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Abstract
The observation of aerobic glycolysis by tumor cells in 1924 by Otto Warburg, and subsequent
innovation of imaging glucose uptake by tumors in patients with PET-CT has incited a renewed
interest in the altered metabolism of tumors. As tumors grow in situ, a fraction of it is further away
from their blood supply, leading to decreased oxygen concentrations (hypoxia), which induces the
hypoxia response pathways of HIF1α, mTOR and UPR. In normal tissues, these responses
mitigate hypoxic stress and induce neo-angiogenesis. In tumors, these pathways are dysregulated
and lead to decreased perfusion and exacerbation of hypoxia as a result of immature and chaotic
blood vessels. Hypoxia selects for a glycolytic phenotype and resultant acidification of the tumor
microenvironment, facilitated by upregulation of proton transporters. Acidification selects for
enhanced metastatic potential and reduced drug efficacy through ion trapping. In this review, we
provide a comprehensive summary of pre-clinical and clinical drugs under development for
targeting aerobic glycolysis, acidosis, hypoxia and hypoxia-response pathways. Hypoxia and
acidosis can be manipulated, providing further therapeutic benefit for cancers that feature these
common phenotypes.
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I. Introduction
Otto Warburg first described an increased rate of aerobic glycolysis followed by lactic acid
fermentation in cancer cells in 1924, later termed the Warburg Effect (Warburg, et al.,
1927). Almost a century of research has confirmed Warburg’s initial observation, solidifying
increased glycolytic flux as a common cancer phenotype (Hanahan & Weinberg, 2011).
Increased expression of glycolytic genes are observed in ~70% of human cancers (Altenberg
& Greulich, 2004). Warburg had hypothesized the metabolic shift away from oxidative
phosphorylation was due to mitochondrial dysfunction, yet this has not been substantiated
(Warburg, 1956). While interest in cancer metabolism peaked in the middle part of the 20th

century, interest waned with the advent of molecular biological techniques in the 70s. In
1976, Sidney Weinhouse famously declared that “Since our perspectives have broadened
over the years, the burning issues of glycolysis and respiration in cancer now flicker only
dimly" (Weinhouse, 1976). The development of 18F-fluorodeoxyglucose (18FDG) -PET
imaging to visualize increased glucose uptake in tumors and metastasis has rekindled
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interest in cancer metabolism, and is commonly used clinically for diagnosis and disease
monitoring (Kelloff, et al., 2005). An important characteristic of the tumor
microenvironment commonly found in cancers and a selection force for the glycolytic
phenotype is hypoxia. Tumor hypoxia can be transient or chronic either spatially or
temporally, leading to significant heterogeneity and stress. Hypoxia is a challenge clinically
due to its correlation with poor prognosis and association with resistance to chemotherapy
and radiation therapy (Dewhirst, et al., 2008).

We have previously proposed a series of microenvironment barriers that must be overcome
for a tumor to develop during carcinogenesis (Gatenby & Gillies, 2008; Gillies, et al., 2008).
As carcinogenesis begins, inadequate growth promotion and loss of contact with the
basement membrane are encountered first which are commonly overcome by developing an
insensitivity to anti-growth signals and self-sufficiency in growth signals, two Hallmarks of
Cancer defined by Hanahan and Weinberg (Hanahan & Weinberg, 2011). As in situ cancers
grow further away from the vasculature and beyond the diffusion limit of oxygen, the
available concentration of oxygen is reduced, leading to hypoxic conditions. In locally
invasive and metastatic lesions, hypoxia is exacerbated when neoangiogenesis creates a
chaotic and immature vasculature network resulting in inconsistent oxygen delivery (Gillies,
et al., 1999). Cancer cells upregulate glycolysis to maintain energy production in the
absence of oxygen (The Pasteur Effect), eventually becoming the preferred energy
production pathway even during reoxygenation (The Warburg Effect). Aerobic glycolysis is
accompanied by lactic acid fermentation, creating significant amounts of free protons (H+)
which are shuttled to the extracellular tumor microenvironment to maintain intracellular pH
(pHi) at physiologic levels. Increasing amounts of H+ being pumped into the extracellular
space creates an acidic microenvironment, which is known to select for cells with enhanced
metastatic potential as well as provide resistance to chemotherapy (Moellering, et al., 2008;
Raghunand & Gillies, 2000; Rofstad, et al., 2006; Schlappack, et al., 1991; Wojtkowiak, et
al., 2011).

The tumor microenvironmental characteristics described above are heterogeneous within a
tumor and are found in virtually all human solid tumors. Furthermore, while there are
common metabolic phenotypes, these can arise by a multitude of genetic changes, otherwise
known as the “functional equivalence principle” (Gillies, et al., 2008). Hence, targeting the
causes and consequences of the tumor microenvironment is an effective way to reach a large
population of patients and potentially inhibit overcome tumor growth and metastasis. In this
review we describe techniques used clinically for imaging the tumor metabolic
microenvironment, as well as developmental drugs to target various aspects of tumor
metabolism. Finally, we detail methods that are currently being investigated pre-clinically
and clinically to manipulate the tumor microenvironment for therapeutic benefit.

II. IMAGING THE TUMOR MICROENVIRONMENT
Imaging approaches to characterize the metabolic microenvironment of tumors provide
useful biomarkers for diagnosis and monitoring therapy response. In the future, it is
expected that imaging will be able to be the most beneficial therapy for a particular patient.
Below, we will detail some of the most common MRS, MRI, and PET clinical imaging
methods of imaging tumor pH and hypoxia (for more detailed review see (Hashim, et al.,
2011; Pacheco-Torres, et al., 2011)).

A. MRS and MRI
Magnetic resonance spectroscopy (MRS) imaging techniques depend on differences in
chemical shifts of either endogenous or exogenous nuclear MR-active compounds based on
pH-dependent or independent resonances (Gillies & Morse, 2005). pH measurements
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with 31P-MRS can compare the chemical shifts of endogenous inorganic phosphate (Pi) to
measure pHi with that of exogenous 3-aminopropyl phosphonate (3-APP) to measure
extracellular pH (Shepherd & Kahn). Hyperpolarized 13C bicarbonate enters into a
Henderson-Hasselbalch equilibrium which can be used to spatially image a tumor pHe (F.
A. Gallagher, et al., 2008). While imaging with hyperpolarized 13C bicarbonate is more
sensitive than imaging with 3-APP, the main limitation lies with the rapid (within 1–2
minutes) decrease in hyperpolarization of bicarbonate. An alternative MRI technique is to
use pH-dependent relaxation, such as with gadolinium-DOTA-4AmP5− in mixture with
dysprosium-DOTP5− (Garcia-Martin, et al., 2006; Raghunand, et al., 2003).

B. PET
Positron emission tomography (PET) imaging of tumors with 18F-2-deoxyglucose (FDG)
has had the most impact clinically in diagnosis, analysis of cancer staging and monitoring
response to therapy ((Kelloff, et al., 2005). FDG is taken up via glucose transporters
(GLUT1 or GLUT3) and is phosphorylated by hexokinase, effectively trapping FDG in the
cytoplasm unable to be further metabolized. PET imaging measures the annihilation reaction
between a positron released from FDG during decay with a neighboring electron. Computer
analysis of the signals received from annihilation reactions can reconstruct the location and
quantity of positron-emitting radionucleotides, giving an accurate description of a tumor and
metastasis.

A number of PET tracers for hypoxia have been developed. 18F-fluoromisonidazole
(FMISO) has been the most widely developed and has been used to image hypoxia in tumors
(Valk, et al., 1992). FMISO is a nitroimidazole derivative which enters cells through passive
diffusion and undergoes a reduction reaction. Once reduced, FMISO becomes trapped and
concentrated in cells in the absence of oxygen, allowing for PET imaging to detect regions
of hypoxia within a tumor. FMISO has been studied extensively, and is available through an
IND for detection of hypoxia in patients on clinical trials. Clinical studies suggest that
uptake of FMISO by a tumor is predictive of its resistance to treatment radiation therapy
(Thorwarth, et al., 2006).

Electron paramagnetic resonance imaging (EPRI), an imaging technique similar to nuclear
magnetic resonance, measures the interactions between molecular oxygen and a non-toxic
stable radical tracer (Matsumoto, et al., 2010). EPRI is able to measure the pO2 of tumors
without radioisotopes and is capable of measuring dynamic pO2 changes, allowing for the
measurement of intermittent hypoxia in tumors (Bennewith, et al., 2002). Although it has
only been applied pre-clinically, EPRI is able to measure tumor hypoxia quickly generating
3-dimensional pO2 maps from data obtained during imaging.

III. TARGETING GLUCOSE METABOLISM
Aerobic glycolysis has long been known to be a common hallmark of solid tumors. This
metabolic switch has been proposed to provide an advantage to growing tumors by allowing
adaptation to low oxygen environments. This leads to increased acidification of the local
tumor microenvironment, allowing for evasion of the immune system and increased
metastatic potential (Gillies, et al., 2008; Kroemer & Pouyssegur, 2008). Below we describe
drugs that are in pre-clinical or clinical studies that target glucose metabolism of tumors
(Figure 1).

A. Targeting glucose transporters
Glucose, a major carbon source for cells, is a 6-carbon ring structure converted to pyruvate
canonically along the Embden-Meyerhoff glycolytic pathway. Entry of glucose into cells
occurs by facilitated diffusion through a family of 14 membrane bound proteins called
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glucose transporters (GLUTs). GLUT1, the founding member of the GLUT family, was
isolated from erythrocytes in 1977 (Kasahara & Hinkle, 1977). Upregulation of GLUT1 and
GLUT3 expression has been described in many cancers, and may be a key step in tumor
progression. Increased expression of GLUTs correlate with poor prognosis and short
survival of patients with ovarian, breast and squamous cell carcinomas (Ayala, et al., 2010;
Cantuaria, et al., 2001; Pinheiro, et al., 2011). GLUT1 (Km=6.9 mM) and GLUT3 (Km=1.8
mM) each have a high affinity for glucose, and are thought to be the main transport
mechanisms for glucose into cells (Burant & Bell, 1992; Gould, et al., 1991; Shepherd &
Kahn, 1999). Importantly, Hatanaka showed in 1974 that glucose uptake by cells is a rate-
limiting step in glycolysis. Subsequent work by other groups determined that transformed
cells with increased expression of glucose transporters at the plasma membrane is a strong
independent prognostic indicator for FDG uptake and glucose consumption (Birnbaum, et
al., 1987; Bos, et al., 2002; Flier, et al., 1987; Hatanaka, 1974).

Increased expression of GLUT1 and GLUT3 during tumor progression allows for
unregulated metabolism of glucose, making it an intriguing therapeutic target. Recent
research described the cytotoxic and chemosensitizing properties of anti-GLUT1 antibodies
in numerous lung and breast cancer cell lines reconfirming the importance of glucose uptake
for survival (Rastogi, et al., 2007). Decades of research have resulted in the discovery of
many other GLUT inhibitors, including Cyotochalasin B and select tyrosine kinase
inhibitors (Taverna & Langdon, 1973; Vera, et al., 2001).

High throughput screening for drugs capable of sensitizing cells that evade FAS-ligand
induced apoptosis have identified fasentin, a small molecule inhibitor that binds to the
intracellular channel of GLUT1, reducing glucose transport (Schimmer, et al., 2006).
Further studies uncovered altered expression of genes involved in glucose metabolism
following treatment of FAS-resistant prostate and leukemia cells with fasentin and FAS-
ligand (Wood, et al., 2008). Ultimately, fasentin alone was unable to induce cell death in
FAS-ligand resistant cells, despite a rapid, albeit, partial reduction in glucose uptake
following fasentin treatment.

Renal Cell Carcinoma (RCC), known for harboring inactivating mutations in the von
Hippel-Lindau (VHL) ubiquitin ligase gene, was identified as a candidate for chemical
synthetic lethality screening for GLUT inhibitors. (Chan, et al., 2011). VHL mutations often
coincide with a reorganized metabolic profile, wherein the tumor becomes highly glycolytic
and relies on high levels of GLUT1 expression. One class of compounds, led by STF-31,
caused necrotic cell death in RCC cells lacking functional VHL. In silico modeling revealed
a potential docking site for STF-31 located in the central channel of GLUT1, and further
functional studies confirmed inhibition of GLUT1 by STF-31. FDG-PET scans confirm
reduced glucose uptake in RCC tumors treated with STF-31, corresponding with retarded
tumor growth. Lack of toxicities resulting from treatment with STF-31 encourages further
research into its therapeutic potential and widespread efficacy in other tumors
overexpressing GLUT1.

B. Targeting Hexokinase
As glucose enters the cystol, hexokinase phosphorylates the sixth carbon, effectively
trapping glucose intracellularly and priming it for catabolism. Hexokinase 2 is frequently
overexpressed in cancers, overcoming silencing methylation found on its promoter in
normal tissues (A. Goel, et al., 2003). Expression of hexokinase is transcriptionally
regulated by both p53 and HIF1α (Mathupala, et al., 1997). Glucose analogs, specifically 2-
deoxyglucose, can be radiolabeled to image tumors with increased glucose uptake (18FDG),
and have also been studied as inhibitors of glycolysis (Kurtoglu, et al., 2007; Lampidis, et
al., 2006). These analogs enter cells normally through GLUT1 or GLUT3 transporters and
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are phosphorylated by hexokinase. As with glucose, the 6-phospho form of these analogs are
unable to exit cells and are feedback inhibitors of hexokinase activity. However, unlike
glucose, the phosphorylated glucose analogs are unable to be rapidly catabolized through the
remainder of the glycolytic pathway, i.e., phosphofructokinase, and can build up to high
levels intracellularly, where they prevent further glucose metabolism. Although there have
been some successes using deoxyglucose in vitro and in animal models as a glycolytic
inhibitor, clinical successes have not extended past utilization as an imaging contrast agent
to visualize tumors or as a radio-sensitizing agent (Ramirez-Peinado, et al., 2011; Song, et
al., 1976).

3-bromopyruvate (3-BrPA) has been identified as a potent inhibitor of glycolysis through its
promiscuous inhibition of hexokinase 2 as well as glyceraldehyde-3-phosphate
dehydrogenase (GAPdH). 3-BrPA has been widely studied as an alkylating agent, but its
first anticancer properties were identified in 2001 as an inhibitor of hexokinase 2 (Ko, et al.,
2001; Meloche, et al., 1972). Selectivity appears to depend on its uptake by overexpressed
monocarboxylate transporter, SLC5A8 (Thangaraju, et al., 2009). In addition to its use as a
single agent, recent research has focused on combining 3-BrPA with other chemotherapies
to overcome ATP-requiring multi-drug resistance (MDR) mechanisms. Nakano et al used 3-
BrPA to sensitize MDR-expressing tumors to daunorubicin or doxorubicin treatment
(Nakano, et al., 2011). Similar work by Zhou et al confirms that intracellular ATP is
essential for drug resistance, and that disruption of cellular energy levels through inhibition
of hexokinase 2 by 3-BrPA resensitized MDR cells to therapy (Y. Zhou, et al., 2012).

Lonidamine was first identified as an inhibitor of aerobic glycolysis through inhibition of
hexokinase-2 in tumor cells in 1981 (Floridi & Lehninger, 1983; Floridi, et al., 1981). As
with 3-BrPA, inhibition of hexokinase 2 by lonidamine induced apoptosis (Brawer, 2005).
Lonidamine acts as a single agent and has been extensively studied as a treatment for multi-
drug resistance (MDR) (Y. C. Li, et al., 2002; Ravagnan, et al., 1999). Already approved for
use as an anti-cancer chemotherapy in Europe, phase II clinical trials began in the United
States in 2005 treating patients with benign prostatic hyperplasia (BPH) (Brawer, 2005;
Ditonno, et al., 2005). Despite reports of some cancer patients receiving 40 times the dose
than patients in the U.S. trial, and indications that prostate volumes were reduced during
treatment, the U.S. phase II trial was terminated due to liver toxicities and no subsequent
trials have begun (Ditonno, et al., 2005; Milane, et al., 2011b). In an effort to harness the
therapeutic efficacy of lonidamine against MDR and reduce toxicities due to dosage, Milane
et al have developed epidermal growth factor receptor (EGFR) targeted nanoparticles
encapsulating lonidamine and paclitaxel (Milane, et al., 2011a, 2011b). Orthotopic MDR-
positive breast cancer xenografts treated with targeted drug-containing nanoparticles showed
reduced tumor growth compared to treatment with blank nanoparticles. Transient weight
losses were observed in all groups. Liver toxicities were highest in animals treated with
soluble paclitaxel alone or soluble paclitaxel + lonidamine, and were less severe when drugs
were bound to nanoparticles. Hematologic analyses also revealed reduced toxicity following
treatment with drug combinations encapsulated within nanoparticles. Overall, lonidamine is
a promising hexokinase-2 inhibitor that may show clinical benefit either alone or in
combination with other chemotherapies.

C. Targeting Phosphofructokinases
Phosphofructokinase-1 (PFK-1) catalyzes the phosphorylation of fructose-6-phosphate to
fructose-1,6-bisphosphate in a rate-limiting step in the glycolytic pathway. Regulation of
PFK-1 activity is reduced as a result of oncogene activation, such as Ras or Src, through
elevated levels of fructose-2,6-bisphosphate, a physiologic activator of PFK-1 (Bosca, et al.,
1986; Kole, et al., 1991). Phosphofructokinase-2 (PFK-2), as well as the p53 target TIGAR,
is as a regulator of the steady state level of intracellular fructose-2,6-bisphospate, and the
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PFKFB3 isozyme has been identified to be overexpressed in leukemias and solid tumors
(Atsumi, et al., 2002; Bensaad, et al., 2006). Small molecule inhibitors targeting the
substrate-binding domain of PFKFB3 have been identified as antineoplastic agents (Clem, et
al., 2008). In vitro inhibition of recombinant PFKFB3 revealed 3PO (3-(3-Pyrindinyl)-1-(4-
Pyridinyl)-2-Propen-1-one) as a lead compound that inhibits PFKFB3 but does not affect
activity of PFK-1. 3PO was further shown to inhibit normal cell cycling in several solid
tumor and hematologic cell lines further inhibiting tumor growth in xenograft models of
lung, breast and leukemia by suppression of glycolytic flux (Clem, et al., 2008).

To improve upon clinical limitations of 3PO, such as solubility and high pre-clinical doses,
Akter et al has engineered nanoparticle drug delivery systems for 3PO (Akter, et al., 2011,
2012). Encapsulating 3PO within a hydrophilic shell through conjugation to block
copolymers improved 3PO bioavailability. 3PO conjugated block copolymers were also
engineered with a hydrazone bond that is cleaved in acidic conditions (pH < 7.0) to
preferentially target acidic tumor microenvironments. In vitro experiments with 3PO
containing micelles resulted in significant cell death across several cell lines providing
encouragement for future work in pre-clinical models.

In a separate study, N4A and YN1 were identified to be a competitive inhibitors of PFKFB3
(Seo, et al., 2011). While treatment of cells with these novel compounds resulted in
decreased glycolytic flux followed by cell death, selectivity of the drugs was not ideal, and
further optimization of the drug scaffold is currently underway.

D. Targeting Pyruvate Kinase M2
Pyruvate kinase (PK) catalyzes the transfer of a phosphate from phosphoenolpyruvate to
ADP in the final step of aerobic glycolysis, resulting in one molecule each of ATP and
pyruvate. Of the four pyruvate kinase isoforms, PKM1 is expressed in most tissues. PKM2
is a splice variant of PKM1 that is primarily expressed in embryonic development, but is
also reported to be the main isoform expressed in tumors (Christofk, et al., 2008). PKM2
expression has been associated with the Warburg Effect, carcinogenesis and tumor growth.
Due to increased expression of PKM2, cancer patients typically have higher levels of PKM2
in plasma and saliva, and this is being investigated in a clinical trial to determine if salivary
levels of PKM2 can be used as a biomarker for malignancy (NCT01130584).

TT-232 (TLN-232/CAP-232) is a somatostatin structural analog that has been shown to
significantly reduce tumor growth in murine models and has entered clinical trials for
refractory metastatic renal cell carcinoma and melanoma (NCT0042278 and
NCT00735332). TT-232 has anti-inflammatory effects through its interaction with
somatostatin receptor 4 (SSTR4), a G protein-coupled receptor, and anti-tumor effects
mediated through its inhibition of PKM2 (Elekes, et al., 2008; Stetak, et al., 2007). Unlike
somatostatin, TT-232 is able to exhibit anti-tumor effects without the antisecretory activity
that is required for somatostatin’s efficacy in neuroendocrine tumors and pancreatitis
(Greenberg, et al., 2000). In addition to inhibition of PKM2, treatment of cells with TT-232
inhibits proliferation, induces cell cycle arrest and initiates apoptosis (Stetak, et al., 2001;
Vantus, et al., 2001). Phase I clinical trials of TT-232 were successfully completed without
significant adverse events, allowing entry into phase II trials.

E. Targeting Pyruvate dehydrogenase kinase (PDK)-
Following the conversion of phosphoenolpyruvate to pyruvate by PK, further oxidation of
pyruvate is enabled by mitochondrial pyruvate dehydrogenase (PdH), which catalyzes the
oxidative decarboxylation of pyruvate to acetyl-CoA, which can then enter the TCA
(tricarboxylic acid) cycle. PdH is negatively regulated at three serine phosphorylation sites
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by pyruvate dehydrogenase kinase (PDK), which shifts glucose from oxidative to glycolytic
metabolism (Holness & Sugden, 2003).

Dichloroacetate (DCA) has been used clinically over the past several decades for the
treatment of lactic acidosis and mitochondrial disorders (Stacpoole, et al., 1988). DCA is an
inexpensive, orally available drug that targets PDK (Bowker-Kinley, et al., 1998; Knoechel,
et al., 2006; Stacpoole, 1989), and has recently been shown to have anticancer effects both
in vitro and in vivo (Bonnet, et al., 2007; Wong, et al., 2008; J. Xie, et al., 2011). The
Michelakis group hypothesized that inhibition of PDK with DCA could shift glucose
metabolism from glycolytic to oxidative, eliminating excessive lactic acid production
observed in cancer cells (Bonnet, et al., 2007). Indeed, treatment of lung, glioblastoma and
breast cancer cells reversed cell metabolism from glycolytic to oxidative; and in doing so
increased ROS production, decreased mitochondrial membrane potential and sensitized cells
to apoptosis. In vivo rodent studies demonstrated the anti-tumor properties of DCA by
reducing overall tumor volumes and inducing apoptosis in a lung cancer xenograft model
(Bonnet, et al., 2007). Further preclinical studies have shown DCA to have similar pro-
apoptotic effects on endometrial cancer cells as well as sensitizing prostate cancer cells to
radiation therapy (Cao, et al., 2008; Wong, et al., 2008). Numerous clinical trials are
currently recruiting, or underway, to administer DCA as a single agent, or in combination
with other chemotherapies or radiation, in a wide range of cancers. The first published data
from clinical trials with DCA as an anti-cancer therapy was recently published (Michelakis,
et al., 2010). Resected glioblastoma tissue from 49 patients treated with DCA confirmed
mitochondrial depolarization in vivo. Five patients with either newly diagnosed or recurrent
glioblastoma were placed on a treatment regimen of DCA with standard therapies,
temozolomide (TMZ) and radiation therapy, after surgical tumor debulking. During a 15
month follow-up, toxicities were moderate, with peripheral neuropathy being the only
toxicity noted with ~80% of patients remaining clinically stable 15 months after the onset of
therapy.

F. Targeting Lactate dehydrogenase (LDH5)-
Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. LDH is
a tetrameric protein made from two different (heart and muscle) subunits. LDH5 (a.k.a.
LDH-A or M4) is usually expressed in muscle tissue and has a low Km for pyruvate, while
LDH1 (a.k.a. H4) is more ubiquitously expressed and has a lower Km for lactate. During the
redox reaction of pyruvate to lactate, NADH is oxidized to NAD+, replenishing intracellular
levels of NAD+ and allowing glycolysis to become self-sufficient. LDH M subunits are
transcriptionally regulated by HIF1α and, hence levels of LDH5 are increased in HIF1α –
positive cancers (Firth, et al., 1995; Semenza, et al., 1996). Recently LDH5 has been shown
to be important for tumor initiation, although the exact mechanism is currently unclear
(Fantin, et al., 2006; Goldman, et al., 1964; H. Xie, et al., 2009).

Gossypol, a cotton seed extract, has been studied as an anti-fertility drug that inhibits sperm
LDH, and further experimentation has revealed cross inhibition of gossypol analogs to
LDH5 (Kim, et al., 2009). More recent gossypol analog studies focusing on 8-
deoxyhemigossylic derivates that target the NADH and pyruvate binding sites of LDH
identified 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid,
or FX11, as a preferential inhibitor of LDH5 (Yu, et al., 2001). Treatment of human
lymphoma cells, P493, with FX11 correlated with knock-down of LDH5 by siRNA by
increasing oxygen consumption, ROS production, decreased ATP levels and cell death (A.
Le, et al., 2010). Similar results were observed in renal cell carcinoma and breast cell lines,
with the sensitivity to FX11 being highest in cells with a more glycolytic phenotype. In vivo
studies also indicated that FX11 inhibits both carcinogenesis and tumor progression of
lymphoma and pancreatic tumors (A. Le, et al., 2010). It was notable that these treatments
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were not myelosuppressive or toxic, despite the presence of LDH-A in normal tissues.
Although a promising candidate drug to target the glycolytic phenotype of tumors, FX11 is
not yet in clinical trials.

The most recent research for novel LDH5 inhibitors began in an attempt to fabricate a drug
suitable for entry into the clinic. From this research, a series of N- hydroxyindole based
inhibitors were generated to have specificity for LDH5 over LDH1 (Granchi, et al., 2011).
In vitro experiments showed promising Ki values in the low micromolar range for some of
the compounds synthesized. Additionally, cellular assays resulted in reduced lactate
production and retarded cellular proliferation. Virtual screening of the NCI Diversity Set by
another group identified galloflavin as a novel LDH inhibitor (Kim, et al., 2009). Galloflavin
was further characterized and shown to bind preferentially to free enzyme without blocking
either the pyruvate or NADH binding sites. Enzymatic assays using purified LDH1 and
LDH5 showed that galloflavin acts as an inhibitor of both isoforms. Cellular assays
confirmed in vivo activity of galloflavin with reduced lactate production, a reduction of
cellular ATP levels, and decreased cellular proliferation. Preliminary murine experiments
suggest that galloflavin could be a well-tolerated drug that should be developed further.

IV. TARGETING HYPOXIA
Hypoxia is another common phenotype of solid tumors. As tumors grow, pro-angiogenic
factors stimulate new vessel growth within a tumor. However, these new vessels tend to be
immature and chaotic and hence lead to poor perfusion (Gillies, et al., 1999). Tumors found
to contain hypoxic regions typically respond poorly to therapy in the clinic (Dewhirst, et al.,
2008). Hypoxia can be difficult to target due to its spatial and temporal heterogeneity within
tumors and the fact that hypoxic volumes are the most poorly perfused. Nonetheless,
successful approaches to target hypoxia have been developed, and some of these are in
clinical trials. These approaches can be broadly described as: 1) targeting hypoxia response
pathways; 2) drugs that require hypoxia for their activity and thus efficacy; 3) and methods
to manipulate hypoxia to our advantage to increase efficacy of hypoxia activated prodrugs
(Table 1).

A. Targeting Hypoxia Response Pathways
Tumors typically have lower oxygen concentrations (pO2) than levels detected in normal
tissue (Hockel & Vaupel, 2001). As a tumor grows outward, away from blood vessels, the
ability to receive oxygen from diffusion through tissue diminishes quickly leading to
diffusion-limited (or chronic) hypoxia. Additionally, perfusion-limited (or acute) hypoxia
can result from variable blood flow through chaotic and immature vessels that are
characteristic of tumors. Hypoxia can be a significant source of stress for cancer cells and
several survival and response pathways have been identified that allows cancer cells to
overcome oxygen stress.

1. Targeting the HIF1α pathway-—Modulation of the hypoxia response in cells is
orchestrated by transcription factors, Hypoxia inducible transcription factors, HIF1α and/or
HIF2α. Under normoxic conditions, HIF1α is inactivated via proteosomal degradation,
regulated by the von Hippel Lindau (VHL) ubiquitin ligase (Jaakkola, et al., 2001; Ohh, et
al., 2000). In response to hypoxia, HIF1α is not degraded and the resulting stabilized protein
will heterodimerize with HIF-1β (a.k.a. the aryl hydrocarbon receptor nuclear translocator,
ARNT) and activate promoters containing hypoxia response elements (HREs).
Transcriptional targets of HIF1α can be found in glycolytic, angiogenic, survival and
migration pathways (Semenza, 2003). Constitutive HIF1α stabilization has been observed in
many cancers and is correlated with aggressive disease, poor prognosis and drug resistance,
making HIF1α an attractive drug target (Birner, et al., 2000; Bos, et al., 2003;
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Giatromanolaki, et al., 2001; Osada, et al., 2007). This is an active area of research and there
are numerous investigational drugs aimed at inhibiting HIF1α with a number of approaches:
e.g. targeting HIF1α mRNA expression, protein translation, protein stability and
transcriptional activity. Following, we illustrate some of these approaches. More exhaustive
discussion of this subject can be found at (Vaupel, 2004).

Topotecan is an FDA-approved drug that is indicated for ovarian, cervical cancers and small
cell lung carcinoma. The primary mechanism of action is through inhibition of
topoisomerase I which induces genotoxic stress through DNA double strand breaks (Hsiang,
et al., 1985). Screening of the National Cancer Institute “Diversity Set” of chemical
compounds for small molecule inhibitors led to the discovery of a second mechanism of
topotecan activity through inhibition of HIF1α expression (Rapisarda, et al., 2002). Further
topotecan studies confirmed inhibition of HIF1α expression, concluding that translation of
HIF1α is inhibited in a topoisomerase 1-dependent mechanism by topotecan
(RapisardaUranchimeg, et al., 2004). Tumor xenograft models treated with topotecan have
decreased HIF1α levels, diminished angiogenesis and reduced tumor growth
(RapisardaZalek, et al., 2004). Furthermore, patients treated with topotecan had low to
undetectable levels of HIFα in tumor biopsies, correlating with decreased levels of VEGF
and GLUT1 (Kummar, et al., 2011). Seven of ten patients treated with topotecan to receive
dynamic contrast enhanced (DCE)-MR imaging exhibited decreased blood flow and
permeability through their tumors after one treatment.

Abolishing expression of HIF1α has been shown to be an effective way to inhibit tumor
growth, inspiring the development of methods to target mRNA expression of HIF1α as an
alternative to targeting HIF1α stability. An antisense oligonucleotide designed to inhibit
HIF1α expression has moved into clinical trials (L. Li, et al., 2005). EZN-2968 was
developed by Enzon Pharmaceuticals Inc. using locked nucleic acid (LNA) oligonucleotide
technology to reduce HIF1α expression (Greenberger, et al., 2008; Vester & Wengel, 2004).
EZN-2968 was confirmed to selectively inhibit HIF1α mRNA expression in vitro, resulting
in a lasting decrease in HIF1α protein levels, followed by a reduction in expression of
HIF1α target genes. EZN-2968 also showed activity in a tumor xenograft model by
repressing tumor growth. Phase 1 clinical studies treating hematologic patients with
EZN-2968 have recently concluded (NCT00466583) and have been followed by a pilot trial
that is currently recruiting patients with liver metastasis (NCT01120288).

PX-478 is an orally available small molecule that has been shown to inhibit HIF1α activity
by reducing HIF1α levels (Welsh, et al., 2004). Tumor xenograft experiments using a
variety of tumor cell lines showed that treatment with PX-478 reduced tumor growth or
tumor regression which correlated with decreased levels of HIF1α and its target genes
GLUT1 and VEGF. The half-life of PX-478 in murine plasma is short at 50 minutes,
although concentrations capable of inhibiting HIF1α expression can be found for 8 hours.
Imaging of tumor xenografts with DCE and diffusion-weighted (DW)-MRI showed that
treatment with PX-478 reduced tumor blood vessel permeability within 2 hours of treatment
and returned to normal 48 hours after treatment (Jordan, et al., 2005). Mechanistic studies
have revealed that PX-478 may have multiple mechanisms of action in the inhibition of
HIF1α by hindering both transcription and stability of HIF1α protein (Koh, et al., 2008).
PX-478 can also contribute to clinical efficacy by acting as a radiosensitizer in prostate
cancer cell lines and in in vivo tumor models (Palayoor, et al., 2008; D. L. Schwartz, et al.,
2009). Recently, phase I clinical trials investigating the safety and preliminary efficacy of
PX-478 in patients with advanced solid tumor or lymphomas were completed
(NCT00522652). Results from the phase I trial, presented at the 2010 ASCO Annual
meeting, showed stable disease (SD) in ~40% of participants with mild toxicities (Tibes R.,
2010).

Bailey et al. Page 9

Adv Pharmacol. Author manuscript; available in PMC 2013 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Targeting mTOR-—The mammalian target of rapamycin (mTOR) is a kinase that is
activated during cell stresses, including nutrient and energy depletion, triggering a signaling
cascade regulating metabolism and many cell survival mechanisms (Dazert & Hall, 2011;
Jung, et al., 2010). mTORC1, a subunit of a complex nucleated by mTOR, has been shown
to be important for tumorigenesis following activation of AKT (Skeen, et al., 2006).
Exposure to hypoxia in normal cells promotes activation of the tuberous sclerosis protein 1
complex (TSC1/2) which in turn negatively regulates the mTOR complex (Liu, et al., 2006).
Additional evidence indicates that inhibition of the mTOR complex due to hypoxia can be
accomplished through interaction with promyelocytic leukemia tumor suppressor (PML) or
disruption of mTORC1 binding to RHEB (Bernardi, et al., 2006; Y. Li, et al., 2007). It is
hypothesized that hypoxia-mediated inhibition of mTOR is a selective mechanism for
mutations that are beneficial for cell growth in hostile environments (Graeber, et al., 1996).
Alternatively, constitutively active mTOR has been observed in advanced breast cancer. In
addition, loss of mTOR repressors, such as PTEN and TSC1/2, can result in unregulated
mTOR activity (Connolly, et al., 2006; Kaper, et al., 2006). While the exact role mTOR
plays in carcinogenesis is not fully understood, mTOR inhibitors have been successful on
the bench, and have moved into the clinic.

Rapamycin, a metabolite isolated from bacteria, was first identified in the 1970’s to be a
powerful anti-fungal drug (Vezina, et al., 1975). Rapamycin was quickly determined to have
anti-tumor activity, and was discovered to selectively target mTOR allosterically in the early
1990’s (Heitman, et al., 1991; Houchens, et al., 1983). Rapamycin also has potent
immunosuppressive activity and is approved for transplant patients to prevent organ
rejection as well as anti-restenosis after heart surgery due to its anti-angiogenic properties,
but is not an approved medication for the treatment of cancer. Analogues of rapamycin, or
“rapalogues”, are constantly being designed to be more specific to mTOR and have better
pharmacologic properties and have been successful in the clinic. Currently, CCI779, or
temsirolimus, is approved for treatment of renal cell carcinoma and mantle cell lymphoma,
and is being investigated clinically for the treatment of other cancers such as leukemia, non-
small cell lung cancer and breast cancer (Hess, et al., 2009; Hudes, et al., 2007; Rini, 2008).
RAD001, or everolimus, has been approved for renal cell carcinoma and pancreatic
neuroendocrine tumors, as well as an anti-rejection medication following organ transplant
(Gabardi & Baroletti, 2010; Motzer, et al., 2008). In addition to single agent drugs,
rapalogues are being investigated in coordination with drugs that target other signaling
pathways to improve efficacy, such as PI3K or AKT (Ayral-Kaloustian, et al., 2010; Cirstea,
et al., 2010; Ikezoe, et al., 2007).

The antidiabetic drug metformin and its analogs buformin and phenformin have recently
been identified as having potential anti-cancer activity. Metformin reduces blood glucose
levels through decreasing hepatic gluconeogenesis and activation of AMPK (AMP-activated
protein kinase) and is commonly used clinically for the treatment of type 2 diabetes (Hundal,
et al., 2000; Stumvoll, et al., 1995; G. Zhou, et al., 2001). AMPK can regulate activity of
mTOR through activation of TSC1/2 (Inoki, et al., 2003). Studies of diabetic patients
receiving metformin revealed significantly reduced cancer risk compared to cohorts
receiving other diabetic medications (Bowker, et al., 2006; J. M. Evans, et al., 2005). In
vitro studies later confirmed that metformin represses growth of breast cancer cells through
an AMPK-dependent signaling and inhibition of mTOR mechanism (Dowling, et al., 2007;
Zakikhani, et al., 2006). Metformin treatment seems to inhibit other cellular processes such
as the cell cycle through reduction of cyclin D1 and diminishing the transcription of GRP78,
an estrogen receptor chaperone protein that is elevated in cancers and involved in UPR
signaling (Ben Sahra, et al., 2008; S. Saito, et al., 2009). Metformin is currently being
investigated clinically to determine if it is best used as a treatment or a preventative
medication.
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3. Targeting UPR-—Hypoxia inhibits the ability of the endoplasmic reticulum (ER) to
properly fold and organize proteins. The Unfolded Protein Response (UPR) is activated in
the ER under hypoxia stress, which functions to maintain ER homeostasis or initiate
apoptosis. Three proteins found at the ER membrane, PERK (PKR like ER kinase), IRE-1
(inositol-requiring 1) and ATF6 (activating transcription factor 6), act independently to
signal stresses leading to UPR activation (Koumenis, et al., 2002). Response by the UPR to
hypoxia is important for tumor growth, and aberrant UPR signaling due to the absence of
PERK or IRE-1results in increased regions of hypoxia and reduced growth rates (Bi, et al.,
2005; Romero-Ramirez, et al., 2004). Activation of the UPR response results in both
reduction of translation and inhibition of protein maturation pathways as well as a
detoxification process known as ER-associated degradation (ERAD) and induction of
autophagy (Rouschop, et al., 2010). In addition to activation of UPR in response to hypoxia,
other cellular stresses often found in solid tumors can lead to UPR activation. Such stresses
include calcium homeostasis, redox status and glucose depravation, making UPR an
important cellular response mechanism in cancer, and also an attractive pathway to target
clinically.

The ERAD response to cellular stresses is activated by the UPR and results in priming
misfolded proteins to be shuttled out to the cytoplasm for proteosomal degradation (Travers,
et al., 2000). Blocking the ERAD response through proteasome inhibitors like bortezomib
(PS-341) has been a successful strategy for tumors with high ER stress such as multiple
myeloma (Lee, et al., 2003; Nawrocki, et al., 2005). Recent research suggests that hypoxia
sensitizes cells to ER stress resulting from bortezomib treatment, leading authors to suggest
pairing bortezomib with normoxia targeting drugs to improve therapeutic response (Fels, et
al., 2008). Such combinations have been investigated in murine models, and have shown to
repress tumor growth when bortezomib was used in coordination with a HDAC6 specific
inhibitor, ACY-1215, in a multiple myeloma model (Santo, et al., 2012). Clinical trials are
also ongoing investigating the efficacy of combining bortezomib treatment with other
chemotherapies such as mitoxantrone (topoisomerase II inhibitor), mapatumumab (antibody
specific for TRAIL death receptor) and vorinostat (HDAC inhibitor).

IRE1 has two enzymatic domains, a kinase domain and an endonuclease domain (Dong, et
al., 2001; Nock, et al., 2001). Crystal structures have shown that IRE1 dimerizes in a
juxtaposed configuration that allows for autophosphorylation resulting in increased
endonuclease activity (Han, et al., 2009; Korennykh, et al., 2009). Screening for potential
inhibitors of IRE1 using a cell based reporter system identified STF-083010 (Papandreou, et
al., 2011). Treatment of multiple myeloma cells with ER stresses resulted in mRNA
cleavage of XBP1 by IRE1, which was abrogated with treatment of STF-083010 (Back, et
al., 2006). STF-083010 was shown to selectively inhibit the endonuclease activity of IRE1
without affecting kinase activity. Although in vivo anti-tumorigenic responses were
observed, more research will need to be performed to optimize an IRE1 inhibitor using
STF-083010 as a scaffold. Another high-throughput screening search found salicylaldimine
analogs to be inhibitors of IRE1 (Volkmann, et al., 2011). Similar to STF-083010,
salicaldehydes inhibit IRE1 endonuclease activity in vitro and in vivo, increasing the interest
to develop more potent and selective inhibitors targeting IRE1.

B. Using hypoxia to our advantage
1. Use of Bioreductive drugs—Bioreductive prodrugs are a class of drugs that are inert
in tissues with normal pO2 but are able to undergo chemical reduction in tissues with severe
hypoxia to release cytotoxic warheads, selectively targeting cancer cells within hypoxic
regions. In general there are 5 different chemical scaffolds that have been used to generate
bioreductive prodrugs (nitro groups, quinones, aromatic N-oxides, aliphatic N-oxides and

Bailey et al. Page 11

Adv Pharmacol. Author manuscript; available in PMC 2013 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



transition metals), all of which are able to be reduced in the absence of oxygen. One of the
earliest reports of the use of bioreductive quinones to selectively target hypoxia is the use of
mitomycin C in the 1960’s (Iyer & Szybalski, 1964; H. S. Schwartz, et al., 1963). During the
last half-century, bioreductive drugs scaffolds have been improved upon making them more
selective and potent in hypoxic tumors.

Tirapazamine, or TPZ, is one of the most advanced bioreductive drugs through the clinical
trials process. TPZ is built off of an aromatic N-oxide bioreductive scaffold (Zeman, et al.,
1986). During hypoxia, TPZ undergoes an intracellular one-electron reduction to a radical
anion then further converted to either a hydroxyl radical or an oxidizing radical, ultimately
resulting in DNA damage (Anderson, et al., 2003; Baker, et al., 1988; Zagorevskii, et al.,
2003). TPZ creates DNA interstrand cross links which stall replication forks and induce
DNA breaks that require homologous recombination repair (J. W. Evans, et al., 2008). TPZ
has been extensively studied clinically in combination with cisplatin and radiation in
patients with squamous cell carcinoma, head and neck cancer, and lung cancer with
moderate to inconclusive results (Q. T. Le, et al., 2004; Rischin, et al., 2005; Rischin, et al.,
2010; von Pawel, et al., 2000). Further analysis showed that TPZ was being metabolized too
quickly, and was not effectively penetrating tumor tissues (Hicks, et al., 1998; Kyle &
Minchinton, 1999). Consequently, TPZ analogs are currently being developed with the goal
of improving drug solubility, cytotoxicity, selectivity and tissue penetration characteristics
(Hicks, et al., 2010).

TH-302 is built upon a scaffold of a 2-nitroimidazole and is a nitrogen mustard prodrug that
is selectively reduced under hypoxia (<0.5% O2) (Duan, et al., 2008). As TH-302 is reduced,
the prodrug splits and releases its cytotoxic warhead, Bromo-isophosphoramide mustard
(Br-IPM). As Br-IPM is released into hypoxic tissue, it cross-links with DNA, killing cells
in the hypoxia compartment as well as neighboring cells with its bystander effect (Sun, et
al., 2012; J. Zhang, et al., 2005). TH-302 was shown to have efficacy in vitro and in vivo in
a wide subset of cancer cell lines and xenografts and was further found to have favorable
drug-like properties and pharmacokinetic profiles (Duan, et al., 2008; Hu, et al., 2010;
Meng, et al., 2012). TH-302 entered phase I clinical trials as a single agent drug in patients
with advanced solid tumors and has also been tested in combination with doxorubicin in
patients with advanced soft-tissue sarcoma, gemcitabine in patents with pancreatic cancer;
docetaxel for patients with prostate or lung cancers (Ganjoo, et al., 2011; Weiss, et al.,
2011). TH-302 was generally well tolerated, but some patients experienced skin and
mucosal dose limiting toxicities. Recently, phase I/II clinical trials of TH-302 as a single
agent concluded with stable disease or better detected across a number of cancer types.
Current clinical trials are investigating the efficacy of TH-302 as a single-agent or in
combination therapy for cancers including melanoma, multiple myeloma, renal cell
carcinoma, pancreatic carcinoma and phase III trials have begun in patients with sarcoma.

Banoxantrone, or AQ4N, is a N-oxide bioreductive prodrug that was developed to
selectively target hypoxic regions of tumors (Smith, et al., 1997). The reduction under
hypoxia releases a cytotoxic alkylaminoanthraquinone metabolite (AQ4) which induces
DNA damage through inhibition of topoisomerase II. AQ4N has been shown to be
efficacious in murine models of breast cancer when combined with chemotherapy or
radiation therapy (R. Gallagher, et al., 2001; Patterson, et al., 2000; Williams, et al., 2009).
Phase I clinical trials have investigated the activity of AQ4N either as a single-agent or in
combination with radiation therapy (Papadopoulos, et al., 2008; Steward, et al., 2007).
AQ4N was well tolerated by patients and is now being tested in clinical trials to evaluate the
efficacy of AQ4N (NCT00394628, NCT00109356 and NCT00090727).
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Two other bioreductive drugs, apaziquone (E09) and PR-104, have been successful on the
bench top and have moved into clinical studies (Hendricksen, et al., 2009; McKeage, et al.,
2011). While bioreductive drugs have been especially successful in pre-clinical studies, and
have shown some success in the clinic, no bioreductive prodrug has been approved by the
FDA to date. Current research is aimed at improving bioreductive prodrug selectivity,
stability and cytotoxicity. Additionally, research is ongoing to develop bioreductive
prodrugs that are non-genotoxic and instead target other cellular processes. For example, 2-
nitroimidazol-5-ylmethyl is a 2-nitroimidazole that releases 5-bromoisoquinolone after
reduction, targeting poly(ADP-ribose) polymerase 1 (PARP1) (Parveen, et al., 1999).

2. Manipulating hypoxia—While the data from hypoxia activated prodrugs (HAPs) in
the clinic are promising, it can be reasoned that they may be more efficacious if tumor
hypoxia can be selectively and transiently increased at the time of treatment. Thus, inducing
hypoxia in tumors can be an efficient way of increasing the efficacy of drugs that target
hypoxia. There are a number of mechanisms available with which to exacerbate tumor
hypoxia selectively, including metabolically (e.g. pyruvate or DCA), or by reducing oxygen
delivery (e.g. anti-angiogenic agents or vasodilators).

It has recently been shown that tumor hypoxia can be increased following intravenous
injection of pyruvate (K. Saito, et al., 2011), whose mechanism of action may involve
inducing cells to increase respiration (Kauppinen & Nicholls, 1986). Electron paramagnetic
resonance imaging (EPRI), a spectroscopic imaging technique that measures in-vivo oxygen
concentrations, of tumors in mice following an intravenous injection of hyperpolarized 13C
pyruvate revealed a significant decrease in tumor oxygenation that reached a maximum at
one hour, and returned to normal within five hours (K. Saito, et al., 2011). Knowledge of a
tumors oxygenation status is important for treatment plans, as pyruvate induced hypoxia
created reduced the ability of radiotherapy to kill cancer cells even after tumor oxygenation
had returned to normal levels. DCA, an inhibitor of PDK, has also been reported to initiate a
metabolic switch in cancer cells from glycolysis to oxidative phosphorylation (J. Xie, et al.,
2011). Induction of oxidative phosphorylation by DCA increased reactive oxygen species,
pH and apoptotic proteins in HeLa cells. Additionally, the metabolic switch observed after
DCA treatment correlated with an increased sensitivity of HeLa cells to cisplatin, suggesting
that manipulation of a tumors metabolism may be therapeutically successful.

Tumor oxygenation can also be manipulated by controlling oxygen delivery with anti-
angiogenic or anti-vascular agents. Angiogenesis is a common phenotype (“Hallmark”) of
cancer that is regulated by HIF1α signaling (Hanahan & Weinberg, 2011). Tumors support
an induction of angiogenesis by producing angiogenic growth factors such as vascular
endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Several anti-
angiogenic inhibitors that target the immature angiogenic vasculature have been approved,
including sorafenib, a VEGFR and PDGFR inhibitor, avastin (bevacizumab), an antibody
targeting VEGF, and sunitinib, a VEGFR and PDGFR inhibitor (Chung, et al., 2010).
Although resistance to anti-angiogenic drugs has become a major obstacle in clinical cancer
treatment (Mitchell & Bryan, 2010), their use to acutely increase hypoxia in combination
with HAPs has not yet been published. Alternatively, there are agents, such as
combetestatin, that will target mature vessels, and these are also known to increase tumor
hypoxia (Dachs et al, BMC Cancer 6, 280, 2006). Another characteristic of the immature
tumor vasculature is a lack of tone. Thus, vasodilators, such as hydralazine, induce a
systemic drop in blood pressure, which is not matched by the tumor vasculature, causing a
transient decrease in perfusion within the tumor (Sonveaux, 2008). This “steal” phenomenon
has been demonstrated using Doppler Ultrasound to measure decreased tumor blood flow
(Horsman, et al., 1992). The decrease in perfusion leads to increases in acidosis and
hypoxia; both have been shown using pH electrodes or magnetic resonance spectroscopy,
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MRS, for acidosis and pO2 electrodes for hypoxia (Adachi & Tannock, 1999; Belfi, et al.,
1994; Nordsmark, et al., 1996; Okunieff, et al., 1988).

V. Targeting Acidosis
The microenvironment of solid tumors is known to be more acidic (pH 6.5–6.9) than the
physiological pH of normal tissue (pH 7.2–7.5), which can be attributed to a tumor’s
increased glycolytic flux and poor vasculature perfusion (Griffiths, 1991; Wike-Hooley, et
al., 1984). Acidic microenvironments have been shown to increase the invasiveness of a
tumor, leading to increased metastasis (Moellering, et al., 2008; Rofstad, 2000; Rofstad, et
al., 2006). In this section we will describe drugs that target acidosis in tumors and systematic
approaches to reduce acidosis in the tumor microenvironment (Figure 2).

A. Targeting Proton transport-
Metabolically-produced hydrogen ions (acid) can be exported from cells by a variety of
mechanisms including, inter alia, sodium-hydrogen exchange (NHE), anion exchangers
(AE), vacuolar ATPases and membrane-bound carbonic anhydrases (CA) (Neri & Supuran,
2011). NHE and AE are ubiquitously expressed and have proven to be poor anti-cancer drug
targets, either through inefficacy or through toxicity, and these have been reviewed
(Grinstein, et al., 1989). Following, we will discuss some of the newer, less well-explored
members of this class of transporters.

Carbonic anhydrases are metalloenzymes that catalyze the interconversion of carbon dioxide
and water to bicarbonate and protons. Mammalian carbonic anhydrases (α-CAs) can be
cystolic, mitochondrial, secreted or membrane bound. The primary function of mammalian
carbonic anhydrases is to maintain the acid-base balance of cells, tissue, and blood. As
aerobic glycolysis becomes the primary means of energy production for a tumor cell, the
ability to regulate physiological pHi becomes paramount to maintain cellular processes such
as proliferation as well as inhibition of apoptosis (Shen, et al., 2006; Tiseo, et al., 2009).
CAIX and CAXII are two transmembrane carbonic anhydrases that have been identified to
be associated with tumor progression and metastasis (Aulitzky, et al., 1989; Fantin, et al.,
2006). As a transcriptional target of HIF1α, CAIX expression is up-regulated in hypoxic
tissue and has been shown to be a poor prognostic marker in several cancer types, including
breast cancer (Lou, et al., 2011). CAXII is also overexpressed in tumors and is associated
with disease progression and response to therapy (Supuran, 2008; Tureci, et al., 1998). As
carbon dioxide is hydrated, HCO3

− is moved intracellularly to maintain intracellular pH
(pHi) while protons are pumped into the extracellular environment of a tumor, decreasing
the extracellular pH (Shepherd & Kahn) promoting an aggressive metastatic environment
(Jaakkola, et al., 2001; H. Xie, et al., 2009). Members of α-CA require zinc for activity,
making them susceptible to inhibition by sulfonamides, which coordinates with the zinc ion
found in the active sites of carbonic anhydrases. Sulfonamide analogs such as topirmate,
sulpiride and valdecoxib have been shown to potently inhibit CAXII, while zonisamide has
been identified to be an effective inhibitor of CAIX (Greenberger, et al., 2008; L. Li, et al.,
2005). Perhaps the most studied sulfonamide analog, indisulam, has high affinity for CAIX
and CAXII, in addition to seven other carbonic anhydrases (Greenberger, et al., 2008; L. Li,
et al., 2005). Indisulam inhibits CAIX in nanomolar quantities and shows efficacy against
tumor xenografts in vivo. In addition to CAIX inhibition, indisulam induced sequelae, such
as disruption of the G1/G2 phases of the cell cycle and expression changes of genes related
to cell adhesion, cell signaling, and altered glucose metabolism (Owa, et al., 1999;
Rapisarda, et al., 2002; RapisardaZalek, et al., 2004; Vester & Wengel, 2004).

Clinical trials for the treatment of solid tumors with indisulam have been ongoing for the
past decade. Five phase I clinical trials have been conducted focusing on optimizing the
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dosing regimen of indisulam to patients with solid tumors (Birner, et al., 2000; Bos, et al.,
2003; Giatromanolaki, et al., 2001; Kummar, et al., 2011; Welsh, et al., 2004). Fatigue and
mucositis were noted as adverse events during the trial, and reversible neutropenia and
thrombocytopenia were dose-limiting toxicities. Phase II trials have been completed on
patients with platinum-pretreated NSCLC in a multi-center study (Jordan, et al., 2005).
While some patients experienced a positive response to indisulam, the effect was not long-
term. Objective responses to indisulam therapy were not achieved during this trial, which
may be attributed to inherent difficulties of being a second-line therapy to platinum-
pretreated NSCLC (Koh, et al., 2008). Further trials are being conducted using indisulam as
both a single agent or as combination therapy for different tumor types.

Another membrane bound transporter involved with acidification of the tumor
microenvironment is V-ATPase (Palayoor, et al., 2008; D. L. Schwartz, et al., 2009). In
tumor cells, V-ATPases can prevent intracellular acidification by transporting protons into
lysosomal compartments that are released into extracellular space, or by directly pumping
protons into the tumor microenvironment (Skeen, et al., 2006). In addition to promoting
tumor metastasis by acidifying the tumor microenvironment, overexpression of V-ATPases
following chemotherapy treatment appears to be a drug resistance mechanism (Y. Li, et al.,
2007; Liu, et al., 2006). In 1988, bafilomycins were identified to be potent inhibitors of V-
ATPases (Bernardi, et al., 2006). Since this discovery, several generations of V-ATPase
inhibitors have been developed and investigated and can be classified into 5 families of V-
ATPase inhibitors (Perez-Sayans, et al., 2009). While targeting V-ATPases is desirable as an
anti-cancer target to reduce metastatic potential and drug resistance, clinical relevance is
unknown due to likely toxicities (Bi, et al., 2005; Connolly, et al., 2006; Kaper, et al., 2006;
Koumenis, et al., 2002).

The monocarboxylate transporter 1, MCT1, a membrane bound transporter is required for
lactate (coupled with a proton) to move across the plasma membrane. MCT1 has been
documented to have dysregulated expression in colorectal, breast, and cervical carcinomas
(Asada, et al., 2003; PinheiroLongatto-FilhoFerreira, et al., 2008; PinheiroLongatto-
FilhoScapulatempo, et al., 2008). Inhibition of MCT1 reduces intracellular pH and induces
apoptosis, making it an attractive target for anti-tumorigenic therapy (Sonveaux, et al.,
2008). Several small molecule inhibitors of MCT1 have been identified including α-
cyano-4-hydroxycinnamate (CHC), phloretin and AR-C117977 (Bueno, et al., 2007;
Sonveaux, et al., 2008). Currently, no MCT1 inhibitors are being investigated clinically.

B. Manipulating tumor microenvironment pH
Orally distributed systemic buffers have been shown to be an effective way to increase
extracellular pH of a tumor (Silva, et al., 2009). Continuous oral delivery of sodium
bicarbonate to tumor bearing mice have been shown to increase selectively the pHe of a
tumor and are effective at reducing the rate and size of metastasis, without changing the
volume of the primary tumor (Jahde, et al., 1990; Robey, et al., 2009). In addition to
reducing metastasis, buffering with sodium bicarbonate increased breast tumors sensitivity
to doxorubicin and mitoxantrone, chemotherapies known to be ineffective in acidic tumor
environments (Jahde, et al., 1990; Raghunand, et al., 2001; Wojtkowiak, et al., 2011). A
similar reduction in metastasis was achieved using orally available imidazole (IEPA) or
lysine buffers in murine experimental metastasis models (Ibrahim Hashim, et al., 2011; J.,
2011).

VI. Manipulating the microenvironment for therapeutic benefit
Combination therapy has been a long standing strategy for the treatment of cancer patients.
Drug resistance to single agent regimens is a major obstacle in the clinic and combination
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therapy aims to target more of a heterogeneous tumor, reducing the ability of a tumor to
develop resistance. The commonality of phenotypic characteristics of the tumor
microenvironment between patients encourages the targeting of the microenvironment in
combination with other cytotoxic chemotherapies. In the above sections, we detailed a
number of approaches to target the tumor metabolic phenotype as well as describing
strategies to manipulate hypoxia (exacerbation of hypoxia metabolically or by reducing
oxygen delivery) and acidosis (buffer therapy) for therapeutic benefit. In this section, we
will describe additional combination therapies that manipulate the metabolic or physiologic
phenotype of cancers.

2DG, the glucose analog hexokinase inhibitor, has been unsuccessful as a single agent
chemotherapy in the clinic, but has recently been of interest as a sensitizer of cancer cells to
other chemotherapies or radiation therapy (Coleman, et al., 2008; Lin, et al., 2003; Simons,
et al., 2007; F. Zhang & Aft, 2009). Targeting metabolic pathways or DNA integrity through
ionizing radiation (IR) or treatment with drugs like metformin in coordination with 2DG
treatment can lead to significant antitumor effects (Ben Sahra, et al., 2010; Cheong, et al.,
2011). Clinical studies have verified that co-treatment of 2DG with IR is safe for patients,
and reduced toxicity associated with IR in some patients (Mohanti, et al., 1996; Singh, et al.,
2005). Preclinical studies using 2DG as a sensitizer are promising; however clinical studies
investigating the efficacy need to be completed before 2DG sensitizing treatment becomes
routine.

VEGF inhibitors, and antiangiogenic inhibitors in general, have similarly unintended effects
on the tumor microenvironment, resulting in normalization of the tumor vasculature.
Vascular normalization, first described by Rakesh K. Jain, is a maturation of existing
immature vessels within a tumor when neoangiogenesis is inhibited (S. Goel, et al., 2011;
Jain, 2001, 2005). Vascular maturation results in better oxygen delivery and tumor
perfusion, relieving interstitial tumor pressure which is hypothesized to provide better drug
delivery to patients and reduce resistance to chemotherapy (Jain, 2005). Treatment of tumor
bearing mice with VEGF inhibitor DC101 resulted in tumor vascular remodeling, where
vasculature became non-leaky and more organized (Tong, et al., 2004). Further studies have
been conducted to study the timing of vascular normalization with optimal sensitivity to
radiation treatment (Matsumoto, et al., 2011; Winkler, et al., 2004). Vascular normalization
has been observed in patients with non-metastatic rectal adenocarcinoma receiving
bevacizumab (Willett, et al., 2004; Willett, et al., 2010; Willett, et al., 2009). Although
tumor reduction was not observed, microvessel density and vascular permeability decreased
and histological analysis confirmed the presence of mature vasculature within tumors. Pre-
clinical and clinical studies have provided support for the vascular normalization hypothesis,
however more studies need to be completed to fully optimize the normalization window to
improve efficacy of this treatment.

VII. Conclusion
Initially a barrier during carcinogenesis, the tumor microenvironment during the later stages
of carcinogenesis provides an advantage for a tumor to outcompete normal tissue, becoming
more aggressive and metastatic. Additionally, common characteristics of a tumor
microenvironment provide a haven of protection for a tumor against chemotherapies. The
immature and chaotic vasculature that exacerbates hypoxia within a tumor also provides
minimal perfusion through a tumor for effective drug therapy, and extracellular acidosis due
to preferential metabolism through aerobic glycolysis creates an environment that
effectively traps weakly basic drugs from moving intracellularly. Extensive research has
been focused on targeting the tumor microenvironment, providing clinicians with
chemotherapies that target the glycolytic pathway, acidosis, hypoxia and hypoxia response
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pathways (Table 2). Manipulation of the tumor microenvironment has been an effective
strategy for the treatment of a wide range of patients and will continue to be an important
area of drug discovery in the future.
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Non-standard abbreviations

pHi intracellular pH

MRS magnetic resonance spectroscopy

3-APP 3-aminopropyl phosphate

pHe extracellular pH

PET positron emission tomography

FDG 18F-2-deoxyglucose

FMISO 18F-fluoromisonidazole

EPRI Electron paramagnetic resonance imaging

GLUT glucose transporters

RCC renal cell carcinoma

VHL von Hippel-Lindau tumor suppressor

2DG 2-deoxyglucose

3-BrPA 3-bromopyruvate

GAPdH glyceraldehyde-3-phosphate dehydrogenase

MDR multi-drug resistance

BPH benign prostate hyperplasia

EGFR epidermal growth factor receptor

ALT alanine aminotransferase

LDH lactate dehydrogenase

PFK 1 phosphofructokinase-1

3PO 3-(3-Pyrindinyl)-1-(4-Pyridinyl)-2-Propen-1-one

PK pyruvate kinase

SSTR4 somatostatin receptor 4

PdH pyruvate dehydrogenase

TCA tricarboxylic acid cycle

PDK pyruvate dehydrogenase kinase

DCA dichloroacetate

TMZ temozolomide

pO2 partial oxygen pressure
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HIF1α hypoxia inducible factor 1α

HRE hypoxia response element

DCE-MRI dynamic contrast enhanced MRI

LNA locked nucleic acid

DW-MRI diffusion-weighted MRI

SD stable disease

mTOR mammalian target of rapamycin

TSC1/2 tuberous sclerosis protein 1 complex

PML promyelocytic leukemia tumor suppressor

AMPK AMP-activated protein kinase

ER endoplasmic reticulum

UPR unfolded protein response

PERK PKR like ER kinase

IRE-1 inositol requiring 1

AFT6 activating transcription factor 6

ERAD ER-associated degradation

TPZ tirapazamine

Br-IPM bromo-isophosphoramide mustard

AQ4 alkylaminoanthraquinone

PARP1 poly(ADP-ribose) polymerase 1

EPRI electron paramagnetic resonance imaging

VEGF vascular endothelial growth factor

PDGF platelet-derived growth factor

FX11 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic
acid

CA carbonic anhydrase

MCT1 monocarboxylate transporter 1

CHC α-cyano-4-hydroxycinnamate

IEPA imidazole

IR ionizing radiation

Pi inorganic phosphate
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Figure 1. Inhibitors of glucose metabolism
The figure depicts the glycolytic pathway from glucose entry into cells through production
of pyruvate, which is converted either to lactate or to acetyl coA for entry into the TCA
cycle. Movement of metabolic intermediates through the pathway is designated by arrows.
Enzymes in the glycolytic pathway are placed next to the arrow leading from their substrate
to their product. Inhibitors of glycolytic enzymes or glucose transporters appear in boxes.
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Figure 2. Proteins that contribute to tumor acidosis and their inhibitors
The figure depicts proteins and transporters that contribute to extracellular acidosis in a
tumor due to increased lactate production from increased glycolytic flux. Included are CAIX
and CAXII, carbonic anhydrases that catalyze the interconversion between carbon dioxide
and water to bicarbonate and protons; and V-ATPases and MCTs, which allow transport of
H+ into the extracellular environment. Inhibitors of the proteins that contribute to tumor
acidosis appear in boxes.
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Table 1

Drugs targeting hypoxia or hypoxia response pathways

Drug Target Stage of Development

Topotecan Topo I/HIF1α expression FDA approved (ovarian, cervical, SCLC)

EZN-2968 HIF1α expression Phase I/Pilot study

PX-478 HIF1α expression/protein stability Phase I

Rapamycin mTOR FDA approved for non-oncogenic indications

CCI779(temsirolimus) mTOR FDA approved (renal cell carcinoma, mantle cell lymphoma)

RAD001(everolimus) mTOR FDA approved (renal cell carcinoma, pancreatic neuroendocrine tumors & non-
oncogenic indications)

Metformin AMPK/mTOR/cell cycle FDA approved for non-oncogenic indications

Bortezomib(PS-341) Proteasome/UPR FDA approved (mantle cell lymphoma, multiple myeloma)

STF-083010 IRE1/UPR Pre-clinical

Salicaldehydes IRE1/UPR Pre-clinical

Tirapazamine(TPZ) Hypoxia Clinical trials completed

TH-302 Hypoxia Phase I-III

Banoxantrone(AQ4N) Hypoxia Phase I

Apaziquone(E09) Hypoxia Phase I-III

PR-104 Hypoxia Phase I-II
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Table 2

Clinical Trials*

Drug Clinicaltrials.gov Identifier Site Phase Sponsor

Biomarker Study NCT01130584 Salivary levels of PKM2 Observational National University
Hospital, Singapore

TT-232 NCT00422786 Renal Cell Carcinoma II Thallion Pharmaceuticals

TT-232 NCT00735332 Melanoma II Thallion Pharmaceuticals

EZN-2968 NCT00466583 Carcinoma/Lymphoma I Enzon Pharmaceuticals, Inc.

EZN-2968 NCT01120288 Neoplasms/Liver Metastases I National Cancer Institute
(Luciani, et al.)

PX-478 NCT00522652 Advanced solid tumors/Lymphoma I Oncothyreon Inc.

AQ4N NCT00394628 Glioblastoma multiforme Ib/IIa Novacea

AQ4N NCT00109356 Lymphoma/Leukemia I/II Novacea

AQ4N NCT00090727 Solid tumors/Non-Hodgkin’s Lymphoma I Novacea

*
Table describes clinical trials mentioned in review. Additional trials can be found at www.clinicaltrials.gov.
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