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Abstract
Cells in vivo are exposed to a complex signaling environment. Biochemical signaling modalities,
such as secreted proteins, specific extracellular matrix domains and ion fluxes certainly compose
an important set of regulatory signals to cells. However, these signals are not exerted in isolation,
but rather in concert with biophysical cues of the surrounding tissue, such as stiffness and
topography. In this review, we attempt to highlight the biophysical attributes of ocular tissues and
their influence on cellular behavior. Additionally, we introduce the proteins YAP and TAZ as
targets of biophysical and biochemical signaling and important agonists and antagonists of
numerous signaling pathways, including TGFβ and Wnt. We frame the discussion around this
extensive signaling crosstalk, which allows YAP and TAZ to act as orchestrating molecules,
capable of integrating biophysical and biochemical cues into a broad cellular response. Finally,
while we draw on research from various fields to provide a full picture of YAP and TAZ, we
attempt to highlight the intersections with vision science and the exciting work that has already
been performed.

1. Introduction
Researchers have long recognized the role of biochemical signaling in cell behavior. The
presence of soluble factors, specific extracellular matrix (ECM) components, and ions are
known to play key roles in signaling within and among cells. However, there is a growing
recognition that biophysical attributes of the cellular microenvironment play an equally
important role in the signaling milieu. Of special interest are the topographic features and
stiffness of the cells’ microenvironment. As described in numerous reviews, the in vivo
cellular microenvironment is composed of a complex network of ECM proteins, resulting in
a soft, topographically featured substrate far different than the stiff, flat surfaces of tissue
culture plastic typically used for in vitro studies (Guilak et al., 2009; Li et al., 2005; Lu et
al., 2012; von der Mark et al., 2010). The response to biophysical stimuli, commonly
referred to as mechanotransduction, has been linked to multiple changes in cell behaviors
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such as stem cell differentiation, metastatic potential of cancer cells and phenotypic changes
in somatic cells. The presentation of surfaces possessing biomimetic biophysical attributes
also alters cellular response to soluble signaling molecules, surface chemical cues,
therapeutic agents and other biophysical cues.

This is certainly no less true in the specialized tissues of the eye. Optical clarity depends on
the highly ordered and relatively stiff collagen networks of the corneal stroma, while only a
small distance away corneal epithelial and endothelial cells rest on far softer basement
membranes. In the back of the eye, the optic nerve is supported by the organized fibrous
network of the lamina cribrosa and retinal pigmented epithelium rests on Bruch’s
membrane. Intraocular pressure is regulated in part by outflow through the trabecular
meshwork. Importantly, changes in the topography or stiffness of these structures have been
linked to cellular dysfunction and disease progression. Understanding mechanotransduction
is therefore a central question in the vision sciences. While there remains a paucity of
studies about this in ocular biology, there is a rich history of mechanotransduction research
in other systems that can be drawn upon when considering the importance and potential
molecular mechanisms that participate in mechanotransduction in ocular structures.

Early research on mechanotransduction focused on ECM binding domains and adhesion
complex proteins that were involved in cellular linkage to the extracellular environment.
Later, the importance of the cytoskeleton and its linkage to the nucleus was investigated.
However, a knowledge gap remained in the translation of the mechanical signals into
observed transcriptional changes. A recent paper by Dupont and colleagues identified two
transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator
with PDZ-binding motif (TAZ) as necessary for the transcriptional and phenotypic changes
associated with alterations in the biophysical attributes of the cellular microenvironment
(Dupont et al., 2011). YAP and TAZ were initially studied in their role as the primary
effectors of the Hippo tumor suppression pathway but a growing body of literature suggests
a much more complex picture of their functionality. Situated at the center of at least four
signaling pathways (biophysical, Hippo, TGFβ/BMP, Wnt) and influencing several more
(Retinoblastoma, IGF, PI(3)K/Akt), YAP and TAZ are positioned to serve as orchestrating
molecules, integrating biophysical cueing into multiple potent signaling cascades (Figure 1).
While we will discuss the many functions of YAP/TAZ that have been found in other
systems, their function is known to be highly context dependent. This necessitates both
tissue specific investigations and understanding of the cellular microenvironment. Therefore,
we begin this review by describing ocular mechanobiology, highlighting known changes
with disease.

2. Mechanobiology of the Eye
The soft and textured tissues of the eye’s extracellular matrix could not be more different
from the typical in vitro cultureware. In addition, experiments utilizing cultureware are
unable to interrogate the effects of changing tissue mechanical properties in disease
processes. In most cases it is unclear whether changing topography or the stiffness is an
early cause of the disease, a mechanism of progression, or a late symptom of the disease
process. What is known is that ocular pathologies are rife with examples of changing
biomechanics. Below, we discuss a few key examples of ocular disease where mechanics
appears to either contribute to or result from the pathology.

2.1 Mechanical properties in ocular tissues and pathology
Recent studies have reported the stiffness profile for the distinct components of the human
cornea (Last et al., 2009; Last et al., 2012) as well as the detailed organization of the stromal
collagen network (Winkler et al., 2011). These reports provide a critical backdrop for the
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interpretation of corneal pathologic states such as keratoconus. Keratoconus is a disease
characterized (and named) by conical geometry of the cornea, brought about by thinning of
the stroma (Rabinowitz, 1998). While the etiology of the disease is poorly understood, a key
component is changes the biomechanical properties of the cornea (Ortiz et al., 2007; Shah et
al., 2007; Wolffsohn et al., 2012). As a potential cause, the stroma is believed to be damaged
by increased proteolysis and decreased protease inhibitor activity (Sawaguchi et al., 1994;
Sawaguchi et al., 1989; Zhou et al., 1998). Importantly, while the biochemical makeup of
the stroma appears not to be altered, there are changes to the structure and ultrastructure of
the stroma (Daxer and Fratzl, 1997; Meek et al., 2005; Patey et al., 1984; Zimmermann et
al., 1988). Additionally, the disease can be alleviated through UV-riboflavin collagen
crosslinking (Goldich et al., 2012). Together, these data suggest that while the biochemical
makeup of the stroma may be identical, decreased crosslinking may weaken the stroma,
leading to degeneration of the cornea.

Age has been implicated in loss of accommodation (presbyopia), although the mechanism
remains incompletely understood (McGinty and Truscott, 2006). As accommodation
requires deformation of the lens by the ciliary muscle, lens stiffness has been long suspected
as a likely cause (Fisher, 1971). Recent research has confirmed increasing stiffness with age
and additionally describing variations in stiffness between the nucleus and the cortex
(Fisher, 1971; Hollman et al., 2007; Weeber et al., 2007; Wilde et al., 2012). Additionally,
this increase in stiffness correlates well with a known decrease in the transport of important
small molecules to the nucleus, which is implicated in age related nuclear cataract formation
(Moffat et al., 1999; Sweeney and Truscott, 1998). It was recently been proposed that
changes in biomechanics of the lens are related to decreased transport and the resulting
cataract formation (McGinty and Truscott, 2006).

The mechanics of the retina have also recently been investigated. A report by Davis and
colleagues found that Mueller cells have a gene expression profile which is dependent on
substratum stiffness (Davis et al., 2012). Additionally, CTGF was upregulated on soft
hydrogels in comparison to glass. CTGF is a potent regulator of ECM structure, and is
implicated in the progression of age-related macular degeneration (Nagai et al., 2009). There
is also evidence of altered biomechanics in the retina with age. Bruch’s membrane, the
border between the retina and choroid, has long been known to stiffen with age (Fisher,
1987). Beyond the changes in stiffness, it also roughly doubles in thickness and undergoes
biochemical and ultrastructural changes (Ramrattan et al., 1994; Zarbin, 2004). These
changes are suspected to contribute to age-related macular degeneration, in addition to
damage of Bruch’s membrane and a number of ECM and protease modifications (Spraul et
al., 1999; Zarbin, 2004).

Cupping of the optic nerve head and changes to the optic disk are considered hallmarks for
the onset and progression of glaucoma, and can even precede loss in the visual field
(Quigley, 1993). The mechanics of the lamina cribrosa (LC) and peripapillary sclera (PS)
have been suspected to play a role in the susceptibility of glaucomatous damage (Sigal and
Ethier, 2009). This is supported by a recent study correlating scleral biomechanics of
different mouse strains with rate of retinal ganglion cell loss in experimental glaucoma
(Nguyen et al., 2013). In humans, the biochemical makeup of the LC is also known to
change with age, and it is suspected this leads to increased stiffness and decreased resilience
(Albon et al., 1995; Albon et al., 2000; Morrison et al., 1989). Additionally, elevated
intraocular pressure, a common indicator of glaucoma, also acutely increased LC/PS
stiffness (Thornton et al., 2009). A diabetic rat model exhibited elevated LC and PS
stiffness, which was proposed as a mechanism for linking diabetes and glaucoma, although
that link is unclear (Dielemans et al., 1996; Ellis et al., 2000; Klein et al., 1994; Terai et al.,
2012). The above studies all suggested an increase in stiffness with glaucoma, however, a
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recent study reported contrasting results, showing a decrease in LC and PS stiffness with
pseudoexfoliation glaucoma (Braunsmann et al., 2012).

In humans, glaucoma is also known to involve changes in the anterior segment through the
regulation of aqueous humor outflow through the human trabecular meshwork (HTM) and
Schlemm’s canal (SC). The HTM is a complex, three-dimensional structure comprised of
trabecular meshwork cells and associated ECM consisting of interwoven collagen beams
and perforated sheets (Acott and Kelley, 2008; Johnson, 2006). HTM cells, depending on
the region of the HTM, either form sheets covering ECM structures or are scattered
throughout the ECM forming occasional gap and adherens junctions (Bhatt et al., 1995;
Gong et al., 2002; Grierson et al., 1978; Inomata et al., 1972). The ultrastructure of the HTM
is known to change in glaucoma (Lutjen-Drecoll, 2005; Rohen et al., 1993). These structural
changes correlate with progression of nerve damage, further implicating the importance of
the HTM in disease progression (Gottanka et al., 1997). Adjacent to the HTM, the
endothelium of SC has additionally been identified as a potential regulator of outflow
through the formation of intra- and inter-cellular pores (Allingham et al., 1992; Johnson et
al., 2002).

Recent reports have begun to interrogate the mechanics of the HTM and SC in the context of
glaucoma. These have demonstrated that cytoskeletal disruption through pharmacological
agents investigated as potential glaucoma therapeutics, decreases the intrinsic stiffness of SC
and HTM cells (McKee et al., 2011c; Zhou et al., 2012). Last and colleagues used atomic
force microscopy (AFM) to measure the stiffness of the juxtacanilicular region of the HTM
(JCT) of normal and glaucomatous donor tissue (Last et al., 2011). These exciting results
revealed a dramatic increase in the elastic modulus of the meshwork, from 4.0 ± 2.2 kPa in
normal HTM to 80.8 ± 32.5 kPa in glaucomatous HTM. A seemingly conflicting report by
Camras and colleagues related tensile tests of dissected HTM directly to outflow facility
from perfusion tests (Camras et al., 2012). They reported that normal HTM elastic modulus
(515 ± 136 kPa) varied with outflow facility, exactly the opposite of what would be
expected from Last’s correlation between stiffness and glaucoma. However, these
experiments have key differences which likely account for the different conclusions. Last et
al used AFM, which measures local tissue properties at the nano to micro scales, while
Camras and coworkers measured the deformation of large HTM segments in tension,
effectively measuring a circumferential, or “hoop”, modulus. The difference in measurement
can clearly be seen in different values each measurement provides (4.0 ± 2.2 kPa with AFM
to 515 ± 136 kPa with tensile testing). Another important limitation of the above studies is
that they were performed on excised tissue. This results in a loss of both the influence of
surrounding tissue and the soluble signaling milieu provided by the aqueous humor. Both
these factors can influence the external and intrinsic contraction of the tissue, influencing
mechanics. Mouse models with increased contractility of TM cells or adjacent ciliary muscle
cells exhibit increased and decreased flow resistance, respectively (Inoue-Mochita et al.,
2009; Junglas et al., 2012). These results suggest increased tension within or around TM and
SC change the overall tissue structure and stiffness and provide a potential active
mechanism for modulating outflow.

2.2 Measurement of tissue mechanics
As implied above in the discussion of HTM mechanics, measurements of tissue properties
are complex and researchers typically use simple models to generalize the results of specific
mechanical tests such as AFM or tensile testing. In order to reduce the results to single
elastic modulus values from complex force/deformation plots, assumptions that tissue is
homogeneous, elastic and isotropic are often employed. These are common assumptions
when studying tissue mechanics (reviewed in the context of soft tissue here (McKee et al.,
2011a)), but one, isotropy, deserves special mention. In the HTM mechanics described
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above, we can clearly see that the microscale indentation modulus and the hoop modulus are
dramatically different, showing that the HTM is anisotropic. This is likely due to the
circumferential fiber alignment (Camras et al., 2012) and large open spaces in the JCT
(Fuchshofer et al., 2006), providing substantial resistance along the fibers but allowing
relatively little for perpendicular deformations, such as measured with Last’s experiments.
Discrepancies such as these serve as a reminder to carefully consider the assumptions and
limitations built into all experimental techniques during the interpretation of results.

2.3 Cellular biomechanics and behavior
Do these biomechanical changes influence cell behavior? Numerous studies from our
laboratory and others have shown that the physiologically-relevant biophysical attributes of
substratum stiffness and substratum nanotopography impact cytoskeletal organization
(Davis et al., 2012; Dunn and Brown, 1986; Karuri et al., 2006; Liliensiek et al., 2010;
McKee et al., 2011b; McKee et al., 2011c; Morgan et al., 2012; Oakley and Brunette, 1993;
Raghunathan et al., 2013a; Uttayarat et al., 2008; Wood et al., 2011a; Wood et al., 2011b).
Despite this, most in vitro experiments are conducted on tissue culture plastic or glass with
stiffness well outside the physiological range (GPa vs. kPa) and lack topographic features,
resulting in profoundly altered cytoskeletal phenotypes. But the impact of biophysical cues
goes beyond cytoskeletal regulation and has far-reaching effects on all aspects of cellular
behavior including response to soluble cytoactive factors and therapeutic agents.

As mentioned above, substratum stiffness influences Mueller cell proliferation, structure,
and gene expression (Davis et al., 2012). Similarly, substratum topography influences the
structure and gene expression of corneal epithelial cells (Dreier et al., 2012). Several recent
in vitro studies have documented HTM cells alter their phenotype, gene/protein expression,
and response to soluble cytoactive factors (such as latrunculin B and TGFβ) in response to
the presentation of biomimetic surface cues (Han et al., 2011; McKee et al., 2011c;
Raghunathan et al., 2013b; Schlunck et al., 2008; Thomasy et al., 2012; Wood et al., 2011a).
Despite the consensus that substratum stiffness profoundly influences cell behavior, there
are inconsistencies in some of the data reported. For example, myocilin, a protein long
associated with glaucoma, is reported as both positively (Raghunathan et al., 2013b;
Thomasy et al., 2012) and negatively (Schlunck et al., 2008) regulated by increasing
hydrogel stiffness, although there is agreement that biomimetic stiffness upregulate myocilin
when compared to tissue culture surfaces. Conflicting reports such as these emphasize that
differences in the details of experimental design, such as specifics of substrate preparation,
extracellular matrix coating, time in culture, and other variables likely modulate cellular
responses to substratum stiffness.

3. YAP/TAZ as orchestrating molecules
While the above studies demonstrate the importance of mechanotransduction in ocular
biology and pathology, we are left with the open question of the molecular effectors and
pathways that interpret biophysical cues and transduce them to determine cellular behaviors.
A full discussion of cellular mechanotransduction is beyond the scope of this or any single
review and we will instead focus on the unique role of YAP/TAZ. The majority of studies
involving YAP/TAZ were initially conducted and discussed in the context of Hippo
signaling, necessitating a firm understanding of the Hippo pathway before progressing to
exploring YAP/TAZ as relays of biophysical cues and their extensive crosstalk with other
signaling pathways.
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3.1 YAP/TAZ as Hippo pathway targets
The Hippo pathway centers on a cascade of kinase activations which ultimately inhibit an
anti-apoptotic/pro-proliferative gene program. A highly conserved pathway, Hippo plays a
central role in reaching and maintaining appropriate organ size (Dong et al., 2007). Precise
control of this pathway is essential for proper development and stem cell regulation (Barry
and Camargo, 2013; Mauviel et al., 2012). This has been shown quite dramatically in
Drosophila, where mutations in the Hippo pathway typically lead to tissue overgrowth. For
this reason, Hippo has been extensively studied in the context of tumorigenesis and
metastasis. Hippo dysregulation has been identified as a frequent component of cancer
(Harvey et al., 2013). While much is still unknown about how cells sense their environment,
Hippo clearly plays an important role.

In an effort to be succinct, we will discuss key points of the pathway and direct interested
readers to other recent reviews of the subject (Zhao et al., 2010a; Zhao et al., 2010b). A
highly conserved pathway, Hippo exhibits both astonishing complexity and profound
elegance (Figure 2). We have attempted to highlight key aspects of the pathway so that the
reader can gain a fundamental understanding, however, even this simplified description will
probably require the reader to refer to the schematic in Figure 2 repeatedly. The core
components of the Hippo pathway were originally described in Drosophila (Figure 2; left
side) and compose a linear pathway of kinases that act to repress the nuclear translocation of
the transcriptional coactivator Yorkie (Zhao et al., 2010a; Zhao et al., 2010b). When
activated, Hippo (Hpo) and Salvador (Sav) complex together and initiate the Hippo cascade
(Harvey et al., 2003; Jia et al., 2003; Kango-Singh et al., 2002; Pantalacci et al., 2003;
Tapon et al., 2002; Udan et al., 2003; Wu et al., 2003). Hpo/Sav phosphorylates a complex
of Warts (Wts) and mob as tumor suppressor (Mats) (Justice et al., 1995; Lai et al., 2005;
Wei et al., 2007; Xu et al., 1995). Activation of the Wts/Mats complex deactivates Yorkie
(Huang et al., 2005) (Yki) by phosphorylation. This triggers cytoplasmic retention and
inhibits the formation of a complex involving Multiple Ankyrin-repeat Single KH (MASK)
proteins and the anti-apoptotic and pro-proliferative transcription factor Scalloped (Sd)
(Goulev et al., 2008; Sansores-Garcia et al., 2013; Sidor et al., 2013; Wu et al., 2008; Zhang
et al., 2008b). This Hpo/Sav-Wts/Mats mediated downregulation of Sd transcription is the
primary mechanism of tumor suppression and growth control activity of the Hippo pathway
(Zhang et al., 2008b). The core components and sequence of the pathway are heavily
conserved in mammals and are depicted in a simplified manner on the right side of Figure 2
(Dong et al., 2007; Zhang et al., 2008a).

Homologous to Hpo/Sav, the Mammalian Sterile Twenty kinases Mst1 and Mst2 (Mst)
complex with Salvador 1 (Sav1) upon activation of the Hippo pathway (Callus et al., 2006).
This leads to the phosphorylation and activation of a complex of large tumor suppressor
(Lats) 1/2 and Mps one binder 1A and 1B (MOB), homologous to Wts/Mats in Drosphila
(Chan et al., 2005; Chow et al., 2010; Hao et al., 2008; Hergovich et al., 2005; Hergovich et
al., 2006; Zhang et al., 2008a). After the formation of the Lats/MOB complex there is an
important difference in mammalian pathway because there are two Yki homolouges, YAP
and TAZ (Hao et al., 2008; Lei et al., 2008; Liu et al., 2010a; Zhang et al., 2008a; Zhao et
al., 2007). Similar to Drosophila, phosphorylation of YAP and TAZ triggers cytoplasmic
retention and prevents interaction with the mammalian Sd homologues, TEA domain
(TEAD) family members TEAD 1–4 (Liu et al., 2010b; Mahoney et al., 2005; Ota and
Sasaki, 2008; Zhang et al., 2009; Zhao et al., 2008). Similar to Drosophila, these YAP/TAZ/
TEAD complexes are dependent on the presence of MASK for full activity (Sansores-Garcia
et al., 2013). The final result, suppressing the anti-apoptotic and pro-proliferation TEAD, is
homologous to the function of Drosophila Hippo. It is important to note that while TEAD is
the most frequently cited transcription factor partner to YAP/TAZ, other transcription
factors have been shown to play a role as well (e.g. RUNX, ErbB-4, p73, TTF-1, PPARγ)
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(Basu et al., 2003; Hong et al., 2005; Komuro et al., 2003; Omerovic et al., 2004; Park et al.,
2004; Strano et al., 2001; Yagi et al., 1999; Zaidi et al., 2004).

The mechanism of cytoplasmic retention is as important as the kinase activity described
above, and deserves further explanation. As described above, activation of the Hippo
pathway leads to the phosphorylation of YAP and TAZ, allowing them to be
cytoplasmically sequestered by the scaffolding protein 14-3-3σ and ultimately targeted for
destruction (Huang et al., 2012; Kanai et al., 2000; Lei et al., 2008; Liu et al., 2010a; Zhao et
al., 2010c; Zhao et al., 2007). Both YAP and TAZ have multiple phosphorylation sites,
although serine-127 (S127) on YAP and serine-89 (S89) on TAZ are the most frequently
discussed Lats targets. Importantly, the high sequence homology between these sites can
cause antibody crossreactivity (Lei et al., 2008).

While the core of the Hippo pathway has been well described, less is known about upstream
activators, although many have been implicated (Boggiano and Fehon, 2012; Grusche et al.,
2010). The full list of these upstream components is outside the scope of this review but
three proteins deserve mention as the canonical activators. In Drosophila, Merlin (Mer),
Expanded (Ex), and Kibra complex and directly bind and activate Hpo/Sav (Genevet et al.,
2010; Hamaratoglu et al., 2006; Yu et al., 2010). Importantly, these proteins act
synergistically and redundantly to activate Hippo, as none are independently required for
Hippo activation. Single mutants do exhibit decreased Hippo activation, however, the
phenotype is enhanced in double mutants (Hamaratoglu et al., 2006; Yu et al., 2010).
Consistent with Drosophila, the human orthologs, Mer/NF2, Willin/FRMD6, and KIBRA/
WWC1, have been individually identified as activators of the Hippo pathway (Angus et al.,
2012; Moleirinho et al., 2012; Xiao et al., 2011; Yu et al., 2010; Zhang et al., 2010). The
parallelism observed in Drosophila is mirrored in mammalian cells. KIBRA appears to
activate Lats in an Mst-independent fashion, while Willin appears to act through Mst and
Merlin acts through both Mst dependent and independent mechanisms (Angus et al., 2012;
Genevet et al., 2010; Kim et al., 2011; Murray et al., 2012; Xiao et al., 2011). The
dispensability of Mst in downstream Hippo activation is consistent with other observations,
but should not be construed as a lack of importance, as Mst deficiency leads to severe in
vivo phenotypes. Independently, Mst1 and Mst2 deficiency doesn’t alter viability but can
lead to increases in tumor formation and, in the case of Mst1, a loss of naïve T cells (Zhou et
al., 2009; Zhou et al., 2008). Double knockouts are embryonic lethal with conditional double
knockouts in the liver or intestines result in dysplasia and tumor formation (Song et al.,
2010; Zhou et al., 2009; Zhou et al., 2011). Consistent with the level of complexity
described above, the subset of Hippo target genes activated through Mer, Willin, or Kibra
are distinct (Moleirinho et al., 2012). As a final note, several of the upstream regulators have
been identified as Hippo targets, revealing a negative feedback mechanism which may help
maintain Hippo at a steady state (Genevet et al., 2010; Hamaratoglu et al., 2006; Xiao et al.,
2011).

Relevant to the subject of this review, canonical Hippo signaling has already been identified
in the eye. Recent reports have linked deficient YAP/TAZ-TEAD1 binding to the
pathogenesis of Sveinsson’s chorioretinal atrophy, an autosomal dominant disease (Fossdal
et al., 2004; Kitagawa, 2007). Mer deficiency led to cataract formation in mice, and this was
partially rescued by Yap null heterozygosity (Zhang et al., 2010). Additionally, Hippo target
genes include numerous genes implicated in a variety of ocular pathologies including matrix
metalloproteinases 7/12, interleukin 1β, transforming growth factor (TGF) β2, TGFβ
receptor 1, connective tissue growth factor (CTGF), serpine-1, transglutaminase 2, and type
IV collagen α3 (Dong et al., 2007; Dupont et al., 2011; Ota and Sasaki, 2008; Zhang et al.,
2009; Zhao et al., 2008).
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3.2 YAP/TAZ and contact inhibition
Building upon their role as pro-proliferative proteins, much research has been done
exploring YAP/TAZ deactivation in contact inhibition. Epithelial-mesenchymal transition
(EMT), characterized in part by the loss of contact inhibition, contributes to multiple ocular
pathologies including dysregulated corneal wound healing, cataracts, and proliferative
vitreoretinopathy after retinal detachment (Aomatsu et al., 2012; de Iongh et al., 2005;
Kawashima et al., 2010; Liu et al., 2010b; Martinez and de Iongh, 2010). YAP/TAZ have
been linked to EMT both in general and in the eye specifically (Lei et al., 2008; Liu et al.,
2010b; Wang et al., 2011; Zhang et al., 2009). Perhaps the strongest evidence for
involvement of YAP/TAZ in contact inhibition is the repeated observation of their nuclear
exclusion in high density cultures (Kim et al., 2011; Ota and Sasaki, 2008; Silvis et al.,
2011; Varelas et al., 2010b; Wang et al., 2012; Zhao et al., 2011; Zhao et al., 2007). This
result is not limited to in vitro findings, with YAP and TAZ exhibiting cell contact-
dependant localization in early development of mouse embryos (Nishioka et al., 2009;
Varelas et al., 2010b). In the inner cell mass of the embryo, where cells are contacted on all
sides, YAP and TAZ are excluded from the nucleus, while surface cells exhibit nuclear
localization.

The obvious candidate for regulating YAP/TAZ in response to cell-cell contact is the Hippo
pathway, which indeed plays a role. However, cell-cell contact regulates YAP/TAZ through
multiple pathways, three of which are described below. E-cadherin, a major component of
cell-cell junctions, is known to sequester YAP/TAZ to the cytoplasm and this activity is
central to E-cadherin’s role as a tumor suppressor (Nishioka et al., 2009). Further work
emphasized that the E-cadherin mediated signaling occurs through both Hippo and yet to be
identified parallel kinase pathways which ultimately phosphorylate YAP/TAZ, allowing for
their sequestration (Kim et al., 2011). Angiomoitin (AMOT) and its paralogs (AMOT like
1/2) have also been shown to sequester YAP/TAZ in the cytoplasm (Chan et al., 2011; Oka
et al., 2012; Varelas et al., 2010b; Wang et al., 2011; Zhao et al., 2011). The AMOTs can
sequester YAP/TAZ through direct protein-protein interactions regardless of the
phosphorylation status of YAP/TAZ (Chan et al., 2011; Wang et al., 2011; Zhao et al.,
2011). The third potentially parallel system mediated by α-catenin has been identified by
two studies in skin (Schlegelmilch et al., 2011; Silvis et al., 2011). While both studies show
independence from the core Hippo machinery and E-cadherin, they differ in the specific
mechanism. Schlegelmilch and colleagues reported that α-catenin forms a complex with
14-3-3σ that both sequesters YAP and inhibits dephosphorylation by a promiscuous
phosphatase PPA2. Silvis and colleagues provide evidence for a phosphorylation-
independent direct sequestration of YAP by α-catenin. A simplified view of these multiple
contact inhibition modalities is presented in Figure 3.

3.3 YAP/TAZ as relays of mechanical signaling
With this foundation in Hippo signaling, we turn to the role of YAP/TAZ in a central theme
of this review: mechanotransduction. As the reader will quickly become aware, it is difficult
to separate out the influence the biophysical attributes of the microenvironment of the cell
from the host of factors that can influence cytoskeletal mechanics such as G-protein coupled
receptor (GPCR) signaling. As such, we will discuss them together and refer the reader to
Figure 4 for clarification. The initial discovery of YAP/TAZ as relays of mechanical signals
is relatively recent (Dupont et al., 2011). In that report, the nuclear localization and
transcriptional activity of YAP was inhibited by soft substrates, restrictive geometry, and
actinomyosin disruption. This was independent of phosphorylation and the core Hippo
components Mer and Lats. However, given the complexity and cell type specificty of YAP/
TAZ regulation, it is not clear that mechanical signaling is uniformly independent of Hippo.
Indeed, another report found geometry and actinomysin regulated YAP at or upstream of
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Lats activity (Wada et al., 2011). An additional report on the role of Hippo in anoikis
(detachment induced apoptosis), confirms a role for Lats and actin in mechanical signaling,
but didn’t find a role for cytoskeletal tension (Zhao et al., 2012). In this study, ROCK and
myosin inhibition do not recapitulate the results of filamentous actin inhibition.
Disagreement at the point at which mechanical signaling links to Hippo is good example of
the context-sensitive nature of YAP/TAZ, and similar discrepancies are detailed throughout
this review. More important is where these studies agree: mechanical cues such as geometry
and stiffness are crucial regulators of YAP/TAZ and this regulation seems to take place
through regulation of the actinomyosin cytoskeletal system. The concept of Hippo being
linked to the actin cytoskeleton at or above Lats is supported by the recent research in
Drosophila, where studies indicated increasing or decreasing filamentous actin resulting in
increased or decreased Yki activity, respectively, and this involved the Lats homologue, Wts
(Rauskolb et al., 2011; Sansores-Garcia et al., 2011). Actinomyosin can also be modulated
by more traditional biochemical cues, and these have also been shown to regulate YAP.
Growth factor like lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate
(S1P) and proteases such as thrombin have recently been identified as potent activators of
YAP, acting through GPCR signaling and the actinomyosin cytoskeleton (Miller et al.,
2012; Mo et al., 2012; Yu et al., 2012). Importantly, two of three studies (Mo et al., 2012;
Yu et al., 2012) indicate a role for Lats in transducing GPCR signals to YAP, while the third
didn’t investigate that question (Miller et al., 2012). A key consequence of the above
findings is that by regulating the cytoskeleton, biophysical cues and Rho-signaling can
regulate the localization and phosphorylation of YAP/TAZ.

The importance of cytoactive lipids such as LPA and S1P is also especially relevant to the
eye. Two independent reports have recently identified autotaxin (the enzyme that produces
LPA) as highly expressed and active in the aqueous humor (Iyer et al., 2012; Tokumura et
al., 2012). Iyer and colleagues further showed that inhibiting autotaxin function (in fact
reducing LPA) decreases intraocular pressure (IOP) in rabbits. This is consistent with other
reports which showed decreased outflow facility with S1P and increased outflow facility
with S1P receptor inhibition in enucleated mouse and human eyes (Boussommier-Calleja et
al., 2012; Stamer et al., 2009; Sumida and Stamer, 2011). Tokumura and colleagues built
upon previous studies revealing LPA and related phospholipids are potent mediators of
corneal wound healing (Liliom et al., 1998; Watsky, 1995; Xu et al., 2007; Yin et al., 2008).
Although none of these reports investigated the localization or activity of YAP/TAZ, the
fact that the tissues of the anterior chamber are continuously exposed to factors known to
activate YAP/TAZ certainly raises intriguing questions.

3.4 YAP/TAZ and TGFβ superfamily signaling
We’ve already identified three key regulators of YAP/TAZ localization and phosphorylation
(Hippo, cell-cell contact, biophysical cues), and the YAP/TAZ story is still expanding. In
addition to influencing TEAD transcription, YAP/TAZ localization regulates other signaling
pathways well studied in the context of ocular health and disease, such as TGFβ (Figure 5).
The TGFβ superfamily is a potent regulator of ECM turnover and composition and is
implicated in numerous ocular disorders, including pathological fibrosis in corneal wound
healing and cataract formation, as well the structural changes of both the TM and ONH
present in glaucoma (Fuchshofer, 2011; Fuchshofer and Tamm, 2012; Jester et al., 1999;
Saika, 2006; Saika et al., 2009; Tamm and Fuchshofer, 2007). A comprehensive
presentation of TGFβ signaling is beyond the scope of this review and current reviews are
available (Horbelt et al., 2012; Massague, 2012; Shi and Massague, 2003; Zi et al., 2012).
Here, we summarize the core of the pathway. Cytokines of the TGFβ superfamily (most
notably TGFβ1–3 and bone morphogenetic proteins (BMPs)) interact with membrane bound
receptors that have serine/threonine kinase activity. The intracellular transducers of these
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receptors are the receptor SMADs (R-SMADs), notably SMAD1, 5, and 8 which are
responsive to BMP signaling and SMAD2 and 3 which are responsive to TGFβ signaling.
The R-SMADs complex with the co-mediator SMAD (Co-SMAD), SMAD4, can then
shuttle to the nucleus where they act as transcription factors. This pathway can be blocked
by inhibitory SMADs (I-SMADs), SMAD6 and 7. SMAD6 inhibits the phosphorylation of
SMAD1, 5, and 8 and additionally inhibits the association of SMAD4 with SMAD1, both
resulting in decreased BMP induced signaling. SMAD7 acts on all R-SMADs to inhibit their
phosphorylation and also promote dephosphorylation, resulting in the inhibition of all TGFβ
superfamily signaling. Importantly, SMAD6 and 7 are both targets of TGFβ superfamily
signaling, providing a negative feedback mechanism within the pathway (Ishida et al., 2000;
Nagarajan et al., 1999).

YAP/TAZ are known to interact in several ways with SMADs. The first report of such
interaction was binding activity between YAP and the broadly inhibitory SMAD7, but not
BMP specific inhibitory SMAD6. This interaction increased the localization of SMAD7 to
active TGFβ receptors, resulting in elevated inhibition of R-SMAD phosphorylation
(Ferrigno et al., 2002). To be clear, it is important to state that this report did not show that
YAP is a requirement for SMAD7 function, but rather amplified it. In addition to its
inhibitory functions via SMAD7, YAP also assists BMP specific signaling through a BMP
dependent association with SMAD1/5. YAP co-precipitated with SMAD1/5 on the BMP
target sites Id1 and Id2, and YAP depletion inhibited induction by BMP of the target genes
Id1, Id2, and Id3 (Alarcon et al., 2009). TAZ has also been implicated in TGFβ signaling
through a TGFβ-dependent association with SMAD2 and SMAD3 (Varelas et al., 2008;
Varelas et al., 2010b). These reports identified TAZ (but not YAP) as required for
SMAD2/3 nuclear accumulation and transcriptional activity in response to TGFβ signaling.
Importantly, they also showed TAZ as a transcriptional target of TGFβ, identifying another
feedback mechanism of the TGFβ pathway. Depending on the regulation of TAZ by other
pathways, this could either result in positive or negative feedback, further emphasizing the
role of YAP/TAZ as having influence in of diverse pathways.

3.5 YAP/TAZ and canonical Wnt signaling
Similar to TGFβ, YAP/TAZ also have numerous points of intersection with canonical Wnt
signaling (Figure 6), which has recently been implicated in glaucoma (Mao et al., 2012;
Wang et al., 2008) and has long established roles in lens and retinal development, function
and repair (de Iongh et al., 2006; Lad et al., 2009; Osakada et al., 2007). Additionally, Wnt
is known to be a key pathway in regulating epithelial stem cell populations, and the limbal
stem cell niche of the cornea is no exception (Blanpain et al., 2007; Kulkarni et al., 2010;
Nakatsu et al., 2011). Again, we direct the reader to other comprehensive reviews on Wnt
signaling (Clevers, 2006; Freese et al., 2010; Macdonald and He, 2012), but will attempt to
summarize the pathway and association with YAP/TAZ below. The major effector of the
Wnt pathway is β-catenin, with induces gene transcription through the T cell factor/
lymphoid enhancer-binding factor (TCF/LEF) family of transcription factors. Typically, β-
catenin is retained in the cytoplasm and targeted for degradation by a complex of Axin,
adenomatous polyposis coli (APC), and glycogen synthase kinase 3β (GSK3β). The Wnts
are secreted factors which bind to receptor complexes of Frizzled (Fzd) proteins and
lipoprotein related proteins (LRP) 5/6, and this activity can be blocked by soluble factors
such as soluble frizzled-related protein 1 (sFRP1). The Wnt-Fzd binding activity causes
Dishevelled (Dvl) to inhibit the function of the Axin/APC/GSK3β complex, freeing β-
catenin to translocate to the nucleus and act as a coactivator of transcription with TCF/LEF.
Several studies have also pointed to a role of Dvl as a key component of the β-catenin/TCF/
LEF complex (Gan et al., 2008; Itoh et al., 2005).
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Several known points of interaction between YAP/TAZ and Wnt signaling have been
uncovered in the past few years and are show in Figure 6. Varelas and colleagues reported
TAZ functioned as cytoplasmic antagonist of the Wnt pathway through Dvl, leading to a
polycystic kidney phenotype in vivo (Varelas et al., 2010a). A recent report by Barry and
colleagues reported a nuclear interaction between YAP and Dvl, resulting in suppression of
Wnt mediated hyperplasticity in vivo and in vitro (Barry et al., 2012). Similarly, YAP and
TAZ antagonize Wnt signaling through direct interaction with β-catenin (Imajo et al., 2012).
Importantly, the study by Imajo and colleagues showed that the Wnt-suppressive activity of
YAP was dependant on phosphorylation by the Hippo pathway and subsequent cytoplasmic
retention. Conversely, YAP can also augment Wnt signaling. Conditional knockout studies
of the Hippo component Sav in mouse hearts led to increased Wnt signaling through direct
interaction between unphosphorylated YAP and β-catenin on Wnt target genes (Heallen et
al., 2011). Similarly, conditional intestinal knockouts of Mst1/2 also resulted in Wnt target
gene expression (Zhou et al., 2009). Taken in aggregate, these studies suggest context
dependent inhibition and upregulation of Wnt by YAP/TAZ. Further confounding the issue
is the involvement of other pathways. Xin and colleagues showed that constitutively active
YAP mutants upregulated insulin-like growth factor (IGF) signaling pathway, which in turn
upregulated the Wnt pathway (Xin et al., 2011). In many of the above cited studies, YAP/
TAZ localization was an important component of Wnt regulation, again emphasizing that
any alteration in YAP/TAZ regulation will have far reaching consequences.

The Wnt pathway also regulates the expression and degradation of YAP/TAZ. In two
independent studies YAP has also been identified as a target of TCF/β-catenin through the
use of ChIP (Bottomly et al., 2010; Konsavage et al., 2012). Curiously, YAP expression is
reported to be insensitive to lithium chloride, a potent activator of TCF/β-catenin, further
emphasizing the context sensitive nature of YAP/TAZ (Bottomly et al., 2010). While TAZ
has not been identified as a transcriptional target of Wnt, a recent report identifies the Axin/
APC/GSK3β complex and phospo-β-catenin as potent inducers of TAZ degradation
(Azzolin et al., 2012). As a result, Wnt activation inhibits TAZ degradation and thus allows
increased TAZ activity in a mechanism very similar to β-catenin in canonical Wnt signaling.

3.6 YAP/TAZ and other pathways
In addition to the extensive crosstalk described above, YAP/TAZ is implicated in several
other proliferation and differentiation control pathways. While a full listing is outside the
scope of this review, PI(3)K-Akt and Retinoblastoma (Rb) deserve special mention.
Multiple studies have revealed Akt to have direct kinase activity on YAP (Basu et al., 2003;
Ehsanian et al., 2010; Strano et al., 2001; Zhang et al., 2012b). This is debated, further
suggesting that confounding factors such as cell/tissue type play a role (Dong et al., 2007;
Zhao et al., 2007). However, the action of Akt on YAP is supported by a recent report of
Yki activation in response to IGF signaling, which in mammals involves Akt (Strassburger
et al., 2012). This may be part of a feedback loop, as YAP/Yki have also been reported to
initiate IGF signaling (Strassburger et al., 2012; Xin et al., 2011). Further confounding the
crosstalk between YAP and Akt is the downregulation of PTEN, an antagonist of PI(3)K-
Akt signaling, by YAP mediated expression of miR-29 (Tumaneng et al., 2012).

Of particular relevance to the eye, recent results have documented crosstalk between Hippo
and Retinoblastoma (Rb) pathways. Through shRNA screening, LATS2 was identified as a
key component of Rb induced senescence (Tschop et al., 2011). Importantly, these results do
not implicate YAP/TAZ as effectors of this response, as a constitutively active YAP did not
produce the same result as LATS2 depletion. With the double mutant of Rb and Hippo
pathways in Drosophilarbf/wts, retinal cells initially differentiate normally but eventually
dedifferentiate (Nicolay et al., 2010). While the mechanism behind this is not well
understood, the behavior was not preserved in single mutants, identifying a requirement for
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both pathways in maintaining terminal differentiation in the Drosophila retina. The
importance of Hippo signaling in retinal differentiation is conserved in mammals, with
overexpression or depletion of YAP in developing mouse retina shifting retinal cells towards
overproliferation or premature differentiation, respectively (Zhang et al., 2012a). In keeping
with the trend of Hippo being both a regulator and a target of other pathways, several Hippo
family members (including Wts and Hpo, but not Yki) are transcriptional targets of the Rb
pathway (Acharya et al., 2012). The transcription of Wts and Hpo is consistent with Rb
acting as a tumor suppressor.

4. Conclusions
In this review we have attempted to highlight the important role of mechanotransduction in
ocular biology and provide evidence for YAP/TAZ acting as signaling mediators. A key
conclusion is that YAP/TAZ interaction with other signaling pathways depending on YAP/
TAZ expression and localization, making YAP/TAZ orchestrating molecules in the
coordination of numerous proliferation and differentiation pathways, in addition to the direct
action on their transcriptional targets. Additionally, we have sought to emphasize potential
intersections of YAP/TAZ with vision science and where we see promising areas of future
research. We should note that even the extensive discussion above does not provide a full
view of the complexity of YAP/TAZ and their numerous signaling partners. However, we
hope this overview accentuates that the consequences of YAP/TAZ, likely due to their
extensive crosstalk with multiple pathways, are extremely context dependent. For these
reasons, we expect YAP/TAZ to have important and unexpected functionality in the
specialized tissues of the eye, and are excited to see this new area of research explored.
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Highlights

We present examples of changing biophysical cues in the eye

We discuss the implications this may have on cellular function

We introduce the proteins YAP and TAZ as mediators of biophysical cueing

We provide a history of YAP, TAZ and their known signaling partners
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Figure 1. YAP/TAZ Influences Multiple Signaling Pathways
YAP/TAZ are best known as the primary targets of Hippo signaling and have recently been
implicated in biophysical signaling. Additionally, YAP/TAZ expression, phosphorylation,
and localization regulate TGFβ, Wnt, and a host of other proliferation and differentiation
control pathways. Note: This schematic is simplified to clarify the major interactions in
YAP/TAZ signaling, and is not intended to exhaustively represent all known YAP/TAZ
interactions.
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Figure 2. The Hippo Pathway in Drosophila and Mammals
Canonical Hippo pathway complexes act to phosphorylate Yki or YAP/TAZ and prevent
assembly of the Sd or TEAD transcriptional complexes with MASK. Phosphorylated YAP/
TAZ is cytoplasmically retained by 14-3-3σ and targeted for degradation. Similar coloration
is used to highlight the level of homology and conservation of the pathway between
Drosophila and mammals. Note: This schematic is simplified to clarify the major
components in Hippo pathway.
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Figure 3. Cell-cell Contact and YAP/TAZ
Cell-cell contact can inhibit YAP/TAZ transcriptional activity both by sequestration to
adherins junctions (AJ) in an α-catenin dependent fashion and through E-cadherin/catentin
dependant activation of the Hippo pathway. Additionally, AMOT can sequester YAP/TAZ
regardless of phosphorylation status. Note: This schematic is simplified to highlight the
major factors in cell contact inhibition of YAP/TAZ.
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Figure 4. Mechanical regulation of the Hippo pathway
Hippo is regulated by multiple signals generated by the physical (matrix stiffness) and
biochemical (LPA, S1P, thrombin) environment. Importantly, many of these signals are
modulated by tension in the actinomyosin cytoskeleton. Modulation of cytoskeletal
mechanics through G-protein coupled receptors and matrix biophysics can likewise inhibit
YAP/TAZ directly at the nuclear translocation stage or through activation of Hippo
components. Note: This schematic is simplified to clarify the major components in the
mechanical regulation of YAP/TAZ signaling.
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Figure 5. Crosstalk between YAP/TAZ and TGFβ
TGF β superfamily signaling (especially TGFβ and BMP) is initiated by the binding of an
extracellular ligand, which leads to the phosphorylation of the R-SMADs (SMADs 1/5 and
2/3 shown) and the formation of a complex with R-SMADs and a Co-SMAD (SMAD4).
After translocation to the nucleus, these complexes initiate the TGFβ/BMP transcriptional
program. Through direct interaction with TAZ, SMAD2/3 can be retained in either the
cytoplasm or nucleus, depending on the localization of TAZ. Additionally, YAP can
enhance the inhibitory effects of SMAD7 or enhance the transcription of SMAD1/5. Note:
This schematic is simplified to clarify the major intersections of YAP/TAZ and TGFβ.
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Figure 6. Crosstalk between YAP/TAZ and Wnt
Canonical Wnt is initiated by the binding of a Wnt ligand to the Fzd/LRP receptor complex.
This induces the inhibitory behavior of Dvl on the Axin/APC/GSK3β complex, freeing β-
catenin to complex with Dvl and the transcription factor TCF/LEF and initiate the Wnt
transcriptional program. YAP/TAZ can inhibit Wnt signaling through inhibition of Dvl in
the cytoplasm (TAZ) or in the nucleus (YAP) or cytoplasmic sequestration of β-catenin
(YAP). Alternatively, YAP can encourage the transcriptional activity of β-catenin. Note:
This schematic is simplified to clarify the major intersections of YAP/TAZ and Wnt
signaling.
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