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All living systems require biochemical barriers. As a consequence, all drugs, imaging agents, and
probes have targets that are either on, in, or inside of these barriers. Fifteen years ago, we initiated
research directed at more fully understanding these barriers and at developing tools and strategies
for breaching them that could be of use in basic research, imaging, diagnostics and medicine. At
the outset of this research and to a lesser extent now, the “rules” for drug design biased the
selection of drug candidates to mainly those with an intermediate and narrow log P. At the same
time, it was becoming increasingly apparent that Nature had long ago developed clever strategies
to circumvent these “rules”. In 1988, for example, independent reports appeared documenting the
otherwise uncommon passage of a protein (HIV-Tat) across a membrane. A subsequent study
called attention to a highly basic domain in this protein (Tatsg_57) being responsible for its cellular
entry. This conspicuously contradictory behavior, i.e., a polar, highly charged peptide passing
through a non-polar membrane, set the stage for learning how Nature had gotten around the
current “rules” of transport. As elaborated in our studies and discussed herein, the key strategy
used in Nature rests in part on the ability of a molecule to change its properties as a function of
microenvironment, being a polarity chameleon — i.e., being polar in a polar milieu and relatively
non-polar in a non-polar environment. Because this research originated in part with the protein Tat
and its basic peptide domain, Tat,g_s7, the field focused heavily on peptides, even limiting its
nomenclature to names such as ‘cell-penetrating peptides,” ‘cell-permeating peptides,” “protein
transduction domains,” and ‘membrane translocating peptides’ to note a few. Starting in 1997,
through a systematic reverse engineering approach, we established that the ability of Tatsg_57 to
enter cells is not a function of its peptide backbone, but rather the number and spatial array of its
guanidinium groups. These function-oriented studies allowed one to design more effective
peptidic agents and to think beyond the confines of peptidic systems to new and even more
effective non-peptidic agents. Because the function of passage across a cell membrane is not
limited to or even best achieved with the peptide backbone, we referred to these agents by their
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shared function, i.e., ‘cell-penetrating molecular transporters’. The scope of this molecular
approach to breaching biochemical barriers has expanded remarkably in the past 15 years,
enabling or enhancing the delivery of a wide range of cargos into cells and across other
biochemical barriers; creating new tools for research, imaging, and diagnostics; and introducing
new therapies into clinical trials.

Introduction

Since the first designed cell-penetrating guanidinium-rich molecular transporters were
reported in 2000, numerous new classes of guanidinium-rich molecular transporters have
been described, including guanidinium-rich peptoids, carbamates, carbonates,
carbohydrates, nucleic acids and dendrimers.1=3 These molecular transporters have been
shown to deliver a variety of cargos, including small molecules, peptides, proteins, imaging
agents, metals, sSiRNA, PNAs, plasmids, quantum dots, xenon cages, vesicles and vaults,
across a variety of cellular and tissue barriers, including bacterial, algal and mammalian cell
membranes, human skin and the blood brain barrier (BBB).2-6 Companies have been
launched based on this technology, and the number of publications pertinent to this subject
has increased every year, now averaging over 1 paper per day (Figure 1). According to
PubMed, the seminal Wender and Futaki papers, which are only 12 years old, have been
cited collectively almost 1500 times.1’

The striking growth in research on molecular transporters has been further fueled by the
growing academic and clinical interest in biologics, including antibodies, peptides, proteins,
and oligonucleotides, which are expected to dominate the top ten drugs by 2014.8 New
delivery strategies would enhance the performance of such biologics against extracellular
targets, and also open a vast range of opportunities associated with intracellular and tissue
targets protected by other barriers (e.g., BBB, ocular, lung, skin, aural).

Here we present a brief overview of the development of designed cell-penetrating,
guanidinium-rich molecular transporters inspired by Tat. We have divided this scientific
journey into three post-1988 periods: “Initial Discoveries” (1997-2001), “Insights and
Advances” (2002-2007), and “The Next Generation” from 2008 to present (and beyond).
Major milestones are displayed in Figure 2 and impressively covered in recommended
reviews,23:9.10

Part I: 1997—2001: Initial Discoveries

Traditional “rules” for drug design logically posit that drugs with intracellular targets should
exhibit a balance of hydrophilicity and lipophilicity, the former for dissolution in polar body
fluids and the latter for passage through non-polar membranes. The findings of Green and
Lowensteinl! and Frankel and Pabo? that the HIV-1 Tat protein, unlike most proteins,
readily enters cells thus flew in the face of conventional wisdom. The anomalous behavior
of HIV-1 Tat was further addressed by Lebleu and coworkers, who discovered that the
amphipathic alpha-helical region of this protein, thought to have been responsible for its
cellular uptake, was in fact not required. Counter-intuitively, the cell-penetrating function of
the protein was imparted by the adjacent cation-rich region (RKKRRQRRR), often referred
to as Tatsg_s7 or the Tat 9-mer.13 Uptake studies with the peptide at 4°C indicated that
endocytotic pathways were not solely involved for fluoresceinated peptides, providing
evidence that the cell-penetrating function of the Tat peptide involves a novel
mechanism.213

It was clear from the seemingly contradictory behavior of Tatsg.57 — a highly water soluble
molecule that readily crosses the non-polar cell membrane — that there was a potentially
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powerful lesson to be learned and potentially exploited in the design of new and more
effective drug delivery strategies. We thus set out to identify the key features of Tatsg.57 that
enable its passage through cellular membranes. Through a series of systematic N- and C-
termini truncations of Tatsg_57, we found that the full-length nonamer provided optimal cell
uptake. An alanine scan, in which each residue of Tatsg.57 was individually replaced by an
alanine, showed that all substitutions reduced uptake, except substitution of the only
noncharged residue, glutamine, which produced a 9-mer with cell uptake similar to the
native peptide.! To address the then unknown relative contributions of lysines and arginines
to the cell-penetrating function, homooligomers of lysine and arginine were analyzed for cell
uptake.1:14 This breakthrough study showed that homooligomers of lysine were less
effective than Tatsg_57 in cell-penetrating function, but, significantly, homooligomers of
arginine were dramatically better than Tatsg.57. Thus the cationic charge of lysines alone is
not sufficient for uptake while cationic guanidinium groups of arginines and their number
are critical (5-20 arginines, with 7-9 being the best compromise of cost and performance).

We proposed that the difference between arginines and lysines could arise from the ability
of the guanidinium group of arginine, unlike the ammonium group of a lysine, to form a
bidentate hydrogen bond with anionic cell surface phosphates, carboxylates and/or sulfates,
as the initiating event of cellular entry.15 We tested this hypothesis by replacing the
hydrogens of the guanidinium groups with methyl groups incapable of hydrogen bonding.
While still charged, the N-methylated guanidinium groups were profoundly less effective at
entering cells.

Uptake of both the unnatural D-amino acid analog of Tatsg_57, d-Tatsg.57, and the retro-
inverso analogs Tats7.49 and d-Tats7.49 by flow cytometry revealed an aspect of these
molecular transporters that proved critical for design: cell-penetrating function is retained
despite changes in backbone stereochemistry.! These experiments also indicated that the
mechanism of cell uptake of Tatsg.57 and analogs was not receptor-mediated given that
enantiomeric molecules exhibited similar function.

Contemporaneously, Futaki and coworkers examined a series of natural Tat-related, RNA-
and DNA-binding peptides, many of which were arginine-rich and entered cells.” They
proposed that there was likely a common, but unspecified, mechanism for cell uptake of
arginine-rich peptides. Our structure-function studies provided a more specific structural
view, indicating that uptake was a function of the number and array of guanidinium groups.

Given that changes in stereochemistry of guanidinylated peptides did not dramatically affect
cellular uptake, it was expected that the natural peptide backbone would not be required for
cell-penetrating function. To test this hypothesis, a series of peptoid molecular transporters
with guanidinium-containing sidechains was synthesized.! Remarkably, these molecules
exhibited uptake similar to that of the oligoarginines. Longer spacing between the peptoid
backbone and guanidinium functionality also improved cellular uptake, suggesting that
molecular flexibility is beneficial to function. Importantly, this study established for the first
time that the function of Tat,g.57 can be mimicked by a variety of guanidinium-rich
oligomers, thereby providing a rationale for the design of new molecular transporters that
could be tailored to specific needs of stability, biodegradability, toxicity, or intracellular
targeting.

The collective advances of this period serve as a powerful exemplification of function- and
synthesis-informed design, i.e. “function-oriented synthesis” (FOS).16 FOS is based in part
on the view that while Nature has produced solutions to many problems, they are neither
directed at, nor optimized for human use. Thus the ability of the polar Tatsg9.57 peptide to
enter cells, while inspiring, can be mimicked, if not exceeded, through synthesis-informed
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design once the structural determinants of function are identified. With the importance of
guanidinium number and array established, it became possible to design new guanidinium-
rich transporters with improved performance and ease of synthesis.

The clinical potential of this technology was first addressed in a preclinical study of
transporter-mediated drug delivery into human skin. The cyclic peptide, cyclosporin A
(CsA), was chosen as the drug candidate because it is effective against several skin
disorders, including psoriasis, but causes off-target toxicity when delivered systemically.’
By itself, CsA does not penetrate skin. Thus, in a first-in-class study, we sought to determine
whether a CsA-oligoguanidinium conjugate would cross the stratum corneum and enter skin.
Previous studies had shown that the Tat transporter crosses the blood-brain barrier,
demonstrating the potential for breaching tissue barriers in addition to cellular membranes.18
To visualize penetration into skin, biotinylated hepta-D-arginine-CsA conjugates (biotin-r7-
CsA) were applied with vehicle to a human skin graft on the back of a nude mouse, and after
two hours skin biopsies were obtained and the tissue cryosections stained with either
fluorescein- or peroxidase-labeled streptavidin.1? Visualization of the labeled tissue revealed
that nearly all keratinocytes in the epidermis and a large number in the dermis contained
biotin-r7-CsA, indicating that the transporter conjugates were indeed able to penetrate skin.
The CsA-oligoarginine conjugates entered the clinic, passing phase | safety studies.
Conjugate uptake was also observed but the pH-based release of free CsA was too slow,
prompting the introduction of a more effective release strategy.1?

While drug release is not required for all applications, it is for some, including CsA. We thus
turned to bioactivatable release strategies, for which release would occur only upon cell
entry. Our test cargo was the octapeptide, ye RACK, which reduces ischemic damage by
modulating e protein kinase C activity.20 Like many peptides, weRACK is not cell
permeable. However, a conjugate of weRACK and heptaarginine attached through a redox-
cleavable disulfide linker rapidly entered cardiomyocytes and released free wyeRACK
peptide, thereby reducing ischemic damage in intact rat hearts.

The rapid clinical translation of the guanidinium-rich transporter technology with CsA and
the weRACK peptide is a testament to the robustness of this technology and the value of
new delivery strategies. Of special significance, this research established that peptides,
previously thought to be poor drug candidates because of cell uptake problems, could be
directly used as leads and drugs, thereby making the need for peptidomimetics unnecessary
in many cases.

Part 1l: 2002—-2007: Insights and Advances

The period from approximately 2002 to 2007 was marked by many advances enabled by the
earlier structure-function studies. During this period, much effort was directed at
mechanisms of cell entry, designing new transporters and exploring new cargos.

Our finding that the number and spatial array of guanidinium groups are the key
determinants of transporter cellular uptakel paved the way for the design of several new
guanidinium-rich transporter scaffolds (Figure 4). We first showed that homooligomers of
D-arginine readily enter cells, which inspired the initial study of guanidinium-rich peptoids.
That these peptoids showed better uptake with longer side chains, led in turn to the synthesis
of over 60 “spaced” transporters, each containing seven guanidinium groups interdigitated
by one or more aminocaproic acid groups.2! The maximally spaced system
(RXRXRXRXRXRXR) performed better than the unspaced heptamer (RRRRRRR).
Impressive contemporaneous studies from other groups further expanded the types of amide
scaffolds that exhibit cellular penetration, including B-peptides?223 and polyproline
scaffolds.24 Marking a departure from the peptide and amide theme, we reported the first
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non-amide linked transporters in 2002, showing that oligocarbamates decorated with
guanidinium groups work as well as, and for selected cases better than, the corresponding
arginine oligomers.25 Similarly, guanidinylated carbohydrates also exhibit cellular
uptake.26:27 In 2002 the first branched guanidinium-rich molecular transporters were
reported.2® Branched scaffolds including dendrimers have also been reported by our group
and the groups of Goodman and Harth.29-31

Direct guanidinylation of cargo also proved effective for enabling cell entry. For example,
per-guanidinylated tobramycin and neomycin B showed enhanced cellular uptake.32:33
Guanidinylation of oligonucleotide scaffolds also proved effective, working with
guanidinylated peptide nucleic acids,3* base guanidinylation,3® or guanidinylation along the
backbone.36:37

The period of 2002-2007 witnessed an expansion in the types of cargos delivered using
guanidinium-rich transporters. In 2003, we reported that cysteine-flanked guanidinium-rich
transporters can non-covalently complex and deliver DNA plasmids into cells both in vitro
and in vivo.38 Using DNA as a template, the oligomers were designed to form a disulfide-
linked polymer that packages and delivers DNA. This noncovalent complexation strategy
has also been used by us and others to deliver gene-silencing siRNA.3%41 In 2006, Kim and
coworkers reported that noncovalent complexes of cholesterol-nonaarginine and vascular
endothelial growth factor siRNA entered cells in vitro and in vivo.3? Subsequently, Kumar
and coworkers reported that conjugates of R9 and rabies virus glycoprotein (RVG)
complexed and delivered siRNA across the blood brain barrier.4 In both cases the
guanidinium-rich subunit was used to complex the siRNA, while delivery was mediated by
the conjugated cholesterol or RVG peptide putatively through receptor-mediated
endocytosis. Our siRNA delivery studies used a similar strategy (vide infra).4!
Guanidinium-rich transporters have delivered morpholinos, uncharged oligonucleotide
mimics which modify gene expression.#2 Guanidinium-rich transporters have also delivered
a variety of nanocarriers, including cargo-loaded liposomes and nanoparticles,® as well as
metal complexes including indium, technetium, gadolinium, caged contrast agents, and even
iron nanoparticles.6:43

A long-standing question with guanidinium-rich transporters is their mechanism(s) of
cellular uptake. Over 30 mechanistic studies have addressed this question.2 Many articles
start with a variation on the statement that the mechanism is “unclear.” It is, however,
important to differentiate “unclear” from a function that depends on many variables,
including transporter type, cargo type and size, cell type, and method of uptake analysis.
Historically, chemists have unequivocally shown that many processes, even simple
substitution reactions, can proceed through several pathways depending on many variables.
Cell entry is not dissimilar. That noted, there are points of general agreement common to
several mechanisms. As we showed in our early mechanistic studies on methylated
guanidinium groups, positively-charged guanidinium groups are ideally suited to bind to
negatively-charged cell surface carboxylates, sulfates and phosphates through electrostatic
association and bidentate hydrogen bonding, initiating cell entry.1> We further showed that
membrane potential influences uptake of small molecule oligoarginine conjugates. One
mechanistic hypothesis, called ‘adaptive translocation,’ is that the poly-cationic
guanidinium-rich transporter forms a complex with oppositely charged groups on the surface
of the cell using bifurcated hydrogen bonds (Figure 5). This association diminishes the
polarity of both participating groups by forming an ion pair, now attached to the cell
membrane. The number of guanidinium groups influences the persistence of this association
like the length of a Velcro strip. While this mechanism could operate for small cargos, as the
cargo size increases, endocytotic mechanisms are expected to compete and/or dominate.*4
Because of the structural variety of guanidinium-rich transporters, the variation in cell type
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and tissue being traversed, and the large variation in cargo size, structure, physical
properties, and type (from DNA to small molecules), a universal mechanism for
guanidinium-rich transporter cell entry is unlikely. Even the co-occurrence of competing
pathways is suggested by our single molecule studies, in which two types of behavior of
individual molecules on a living cell were directly observed.*

For many cargos, covalent conjugation to a transporter will not change the bioactivity of the
cargo. For others, the transporter-cargo conjugate could serve as a prodrug that is then
cleaved, releasing free drug, after cellular entry. Early attempts had used pH-based cargo
release,1’ but this approach increased release rates at the expense of shelf stability. To avoid
this problem we focused on bioactivatable release systems that could be initiated with
esterases, phosphatases, proteases, or intracellular redox events. We attached the cargo to
the transporter through a disulfide bond, which would cleave upon encountering intracellular
glutathione (Figure 6A).19 This release system takes advantage of the higher levels of
intracellular over extracellular glutathione. Luciferin was used as a drug surrogate to
simulate drug uptake, release, and interaction with its intracellular target, which in the case
of luciferase produces a photon of light per molecule of luciferin, allowing one to quantify
uptake and release in real time in both cells and animals.194 This bioactivatable release has
since been used by our group for the delivery of taxol-releasing conjugates that overcome
resistant ovarian cancer.46

The period from 2002-2007 witnessed advances of exceptional significance with respect to
targeted delivery. For context, monoclonal antibodies, the current workhorse of targeted
delivery, rely on the thermodynamics of cell surface antigen binding. Both the Tsien and our
group investigated whether transporters could be used for “kinetic targeting” by connecting
the oligoguanidinium sequence to an oligoanion sequence through a peptide that is cleaved
by a cell surface protease (Figure 6B). The oligoanion sequence hydrogen bonds to the
oligoguanidinium groups, preventing interaction with the surface of the cell membrane and
thereby preventing cell uptake. However, once the connecting peptide sequence is cleaved,
the oligoanion sequence dissociates from the transporter, allowing the transporter to enter
proximate cells. The Tsien group reported on this strategy with a matrix metallo-protease-
cleavable connecting sequence,*” while our group used a prostate-specific antigen-cleavable
sequence.*8 The Tsien group has advanced this technology for use in tumor imaging.*
While still new, this approach to targeting offers many advantages over monoclonal
antibody targeting.

Part Ill: 2008-Today: The Next Generation

While the first period of transporter research established the structural basis for
guanidinium-rich transporter uptake, and the second used that knowledge to expand the
scope, the third generation is now harnessing the power of this technology in medicine and
research (Figure 7).

In 2008 we explored whether transporters could address export-based drug resistance, a
major cause of chemotherapy failure. Multidrug resistant cancer can be attributed to many
factors, though it is often dominated by the overexpression of membrane-associated efflux
pumps, most commonly P-glycoprotein (P-gp), which expel drugs from the cell
membrane.®0 Ironically, many drugs succumb to export as they are unwittingly designed to
be membrane soluble. In contrast, transporter-drug conjugates have physical properties
distinct from the drug alone and rapidly pass through membranes. Rather remarkably,
conjugation of octaarginine through a bioactivatable disulfide linker to Taxol provides a
conjugate that overcomes resistance to Taxol in Taxol-resistant ovarian carcinoma cells
(Figure 7A).46 The Pgp-evading transporter-drug conjugate renders the drug water-soluble,
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eliminating the need for toxic excipients (e.g., CremophoreEL) and minimizing volume of
formulation. This strategy to overcome resistance was demonstrated in animal models of
ovarian cancer and in ex vivo human ovarian cancer patient samples.>! Remarkably, the
Taxol-octaarginine conjugates significantly outperformed Taxol alone in all patient samples.
The ability to overcome Pgp-based drug resistance with oligoarginine conjugates is a
promising and general strategy that could improve the prognosis for cancer treatments and
other diseases associated with drug efflux and resistance.

The power of FOS is that it enables one to design for both superior function and step-
economical synthesis. Regarding the latter, while octaarginine transporters have been made
on GMP scale, and a segment doubling strategy was developed as a step-saving method to
access homooligomers,>2 the number of synthetic steps in these approaches scales linearly
with transporter length. To address this problem, an oligomerization strategy was
introduced, allowing for the assembly of transporters of various lengths in a single
operation, simply by varying the initiator-to-monomer ratio. Advantages of an
oligomerization approach include fewer workups and purifications, and lower costs while
allowing rapid access to new transporters as a result of the flexibility and speed of the
synthesis (time economy).

In 2008, the Kiessling and Tew labs independently reported the ring-opening metathesis
polymerization (ROMP) of functionalized norbornene- and oxanorbornene-derived
monomers to access guanidinylated oligomers.>3:>4 Both groups subsequently showed that
block copolymers containing guanidinium-rich sections also facilitated cell uptake.>:56
Recently Matile and coworkers developed a disulfide polymerization strategy to access
guanidinylated oligomers.>’

In 2009, in collaboration with Hedrick (IBM) and Waymouth (Stanford), we reported a
metal-free, organocatalytic ring-opening oligomerization to produce guanidinium-rich
oligocarbonates (Figure 7B).%8 These oligocarbonate transporters enter cells, and can be
used with our disulfide linker technology to release conjugated small molecule cargos.
Importantly, the probe or linker entity can be easily incorporated into the transporter as the
initiator for oligomerization. The organocatalytic process also avoids metal catalyst residues.

We also showed that this strategy could be used to produce amphipathic block co-oligomers
that noncovalently complex, deliver and release siRNA in vitro with up to 90% knockdown
of target protein (Figure 7C).%! Significantly, the carbonate scaffold is biodegradable,
producing nontoxic components after cellular uptake, a unique feature that renders this
technology particularly attractive for use in a range of imaging and therapeutic applications.
Recently, the Tew group has also developed amphipathic sSiRNA complexation and delivery
agents that were synthesized via the ROMP method, and showed effective siRNA delivery
into primary human T cells.5®

Recent work has also shown that guanidinium-rich transporters can be designed to target
mitochondria2”-60 and early endosomes,5 in addition to being directed to the nucleus.?:62
These studies represent an advancement of this technology to address subcellular organelle
targeting. The increasing extent to which guanidinium-rich transporters are now employed
in chemistry, biology, and medicine is also seen in the first report of induction of stem cell
pluripotency using a recombinant fusion of oligoarginine and four separately identified
transcription factors to reprogram murine and human somatic cells to induced pluripotent
stem cells.63.64

We conclude with studies on yet another barrier problem, the cell wall, found in plants and
other organisms. While chemical synthesis increasingly seeks greener and step- and time-
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economic strategies, synthetic biology using such organisms provides a powerful method to
make many scaffolds. The synthesis of molecules by algae, for example, is a potentially
inexpensive, scalable and solar-powered approach to a variety of chemical products —
including biofuels, nanomaterials, recombinant proteins, medicinal leads and food additives
— utilizing CO, as a carbon source.%5:66 Despite the interest in algal engineering, efforts to
study or manipulate their metabolic processes are severely hindered by challenges
encountered in the delivery of probes and genes across algal cell wall and membrane
barriers.87 In collaboration with Lawrence Berkeley National Laboratory, the first molecular
method for the delivery of small molecules and biomacromolecules into algae was
developed using our transporter technology. In this seminal work, guanidinium-rich
transporters were shown to mediate cell uptake of small molecule probes, as well as a 100
kDa protein complex containing a catalytically competent enzyme (Figure 7D), providing a
versatile tool for studying algae and other non-mammalian systems with commercial
promise.

Conclusion

Over the past 15 years, work in our and other laboratories has opened a broad range of new
strategies for carrying drugs and probes across biochemical barriers. All variety of
guanidinylated transporter scaffolds, including peptides, peptoids, oligocarbamates,
oligocarbonates, and carbohydrates have been used to deliver cargos as varied as small
molecules, DNA, siRNA, imaging agents, peptides, and metals. Biochemical barriers as
diverse as the blood-brain barrier and the cell wall of algae have been breached with this
technology. Given the increasing importance of barrier penetration and the incredible
success of molecular transporters in breaching these barriers, molecular transporters can be
expected to enable many advances in chemistry, biology, imaging, diagnostics, and
medicine.
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Figurel.

Molecular transporter publications. (A) Number of publications per year with a focus on
guanidinium-rich molecular transporters. These numbers were determined by adding the
number of publications per year, according to Web of Science, that contained either the
keywords “cell penetrating peptide(s),” “guanidinium-rich molecular transporter(s),”
“octaarginine (s),” “oligoarginine (s),” “nonaarginine(s),” or “tat peptide(s),” and subtracting
references containing multiple keywords to remove duplicates. (B) Number of publications
that cite three of the major seminal works in this area. “Total Papers” is the area under the
curve in Figure 1A,
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EXTRACELLULAR
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CELLULAR
MEMBRANE

Poooceas

INTRACELLULAR

Mechanisms of uptake (adaptive translocation and endocytosis). 1. The guanidinium-group
forms a bidentate bond with negative phosphates, sulfates, and carboxylates on the cell
surface. 2. and 3. The charge-neutralized species moves through the membrane, in a process
termed ‘adaptive translocation,” driven into the cell by the membrane potential. 4. In the
reverse of 1, the oligoguanidinium transporter dissociates from the membrane once inside

the cell.
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Figure®6.

Activatable and targeted release strategies. (A) Redox-releasable linker. The disulfide is
cleaved by intracellular glutathione, liberating a free thiol which cyclizes into the nearby
carbonate, releasing free drug. (B) Activatable transporters. Oligoarginine is linked to a
negatively-charged attenuating sequence through a protease-cleavable linker. In the presence
of the specific protease, the linker is cleaved and the polyanion dissociates from
oligoarginine. The free guanidinium groups can then interact with the surface of the cell and
facilitate uptake.
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New technologies and advances in guanidinium-rich transporter research including (A) the
ability of guanidinium-rich transporters to avoid Pgp-mediated efflux and overcome
multidrug resistance, (B) an oligocarbonate oligomerization to more step-economically
synthesize transporters, (C) the application of amphipathic oligocarbonate transporters for
intracellular delivery of siRNA, and (D) delivery of guanidinium-rich transporter conjugates

and complexes into algae.
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