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Abstract
Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on
stability, hydrogen bond network, conformational dynamics, activity and many other
physiologically important properties of proteins. The substitutions of only one residue in a protein
sequence, so-called missense mutations, can be related to many pathological conditions, and may
influence susceptibility to disease and drug treatment. The plausible effects of missense mutations
range from affecting the macromolecular stability to perturbing macromolecular interactions and
cellular localization. Here we review the individual cases and genome-wide studies which
illustrate the association between missense mutations and diseases. In addition we emphasize that
the molecular mechanisms of effects of mutations should be revealed in order to understand the
disease origin. Finally we report the current state-of-the-art methodologies which predict the
effects of mutations on protein stability, the hydrogen bond network, pH-dependence,
conformational dynamics and protein function.
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Introduction
The differences in human DNA sequences contribute to phenotypic variations, influence an
individual’s susceptibility to disease, response to the environment and drug treatment.1; 2 At
the same time, the DNA differences lead to phenotypic differences between populations, for
example differences in eye color.3 The genetic variations may involve several nucleotides or
only one, the latter is called “single nucleotide polymorphism” or SNP. Technically a
polymorphism represents a DNA variation found in more than one percent of the
population.4; 5 SNPs are the most common types of genetic variations in humans5; 6; 7 and
occur approximately every 1200 bases in the overall human population.6; 8 Most often,
SNPs occur in the non-coding region of the genome1 whereas SNPs in coding DNA regions
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may result in changes of amino acid sequences either through amino acid substitutions
(nsSNPs) or the introduction of nonsense/truncation mutations.5

At the opposite end of the frequency spectrum are the rare mutations (often referred to as
rare variants in contrast to common variants), which are usually defined as mutations with
minor allele frequency of less than 0.5 – 1%.9 Historically, effects of mutations were
discussed in the context of a “Common Disease, Common Variant (CDCV)” or “Common
Disease, Rare Variant (CDRV)” debate.10 The CDCV hypothesis argues that common
disease mutations with low penetrance (the percent of individuals with disease mutations
who exhibit disease phenotype) are the major contributors to genetic susceptibility to
diseases. On the other hand, the CDRV hypothesis asserts that rare mutations with relatively
high penetrance are the major contributors. The effects of common and rare mutations were
extensively studied by the theoretical population genetics11 and it was found that the
frequencies of susceptibility alleles for any disease ranged from rare to high and depended
on the mutation rates and the strength of purifying selection.11 With the advancement of
DNA sequencing technologies, many examples of rare mutations contributing to common
diseases have been reported and here we list several of them. Cohen and colleagues, for
example, showed that multiple rare mutations contributed significantly to the plasma levels
of high-density lipoprotein (HDL)12 and low-density lipoprotein (LDL)13. In the HDL
study, three HDL related genes were studied and several dozen rare mutations were
identified in total. Almost all mutations were found on the HDL related genes, ABC
transporter A1, and two of these mutations, N1800H and W590S, drastically changed the
physicochemical properties of amino acids and affected its interaction with a partner protein.

The functional effect of rare mutations has been a topic of many recent studies which tried
to understand the role of rare mutations in complex traits.14; 15 Several studies concluded
that the excess of deleterious rare mutations in the human genome was due to recent fast
population growth and weak purifying selection. One study, focusing on a couple of
hundreds of drug target genes, reported that rare mutations were more enriched for
damaging variants than common mutations.14 Deep sequencing of human exomes also
confirmed the abundance and deleterious effects of rare mutations, namely that rare
mutations accounted for 86% of identified single nucleotide variants and also accounted for
about 96% of variants which were predicted as functionally important.15 The same study
mapped rare mutations on several known protein structures and found that they were
enriched in the following categories: ligand binding, active sites, and sites participating in
hydrogen bonding.15

In an effort to identify a link between mutations and chronic disease susceptibility, much
data was collected from the literature for disease-causing rare and common mutations. It was
shown that when the frequency of variants of adenoma patients and control groups was
compared, the frequency of variants was higher in patients than for controls, which
suggested that disease susceptibility could be due in part to the effects of many rare
variants. 16 In contrast to rare mutations contributing to Mendelian diseases, some rare
mutations occur in single individuals, where the patient does not necessarily inherit the
mutation from a parent. These de novo mutations are considered as the most extreme cases
of rare mutations.17 Since de novo mutations have not experienced strong evolutionary
selection, they tend to be more deleterious than inheritable rare mutations. Indeed, recent
whole-exome sequencing studies showed that de novo mutations in a single gene
contributed to many rare diseases such as Kabuki syndrome and others.18 It was also
suggested that the scarcity of diseases caused by de novo mutations was related to the
number of mutational target genes. Diseases caused by de novo mutations in a single target
gene occur at very low population frequencies (<1/10000) whereas diseases caused by de
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novo mutations in more than 100 candidate genes such as intellectual disability could be
relatively common (>1/100).17

The necessity to understand the effects of missense mutations becomes clear when one
considers genetic diseases. It is known that the substitution of only one residue in a protein
sequence can be related to a number of pathological conditions such as Alzheimer’s,
Parkinson’s and Creutzfeldt-Jakob’s diseases.6 It is also well known that accumulation of
autosomal mutations can lead to cancers, and that hereditary diseases are caused by one or
more germline mutations.19 The analysis of the impacts of missense mutations advances our
understanding of the relationships between protein structure and function, and allows us to
decipher the mechanisms of the effects of disease mutations and thereby pathogenesis.20

With personalized medicine on the not-so-distant horizon, it is swiftly becoming essential to
understand the process by which genetic mutations lead to disease.

The plausible effects of missense mutations21; 22 range from affecting the macromolecular
stability to perturbing macromolecular interactions and cellular localization. Here we will
review the current state-of-the-art methods in the area of predicting the effects of mutations
on protein stability, the hydrogen bond network and pH-dependence, conformational
dynamics, and activity.

Effects of mutations on macromolecular stability
Association between protein stability changes and human diseases

It is well established that protein function is closely related to stability of monomers and
complexes;23;24;25 therefore in order to assess computationally the functional consequences
of mutations, it is essential to identify the effect of mutations on stability and folding free
energy (energy difference between folded and unfolded states). Essentially, in order for the
macromolecule to carry out its function, the macromolecule, in most cases, must adopt a
particular three-dimensional (3D) fold and make specific interactions with its partners. A
missense mutation that affects the 3D structure and alters the stability or binding affinity of a
protein complex may cause significant perturbations or complete abolishment of the
function of this particular protein.

Typically the change in the folding free energy (ΔΔG) is used to quantify the magnitude of a
mutation’s effect on stability. Methods using physical potential energy functions (such as
those used in molecular mechanics approaches or Monte Carlo simulations) are probably the
most insightful methods for predicting the details of the effects of mutations on protein
stability.26 They usually are time-consuming and are frequently used for small-scale
investigations.27 On the other side of the spectrum are methods utilizing machine learning
techniques, which are very fast and can deliver predictions on large datasets. A typical
scheme of assessing the effect of a mutation on macromolecular folding free energy is
illustrated in Fig. 1. Two different approaches can be used to estimate ΔΔG: (a) in one case
the folding free energy can be calculated for the wild type and mutant proteins and then the
difference can be found; (b) in the second approach, the change in free energy upon
mutation can be calculated for unfolded and folded states separately and then the value of
the energy of the unfolded state can be subtracted from the value of the energy of the folded
state. Such detailed schemes to predict ΔΔG are typically employed by methods utilizing 3D
structure. However, frequently structural and sequence information are used together within
the same methodological framework.

Before outlining the existing methods for predicting effects of missense mutations on
macromolecular stability we first review recent studies showing the connection between
human diseases and protein stability changes. In general the effects on protein stability can
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be grouped into two distinctive categories: (a) destabilizing and (b) stabilizing effects (see
Table 1 for examples). Most frequently, missense mutations are found to destabilize the
corresponding protein. Such cases include mutations in LMNA gene which are associated
with muscular diseases,28 in the VWF A2 domain causing von Willebrand disease type,29 in
retinal proteins causing retinal diseases,30 in the perforin protein resulting in
hemophagocytic lymphohistiocytosis,31; 32 and mutations in prion proteins associated with
prion diseases.33; 34; 35; 36 Many neurodegenerative diseases, such as Parkinson’s disease,
are also associated with destabilization of the corresponding proteins.37; 38; 39 Sometimes
the impact is local, affecting particular secondary structure element (SSE). For example,
mutations of residues E22 and D23 in the Amyloid-β protein are associated with familial
Alzheimer’s disease and are shown to destabilize an important beta-turn 40 whereas
destabilizing mutations in the core of the protein lead to an inactivation of many tumor
suppressors in cancer.41 Most frequently, if the effect of mutations is related to protein
stability, it usually significantly destabilizes the corresponding protein.42

There are examples where missense mutations improve or enhance stability of the
corresponding protein while still being deleterious. Recently a mutation in the CLIC2
protein, H101Q, was associated with a mental disorder and was predicted to increase the
CLIC2 protein stability therefore obstructing its transport to the cell membrane.43 Later
these predictions were confirmed experimentally and it was demonstrated that, indeed, this
mutation makes the CLIC2 protein thermodynamically more stable, the residence time in the
membrane shorter, and the mutant interacts more strongly with the ryanodine receptor.44

Similarly, the stability of a small 41-residue helical protein, the peripheral subunit-binding
domain, was found to increase upon a replacement of a surface charge with a hydrophobic
residue.45 In silico modeling of the effects of mutations on stability of spermine synthase
(causing Snyder-Robinson Syndrome) showed that sites harboring disease-causing
mutations may or may not tolerate other (different from disease-causing) amino-acid
substitutions.46 This indicates that disease-causing effects on the stability may be both site
and amino-acid type dependent.

Algorithms for predicting the effect of mutations on protein stability
The previous section listed several cases where missense mutations produce a very
prominent effect on macromolecular stability and many efforts were invested to develop
approaches and algorithms to predict the change of the folding free energy upon missense
mutations. While mutations might have large effects on protein binding affinity and lead to
many diseases,47; 48 here we only focus on existing approaches for predicting the effect of
mutations on stability of protein monomers. In general, the existing methods can be
classified into several distinct categories based on the strategy used in the calculations (see
for example reviews 49; 21). Here we do not try to classify these methods because many of
them utilize a mixture of different approaches. Table 2 includes several widely used
methods, provides links to corresponding databases and servers and a short methods’
description. Below we summarize several methods and resources.

The first group of methods represents machine learning approaches which are trained on
different types of data relevant to protein stability and in some cases take into account
experimental conditions such as temperature, salt concentration and pH values. Taking into
account such parameters is important for assessing the free energy changes upon mutations
at near physiological conditions.50 Majority of these methods (MuStab51, I-Mutant and
others) incorporate different physicochemical properties of amino acids and structural
preferences of different sites and are trained on the experimental differences of folding free
energy caused by mutations. Some methods, like I-Mutant2.0, use Support Vector Machines
(SVMs), make predictions based on either structure or sequence alone;52; 19 and predict
actual values of ΔΔG. Similarly, the MuPro uses SVMs leveraging both sequence and
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structural information.53 Other methods, such as MuStab, predict only the deleterious effects
of mutations and increase or decrease (the sign) of ΔΔG values. Another recently introduced
method, PoPMuSiC-2.0, uses a combination of statistical potential and neural networks to
estimate the changes in stability; it exploits statistical potentials which take into account the
coupling between four protein sequence and structure descriptors, and the amino acid
volume variation upon mutation.54

The second group of methods exploits the evolutionary conservation data under an
assumption that changes at conserved positions in the multiple sequence alignments tend to
be deleterious. Although such approaches do not predict the effect of mutations on protein
stability directly, they are typically used in conjunction with the above mentioned methods
to achieve consensus predictions. For example, a prediction of large ΔΔG caused by a
mutation will have a higher accuracy if supported by sequence based analysis. There are
many sequence based methods. For example, Sorting Intolerant From Tolerant (SIFT55)
method scores the normalized probabilities for all possible substitutions for a site and
calculates the conditional probability that an amino acid is tolerated compared to the most
frequent tolerated amino acid. PolyPhen on the other hand, predicts damaging amino acid
substitutions using sequence-based as well as structure-based features such as sequence
conservation, structure, and a position-specific independent counts matrix derived from the
multiple sequence alignment.4; 56 Additionally, PolyPhen-2 uses eight sequence-based and
three structure-based predictive features and a Naïve Bayes classifier to predict the
functional significance of the mutation.57

The third group of methods relies on structural information, assuming that the ability of a
protein to function properly depends on the fundamental physicochemical properties which
can be derived only from structures.23 One research group, for example, investigated the
relevance of combining coarse-grained structure-based stability predictions with a simple
comparative modeling procedure.58 CUPSAT (Cologne University Protein Stability
Analysis Tool) uses structural environment specific atom potentials and torsion angle
potentials to predict ΔΔG59 whereas Site Directed Mutator (SDM) uses a statistical potential
energy function;60 Some methods use empirically derived energy functions which are quite
accurate in part because they are trained on the experimental data. The most prominent
example is the empirical force field of FoldX which has been optimized for point
mutations,19 and implemented into a computer algorithm and webserver, FOLDEF, to
predict folding free energy change. 61; 56 Another method which utilizes structural
information is ERIS which applies the Medusa force field while including backbone
flexibility to make predictions. 62 Recently an interesting approach was introduced
(MutPred) 63 which uses a broad range of different attributes based on protein sequence,
structure and dynamics. This method models the changes of sequence and structural features
between wild-type and mutant sequences where changes are expressed as probabilities of
gain or loss of an attribute.63 Another approach for predicting changes of the folding free
energy upon mutations is implemented in a method called CC/PBSA.64 It utilizes
Concoord 65 to generate a structural ensemble of the target protein and calculates the folding
free energy with Poisson-Boltzmann (Delphi 66) Surface Area (PBSA) method. Structural
information is utilized in HOPE as will, either using experimentally available structures or
structures built by homology in conjunction with energy calculations done with WhatIf.67

Several papers reported comparisons of the performance between different
methods.68; 69; 70; 71 In order to assess the performance, a systematic analysis is necessary.
Although there is no single measure that accurately gauges the performance, some helpful
measures include ROC, AUC, sensitivity, specificity, positive and negative predictive
values.72 Different factors may influence the prediction accuracy including the type of
substituted amino acid, protein structural class and flexibility, structural environment of an
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affected site. All these factors should be considered when judging the effectiveness of a
given approach.73 It is outside of the scope of this review to rank the performance of the
existing tools (including Dmutant,74 MultiMutate,75 SCide,76 Scpred,77 SRide,78

nsSNPAnalyzer,79 Panther,80 PhD-SNP,6 SNAP,81 and SNPs&GO,82 among other well-
known tools), because different benchmarking papers (see reviews 83;68;73;84) report
conflicting results. The main conclusion is that various groups of methods complement each
other and are suited for different types of tasks.

Effect of mutations on hydrogen bond network and ionization states
Protein stability is determined by many different factors and the formation of hydrogen
bonds is among the most important ones. Hydrogen atoms are an essential component of the
atomic structure of biological macromolecules. Among all hydrogens, those carrying
significant positive partial charge, the so-called polar hydrogens, are particularly important
because of their ability to form hydrogen bonds. In structures of biological macromolecules
the hydrogen bond is formed between a polar hydrogen and a negatively charged hydrogen
acceptor, typically an oxygen atom. In water phase, the water hydrogens and oxygens form a
complex network of interactions resulting in water clusters. The arrangement of hydrogen
bonds at the macromolecular surface is even more complicated involving interactions
between macromolecular and water atoms. The groups of hydrogen bonds often form a
cluster or a web of interactions resulting in so-called hydrogen bond network. Hydrogen
bonds and hydrogen bond networks participate in biological functions of macromolecules
and provide the pH-dependence associated with many biological reactions. They contribute
to protein structural integrity, provide “proton wires” for proton translocation, the source of
proton uptake/release and, finally, participate in many catalytic reactions. Below we briefly
outline the mechanisms of how missense mutations may affect the hydrogen bond networks.

Hydrogen bond networks and macromolecular structure
As was mentioned above, the hydrogen bonds are key constituents of biomolecular
structures,85 participating in the formation of SSEs,86 tertiary and quaternary structure.87 A
mutation resulting in the removal or addition of a hydrogen donor or acceptor is expected to
have a significant impact on the structural integrity. Even a conservative mutation which
results in different donor-acceptor positions, may still be quite deleterious for the structure
and may disrupt the entire hydrogen bond network (Table 3).

Figure 2 shows one example of mutation N550K in Isoform 3 Lactosylceramide alpha-2,3-
sialyltransferase, which is associated with Autosomal Recessive Neurocutaneous Condition.
As can be seen from this figure, the wild type residue, N550, is involved in several hydrogen
bonds, which are deleted in the mutant. In another example of the Aldosterone synthase
deficiency, it was demonstrated that molecular mechanism of this disease involved mutation
R374W in CYP11B2 protein, which changed the properties of the hydrogen bond network
of the wild type Arg residue.88 Similarly, in patients suffering from mitochondrial fatty acid
oxidation disorder and bearing a R595W mutation in the CPT1 protein, the disease was
attributed to a disruption of the wild type hydrogen bond network formed by the wild type
R374 residue.89 In another case the rearrangement of the hydrogen bond network due to a
missense mutation (I150T) in spermine synthase was predicted to be the main cause of the
Snyder Robinson syndrome.90 Further mutational analyses of the same protein indicated that
almost any mutation affecting this residue involved in a wild type hydrogen bond network
will have drastic effects on the wild type properties of the hydrogen bond network and
macromolecular stability.46

The effect of mutations on hydrogen bond network is especially pronounced if the network
involves active site residues. For example, a recent study showed that the low catalytic
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efficiency of a mutant, T560M, found in human lipoxygenase is caused by the alterations of
a hydrogen bond network interconnecting this residue with active sites; this in turn may lead
to a predisposal to cardiovascular diseases.91 The wild type hydrogen bond network and
stability of tertiary structure was also reported to be altered by missense mutations causing
congenital hereditary cataract disease.92 These limited examples confirm the importance of
the hydrogen bond network for structural integrity of macromolecules and point to the
necessity of predicting such effects in the context of missense mutations.

Hydrogen bond network in protein aggregation and flexibility
The aggregation, or formation of amyloid fibrils is one of the primary sources of many
diseases.93; 94; 95; 96 Missense mutations disrupting the native hydrogen bond(s) can
destabilize the local structure and thus expose the hydrophobic core of the protein to the
water phase. Such an event frequently triggers aggregation and fibril formation. Several
examples are listed in Table 3. Biological reactions frequently are accompanied by small or
large protein conformational changes.97 Consequently, the ability of macromolecules to
retain their conformational flexibility is crucial to their function. Altering the hydrogen bond
network by missense mutation can affect the conformational flexibility needed for allosteric
regulation and conformational gating. Several examples of an altered protein flexibility
causing diseases are listed in Table 3. At the same time, altering the wild type flexibility
through mutations may not necessarily result in the pathogenic effect.98 A detailed analysis
is usually required in order to attribute the change of flexibility to a particular molecular
function.

Hydrogen bond networks and pH-dependence
Practically all biological processes are pH-dependent and pH is an important regulator of
cellular function. Different compartments of the cell have different characteristic pH (see
reviews 99100, 24, 101). Macromolecules that shuttle between different cellular compartments,
as for example, prolactin receptor, 102; 103 have their pH-dependent characteristics precisely
tuned to the local pH. Thus, in order to function properly and interact with its biological
partners, the protein needs maintain specific pH dependent characteristics22 which can be
very sensitive to single point mutations.104 In addition, single point mutations may affect a
protein’s cellular location.105 More examples are provided in Table 3.

Hydrogen bond networks and catalytic reaction
Hydrogen bonds participate in catalytic reactions in various ways: they coordinate the
substrate and can be formed or disrupted during the reaction process (donating or accepting
a hydrogen via general acid/base residues) (Table 3). Typically the catalytic reaction is
mostly affected by a substitution of an amino acid directly involved in the catalysis.
However, it should be mentioned that active site residues are rarely mutated and mutations
often occur in the sites connected to the active site region via hydrogen bond networks. The
most drastic change of the hydrogen bond network is caused by protonation/deprotonation
of titratable groups. Thus, the pKa shifts of catalytic residues induced by a mutation will
disrupt the general acid/basic reaction and will dramatically affect the catalysis.

Approaches to model effects of mutations on hydrogen bond networks
Assessing the effect of mutations on hydrogen bond networks is not a straightforward task
since the positions of protons (hydrogens) are typically not resolved experimentally, but
rather should be generated in silico. Even more, the protonation states of titratable groups,
which are responsible for pH-dependence of biological processes including general acid/
basic catalysis, are typically unknown and have to be predicted as well.
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In the simplest case scenario when mutation does not involve the protonation change, the
analysis of the hydrogen bond network begins with placing the missing hydrogens onto the
wild type and mutant 3D structures. By doing so, one typically assumes default protonation
states of titratable groups at pH equal to 7. However, many biological reactions occur at pH
different from neutral and careful analysis would require obtaining the biochemical data on
the optimal/characteristic pH.106; 100;24 At the next step, protons’ positions are generated
with the standard Molecular Dynamics (MD) packages such as NAMD,107 Charmm,108

Amber,109 Gromos,110 Gromacs,111 or other stand-alone programs such as REDUCE112 and
PDB2PQR113. Then one would compare hydrogen bonds in the minimized structures of
wild type and mutant proteins.90 A more sophisticated analysis would involve the
comparison of the hydrogen bonds in the snapshot structures obtained in MD simulations.
All MD packages have tools for the analysis of hydrogen bond networks. A recently
developed standalone program (HBonanza,114 hydrogen-bond analyzer; http://
www.nbcr.net/hbonanza), allows the analysis and visualization of hydrogen-bond networks.
HBonanza can be used to analyze single structures or many structures of a molecular
dynamics trajectory.

Cases where mutation induces changes in the protonation state of titratable groups are much
more complex. It should be mentioned that such ionization changes may occur even if
mutation does not involve titratable groups.46 Predictions of protonation states can be done
by calculating the pKa’s of titratable groups and then by assigning the appropriate charge
states depending on the characteristic pH for a given protein. There are many approaches for
computing pKa’s which are reviewed in 115. Some of them are standalone programs such as
MCCE,116 ProPKA,117 while others are implemented into webservers such as H++118.

Effect of mutations on conformational dynamics
Biological macromolecules may adopt different conformations along the pathway of the
corresponding biochemical reaction119; 120 and their intrinsic flexibility, the ability to
sample alternative conformations is crucial for protein function.121; 122 Furthermore, a
significant fraction of macromolecules is either disordered or has disordered segments at a
particular stage of the biological reaction.123; 124 Missense mutations can affect the
flexibility of the entire molecule or just a small region, can shift the equilibrium between
different conformations or can affect the entire conformational dynamics of the molecule. In
a most recent study of the NFAT5 transcription factor, different mutations from the same
DNA-binding loop were analyzed.125 It was shown that even though these mutations are
located very close to each other in sequence and space, their effect on protein dynamics and
DNA binding is drastically different. Typically the changes of conformational dynamics are
assessed computationally via monitoring the RMSD of the wild type and mutant structures
and recorded via the snapshots obtained in Molecular Dynamics (MD).

Below we outline different aspects of effects of mutations on protein dynamics and provide
examples of recent finding with this regard. The most commonly used approach to study
protein dynamics is MD simulations, although Monte Carlo methods and Normal Mode
Analysis can be utilized as well. Most widely used packages are NAMD,107 Charmm,108

Amber,109 Gromos,110 Gromacs,111 TINKER,126 and others.

Effect on protein flexibility
Molecular flexibility is reflected in the ability of a macromolecule to sample alternative
conformations, as for example to open/close the gate of a channel, to mediate the
recognition of the receptor or to facilitate the allosteric reactions. Typical examples are
centrosomes, which are central regulators of mitosis often amplified in cancer cells.
Specifically, the centrosomal protein CEP63 is associated with an aneuploidy and solid
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tumors in humans. When genetic alterations such as L61P occur, they increase flexibility of
the protein, as seen in MD simulations, which was suggested to be the cause of the
disease.127 Although mutations may cause different diseases, the common trend is the same,
namely, disease can be associated with a change in the conformational or dynamical
properties of the corresponding protein (Table 4).

Another case is phosphatase and tensin homolog (PTEN) protein which plays essential roles
in cellular processes including survival, proliferation, energy metabolism, and cellular
architecture. Mutations in PTEN are implicated in diabetes and cancer. A particular
mutation (H61D) was studied using MD simulations and it was shown that it increases the
flexibility, radius of gyration, and solvent accessibility of PTEN.128 The list of examples
would be incomplete without mentioning the “conformational diseases”, where native
protein conformers convert to pathological intermediates that can polymerize. Recently a
forme fruste deficiency variant of α(1)-antitrypsin (K154N) was investigated by the Nuclear
Magnetic Resonance spectroscopy and it was found that this mutation alters the wild type
interaction of the side chain of K154 with the backbone carbonyl oxygen of K174, affecting
protein flexibility and resulting in polymerization. 129

Disease mutations might not only lead to increased flexibility, on the contrary, they can
restrict the conformational transitions. One example includes mutations in the human
protoporphyrinogen oxidase (hPPO) gene which are responsible for the dominantly inherited
disorder variegate porphyria (VP). Two missense mutations (R59Q and R59G) were
investigated in a recent work130 where MD modeling revealed that these mutations affect
the catalytic activity of hPPO by changing its ability to sample different conformations.
Analysis of mutation H101Q in the CLIC2 protein demonstrated that this mutation restricted
the mobility of the N-terminal domain and prevented the conformational change presumed
to be required for entering of CLIC2 into the membrane.43; 44 In this regard, channels and
pores are very interesting objects to study since their selectivity is regulated by structural
fragments. For instance, aquaporins play physiological roles in several organs and tissues,
and their alteration is associated with disorders of water regulation. A mutant, D184E, was
shown to affect the mobility of the aquaporin D-loop, which acquires a higher propensity to
equilibrate in a “closed conformation”, thus affecting the rate of water flux 131.

Protein intrinsic disorder and disease mutations
Disordered proteins, existing in dynamic equilibrium between various conformers, may
provide a way to tolerate many mutations due to the loosely packed cores. However, the
relationship between disorder, stability, and function is not well understood. According to
some studies, about 10% of inherited disease mutations from HGMD database affect
disordered regions,63 and cancer-associated proteins are especially enriched in intrinsically
disordered regions.132 In particular, disease-related genes encoding disordered proteins or
proteins with the extended disordered regions, include α-synuclein (Parkinson’s disease),
BRCA1 (breast and/or ovarian cancer), p53 (cancer), huntingtin (Huntington’s
disease).133; 134

There are many ways in which mutations might impact disordered regions and lead to
dysfunctional proteins. If a residue that promotes disorder is mutated into a residue that
favors structural regions, such a mutation can have a drastic effect on disorder-order
transition, post-translational modifications, binding, and other functions relevant to intrinsic
disorder. Examples of such substitutions are abundant among substitutions of disorder-
promoting arginine into other residues types. Overall, about a quarter of disease mutations in
disordered regions were predicted to disrupt disorder-promoting properties. Therefore the
prediction and prioritization of disease mutations should account for the disorder-promoting

Stefl et al. Page 9

J Mol Biol. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tendency of the region where mutations occur.135; 136 Several such examples are provided in
Table 4.

Protein aggregation, misfolding and dynamics
Protein aggregation is driven by the exposure of the hydrophobic core of the macromolecule
to the water phase due to the changes in native structure and dynamics. It was shown that
mutations in peripheral myelin protein 22 resulted in the common peripheral neuropathy
Charcot-Marie-Tooth disease. One of them, L16P, caused misfolding which led to a loss of
function and toxic accumulation of aggregates.137 Another recent work studied the effects of
several mutations (V180I, F198S, V203I and V210I) known to cause prion disease and
showed that these mutations induced the misfolding and aggregation of the prion protein.138

Another case involved mutations or deletions in the FMRP protein, which participates in the
regulation of mRNA metabolism in brain, leading to the Fragile X syndrome. A severe
manifestation of the disease has been associated with the I304N mutation, located on the
KH2 domain of the protein. This mutation was found to destabilize the hydrophobic core
causing a partial unfolding and a displacement of alpha-helices.139

Similarly, mutation E342K in human serine protease inhibitor (serpin) α-1 antitrypsin
causes polymerization in the endoplasmic retuculim of hepatocytes and is associated with a
lack of secretion into the circulation. It was shown that this mutation increases local
flexibility, favors polymerization and promotes aggregation.140 Another case involves
mutations in the human prion protein resulting in Creutzfeldt-Jakob or Gerstmann-
Straussler-Scheinker diseases. The molecular dynamics modeling suggested that these
mutations promote amyloid formation.141 Other examples of disease causing mutations in
relation to aggregation and misfolding are shown in Table 4.

Effect of mutations on protein activity
Challenges of modeling of mutation effects on protein function

Protein structure-function relationships are complex and crucial for understanding and
predicting the effects of benign or disease-causing mutations on the fitness. Proteins largely
evolve through the acquisition of new mutations, the majority of them are destabilizing but
neutral. At the same time some mutations can be deleterious or damaging or may result in
advantageous novel functions. Interestingly, mutations which modify and produce novel
binding specificities were shown to have larger destabilizing effects compared to mutations
occurring on protein surfaces.142 On the other hand, since protein functional regions can be
energetically unfavorable, mutations of functionally important residues, especially of polar
and charged residues, may often result in more stable structures.143; 144; 145 Protein stability
is necessary but not sufficient for protein functioning and proteins are not necessarily
optimized to maximize their stability 146; 147. Therefore in order to assess the damaging
effect of mutations, it would be crucial to understand how they will impact functionally
important sites. Functional site prediction methods can be subdivided into several
categories: those that use evolutionary conservation of binding site motifs, those that use
information about a structure of a complex and docking methods. Some of them include
PHUNCTIONER,148 FIRESTAR,149 IBIS,150 ConCavity,151 and others.

The effects of missense mutations on proteins and their function can be understood and
modeled within the framework of the energy landscape theory which describes the potential
energy of a protein as a function of conformational coordinates 127. Different
conformational states might be characterized by different functional specificities and
structural differences. The equilibrium between conformational states can be shifted by
binding of different ligands, post-translational modifications, by changing the environmental
conditions, and, finally, by mutations. Recently, human spermine synthase activity was
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enhanced by engineered novel mutations152 and it was demonstrated that the activity
depended on electrostatic field distribution, the intrinsic flexibility of protein domains, and
the overall protein stability. This indicates the complexity of biochemical functions
involving various factors which in turn may be affecting each other. Table 5 lists exemplary
mutations and their effect on protein activity.

Case study: Receptor Tyrosine Kinases
Here we analyze the mechanisms of cancer mutations on protein stability, dynamics, and
activity using an example of the well-studied human receptor tyrosine kinase (RTK) family
that is frequently mutated in cancer. The connection between cancer and kinase activation
was found fairly recently153 and an increased RTK activity in tumor tissues was attributed to
gene amplifications, enhanced transcription, translation, and to mutations. Several cancer
mutation hotspots were identified in several RTKs, most of them were located in the
activation loop, P-loop, and DFG loops. Moreover, driver mutations were found to be more
often associated with the functionally important regions in kinases than passenger
mutations.154 The activation of certain RTKs is tightly linked with their dimerization and
high RTK activity is sometimes achieved by promoting dimerization. According to long-
timescale molecular dynamics simulations, it was suggested that cancer mutations may
suppress the intrinsic disorder on the dimer interface and stimulate the EGFR
dimerization.155

Structural studies of kinases revealed different structural perturbations in response to cancer
mutations. In particular, the mechanisms of kinase activation in cancer is probably linked to
transitions between the active and inactive states.156; 157 Indeed, the thorough analysis of the
effect of cancer mutations on kinase structure and activity showed that some mutations
disturbed autoinhibitory interactions and considerably accelerated the catalysis.156 At the
same time the crystal structure of the EGFR L858R mutant revealed that this mutation
prevented the activation loop from adopting the inactive conformation157 thereby activating
the kinase. On the other hand, the secondary EGFR T790M mutation facilitated the
transition between inactive and active conformations and increased the stability of the active
conformation.158 Enhanced mobility was observed near cancer mutations sites and modeling
of autoinhibited conformations revealed that these mutations disrupted the local stabilizing
interactions and destabilized the inactive form.159 Recently the effect of cancer mutations
was analyzed using the dataset of all available structural pairs of active in inactive states. It
was shown that cancer mutations destabilized active states, but to a lesser degree than the
random mutations; moreover, to a lesser degree than mutations destabilized inactive
states.160 This led to kinase activation. The same study found a relationship between the
statistics-based estimate of oncogenic potential of mutation and its activation effect
calculated based on thermodynamics principles. Namely, more frequent mutations had a
higher activating effect.

Multiple mutations
A more comprehensive understanding of molecular mechanisms of disease mutations may
come from the analysis of the effects of multiple mutations occurring in the same gene. It
was demonstrated previously that the number of cases where multiple mutations may occur
simultaneously in one gene is higher than the number predicted from the random mutation
distribution.161 Such multiple mutations may be the result of an accumulation of single
mutations in sequential cell replications or in the same cell cycle. The latter synchronous
mutations are usually characterized by non-random proximal spacing in higher
eukaryotes.162 At the same time, a recent study showed that the extent of the clustering of
cancer mutations might differ between oncogenes and tumor suppressors and the former are
found to be clustered while latter are not.41 A significant fraction of cancer-associated
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mutations comes in doublets or triplets where overall about 6–8% of all cancer mutations
represent double cancer mutations.160; 162; 163 Similarly to single mutations, the majority of
cancer multiple mutations occur in non-synonymous codon sites implying that doublets are
under positive selection.160; 164 The observed and simulated spectra of double mutations
generated from the spectra of single mutations were found to be significantly different for
receptor tyrosine kinase (RTK) genes, which pointed to different mechanisms underlying
single and double mutation spectra.160

Moreover, multiple disease mutations might have a synergistic phenotypic effect manifested
in enhanced or decreased protein stability or activity. For example, a double mutation was
found in β-amyloid precursor protein which resulted in an increased production and
secretion of amyloid- β-peptide causing early-onset Alzheimer’s disease.165 On the other
hand double mutations in the α-galactosidase encoding gene, which cause Fabry disease,
resulted in reduced or non-detectable activity compared to single mutants.166 A positive
epistasis was found for many double cancer mutants in RTK genes,160 namely, the effect of
multiple mutations on kinase activity was higher than a total of individual mutations. This
trend was especially pronounced for double mutations observed in more than one tumor
sample.

Concluding remarks
The effects of human missense mutations on various biophysical characteristics, stability,
hydrogen bond network, dynamics and activity, were reviewed in this work. It was
demonstrated that mutations can frequently affect several biophysical characteristics
simultaneously and may or may not cause diseases (see also 167). There is no clear threshold
of how large the change of the wild type characteristics should be in order to alter protein
function and result in disease. Predictions of damaging effects of mutations are further
complicated by the observations that enhanced activity 152, higher stability or binding
affinity,43; 44 are not necessarily advantageous for the cell and protein and can be disease
causing.
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• Missense mutations affect protein stability, hydrogen bonds, dynamics and
activity and cause diseases

• Any deviation away from wild type characteristics can be deleterious

• Changes in stability, dynamics, hydrogen bonds and activity upon mutations are
interconnected

• Rare mutations are typically more deleterious than common variants
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Figure 1.
The change in the folding free energy (ΔΔG) may be evaluated using two different methods:
(1) using the difference in the folding free energy values calculated from the transition from
an unfolded to a folded state of the wild type (ΔGWT(folding)) minus the mutant type
(ΔGMT(folding)) shown with black arrows; or (2) using the difference in the folding free
energy between the folded state of the wild type and mutant type (ΔGfolded(WT-MT)) minus
the folding free energy between the unfolded state of the wild type and mutant type
(ΔGunfolded(WT-MT)) shown with red arrows.
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Figure 2.
The region at the mutation site N550 of the wild type 3D structure of Isoform 3
Lactosylceramide alpha-2,3-sialyltransferase and mutant model which was built using
2wmlA.pdb as a template: (a) the wild type with N550 in the left panel and (b) the mutant
N550K in the right panel, both centered at the mutation site. The hydrogen bonds between
N550 and its neighbors in the wild type are shown with dashed black lines.
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Table 2

Diseases associated with changes in stability as a result of mutations

Change In Stability Disease Gene/Mutation Reference

Destabilizing Muscular Diseases LMNA; multiple sites 28

Von Willebrand Disease VWF A2; R1597W, M1528V 29

Retinal Diseases Rhodopsin; multiple sites 30

Hemophagocytic Lymphohistiocytosis Perforin; multiple sites 31; 32

Neurodegerative/Prion Diseases Prion; D178N 36

Autosomal recessive Parkinson’s Disease PINK1; multiple sites 37; 39

Familial Alzheimer’s Amyloid protein; Glu-22, Asp-23 40

Inactivation of tumor suppressants Multiple genes; multiple sites 41

Snyder-Robinson Syndrome Spermine Synthase; G56S, V132G, I150T, Y328C 46; 168

Stabilizing Mental Disorder CLIC2; H101Q 43
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Table 3

Diseases resulting from changes in the hydrogen bond network as a consequence of mutations

Effect on Disease Gene/Mutation Reference

Structure Prolidase Deficiency PEPD; 304insA 169

Aldosterone Synthase Deficiency CYP11B; R374W 88

Mitochondrial Fatty Acid Oxidation Disorder CPT1; R595W 89

Snyder-Robinson Syndrome Spermine synthase; I150T 46

Cardiovascular Disease Predisposition Human lipoxygenase; T560M 91

Congenital Hereditary Cataract Disease βB1-crystallin; S129R 92

Aggregation/Folding Alzheimer’s Disease amyloid-β peptide aggregation; multiple sites 170

Familial Alzheimer’s Disease Fragment of amyloid beta- protein; multiple sites 171

Amyloidosis (with severe cardiomyopathy) Aggregation/cytotoxicity of transthyretin; S112I 172

Flexibility Aneuploidy and Solid Tumors CEP63; L61P 127

Gaucher disease acid-β-glucosidase; N370S 173

Lethal Catecholaminergic Polymorphic Ventricular
Tachycardia

Calsequestrin; R33Q 174

Promotion of Aneuploidy and Tumorigenesis Centromere-associated protein-E; Y63H 175

Cellular Localization Brain Tumors ING1B; p33 176

May-Hegglin anomaly, Sebastian syndrome, and
Fechtner syndrome

MYH9; multiple sites 177

pH Human Amyloidosis TTR; several residues 178

Mental Retardation CLIC2; H101Q 44

Alzheimer’s Disease Apolipoprotein E, apoE4 isoform 179

Activity Pyruvate Dehydrogenase Complex pyruvate dehydrogenase 180

Deficiency E1α subunit protein; multiple sites

Classical Homocystinuria cystathionine β-synthase; R266K 181

Amyotrophic Lateral Sclerosis Disease angiogenin protein; K17I 182

Neonatal Epileptic Encephalopathy pyridoxine 5′-phosphate oxidase; R229W 183

Snyder Robinson Syndrome spermine synthase; I150T 90
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Table 4

Effects of disease mutations on conformational dynamics

Effect Disease Associated Gene/Mutation Reference

Conformational Flexibility Diabetes and Cancer PTEN; H61D 128

Multiple Diseases cNTnC; L48Q 184

Conformational Diseases α(1)-antitrypsin variant; K154N 129

Variegate Porphyria Disorder hPPO; R59Q, R59G 130

Colorectal Cancer mitotic centromere-associated kinesin
protein; E403K

185

Classic Galactosemia GALT; multiple sites 186

Becker Muscular Dystrophy dystrophin protein; L427P 187

Disordered Regions Parkinson disease α-synuclein; multiple sites 133

Ovarian Cancer HPV proteins; multiple sites 133

Cancer p53 protein; multiple sites 133

Huntington’s disease huntingtin; multiple sites 133

Order-Disorder Transitions Stargardt Disease (type 1) Multiple mutations 188

Adrenoleukodystrophy X-linked Multiple mutations 188

Androgen Insensitivity Syndrome Multiple mutations 188

Citrullinemia (type 1) Multiple mutations 188

Aggregation Alpha(1)-antitrypsin Deficiency and Cystic
Fibrosis

human serine protease inhibitor (serpin) α-1
antitrypsin; E342K

140; 189

Creutzfeldt-Jakob disease and Gerstmann-
Straussler-Scheinker Disease

prion protein; multiple sites 141

Local Motion Cancers KLK3; multiple sites 190; 191; 192
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Table 5

Examples of disease-related mutations that affect protein activity and function.

Gene/Protein Disease Mutation Effect Reference

ATP-binding cassette
transporter (ABCA1)

Tangier disease(reduction of HDL
Cholesterol in plasma)

N1800H Changes the localization of
protein, resulting in intracellular
accumulation of ABCA1 and loss
of interaction with ApoA-I.

193

W590S Impairs dissociation of apoA-I
from ABCA1, which may affect
ATP-dependent lipid translocation.

194

Niemann–Pick C1-Like
protein 1 (NPC1L1)

Hypocholesterolemia(reduction of LDL
Cholesterol in the plasma)

T61M, S881L Severely dysfunctional mutations;
affect cholesterol uptake function,
cholesterol-regulated recycling,
glycosylation and stability of the
protein.

195

G402S, R1268H Partially dysfunctional mutations;
affect cholesterol-regulated
recycling.

195

Thiazide-sensitive
sodium-chloride
cotransporter (SLC12A3)

Gitelman syndrome (salt wasting and
low blood pressure)

G439S, G741R Abolish sodium uptake function
due to loss of localization at
plasma membrane, which may be
caused by incomplete
glycosylation.

196

Chloride intracellular
channel protein 2(CLIC2)

X-linked intellectual disability H101Q Stabilizes the protein, which in
turn may increase ryanodine
receptor activity.

44

Histone-lysine N-
methyltransferase
(MLL2)

Kabuki syndrome W5065X, R5179H May affect the epigenetic control
of active chromatin states via
methylation of histones.

18
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