plots from the fitted LASSO model. The red line is smoothed curve
produced by local linear regression.
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Figure2.
Smallest model size to cover all informative covariates (left panel) and prediction accuracy
at different model sizes (right panel) in Example 1.
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The average estimated function components (dashed and dotted lines) based on 500
simulations and true function component (solid line) for the four prominent components in
Example 1 using exponential censoring when the sample size is 400 and censoring rate is
15%.
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Variable Description Mean SD
BLPAIN Binary: 1 if the patient has baseline pain 0.48 -
BONEMET Binary: 1 if the patient has bone metastases. 0.88 -
CAUCASIAN Binary: 1 if the patient is Caucasian. 0.81 -
CHEMOGES3 Binary: 1 if the patient has prior chemotherapy. 0.29 -
DPMEASBN Binary: 1 if the patient has measurable disease. 0.43 -
TAX2PROG Binary: 1 if the patient’s last Taxotere to progression is less than 6 months. 0.89 -
VISCMET Binary: 1 if the patient has visceral metastases. 0.23 -
ECOG Eastern Cooperative Oncology Group performance status of 0-2. 0.32/0.61/0.07< -
baseALP Baseline Alkaline Phosphatase (U/L). 221.18 223.96
baseHB Baseline Hemoglobin (g/DL). 12.07 1.40
basePSA Baseline Prostate Specific Antigen (ng/mL). 295.96 398.65
BMI Body Mass Index. 28.01 4.61
PSADT Time (in days) for a patient’s PSA to double. 5.02 4.90
TIME_HORMONE  Time (in years) on hormone treatment. 4.40 291

1 . . .
These three values represent the proportion of patients having performance status 0, 1 and 2.
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