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Abstract

Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning
disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity
and adequate environmental opportunities. Past research has been dominated by studies focused on single
impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present
study took an epidemiological approach to study the learning profiles of a large school age sample in language,
reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific
learning profiles involving either weak language, weak reading, weak math, or weak math and reading were
observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low
scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or
variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low
math only group did not show these phonological deficits. These findings may suggest different etiologies for
language-based deficits in language, reading, and math, reading-related impairments in reading and math, and
isolated math disabilities.
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Language, Reading, and Math Learning Profiles in
a School Age Epidemiological Sample

Specific learning disabilities are a category of developmental
disabilities characterized by difficulty learning in one or more
areas despite otherwise typical neurological, physical, and
emotional development, and adequate experiential and
educational opportunities. Specific language impairment (SLI),
dyslexia, and dyscalculia are childhood learning disabilities
distinguished by the domain of the disability. SLI refers to a
delay in the onset or development of oral language while
dyslexia and dyscalculia refer to reading and math difficulties,
respectively.

Relevant findings reveal considerable heterogeneity within
each disorder [1-5] as well as overlapping deficits between
them [6]. However, the nature of the interrelationships between
the various learning challenges faced by particular children
remains poorly understood. One barrier to understanding
children’s learning is that research has centered on children
with impairments. A focus on academic learning patterns
among children generally is important to understanding how

common or unique certain learning profiles may be, which will
ultimately lead to a better understanding of the cross domain
learning challenges observed in children with impairments. A
second impediment in this area is that research has been
dominated by studies focusing on only single impairment
profiles despite the widespread recognition of overlapping and
comorbid deficits. As a result, it is difficult to determine whether
the comorbidity represents a patterning together of different
deficits, or is simply artifactual [7]. In order to better understand
comorbidity, it is crucial that we adopt a more comprehensive
approach to understanding children’s learning across a range
of academic skills. To address this need, the present study
aimed to explore learning profiles for language, reading, and
math across a large sample of school aged children using an
epidemiological approach.

Comorbidities
Traditionally, SLI, dyslexia, and dyscalculia have been

described as relatively specific deficits in respective areas.
Children with SLI typically have impaired lexical skills (word
knowledge) including late development of first words [8], and
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slow naming [9]. In addition, grammatical and syntactic
knowledge has been found to be impaired in this group with
particular difficulty in acquiring verb morphology [10,11].
Indeed, tense marking [12], nonword repetition [13], and
sentence repetition [14] have been suggested as clinical
markers of the disorder. Children with dyslexia often have
difficulty with letter or symbol knowledge including slow and
error-prone word reading [15]. Deficits in letter-sound
knowledge impair both phonetic reading and spelling of single
words. In addition, sentence level reading may be slow and
laborious leading to difficulties understanding what has been
read [16]. Difficulty with mapping phonology to orthography,
tapped by phonological awareness and decoding tasks, are
considered hallmarks of dyslexia [17,18]. Children with
developmental dyscalculia have difficulty with basic
calculations [19]. One of the hallmarks of dyscalculia is the
persistent use of effortful calculation strategies (such as using
finger counting) when typically developing peers have shifted
towards retrieving the solutions to calculation problems from
memory [20]. More recently, studies have shown that children
with dyscalculia may also have difficulties with number sense,
the ability to quickly understand, approximate, and manipulate
numerical quantities [21,22]. It has been found that dyscalculia
is associated with difficulty estimating the number of objects in
a group [23], and comparing quantities [24,25], particularly
when represented in a symbolic format (e.g. Arabic numerals).

While pure forms of SLI, dyslexia, and dyscalculia occur,
children identified with one of these learning disabilities often
present with other co-morbid conditions. For example, SLI has
been associated with high rates of speech production deficits
[26], attentional difficulties [27], and motor discoordination [28].
Similarly, dyslexia often co-occurs with sensorimotor difficulties
[29], attention deficits [30], and visual processing impairments
[31]. Attentional difficulties have been reported also for
dyscalculic groups [32,33], as have visuospatial processing
deficits [34]. These significant and similar comorbidities have
raised debate concerning whether these impairments stem
from the same (e.g., [35]) or multiple deficits [36].

SLI and Dyslexia
These three childhood learning difficulties also tend to co-

occur with each other, although appreciably less is known
about such comorbidities. The co-occurrence of SLI and
dyslexia has received considerable attention. In a review of
studies, McArthur, Hogben, Edwards, Heath, and Mengler [37]
reported high incidences of language impairment among those
identified as dyslexic (19% to 63%) and reading impairment
among those identified with SLI (12.5% to 85%). As well, in two
twin studies, rates of reading impairment were significantly
higher than matched control groups in children with SLI [38,39]
and family members of children with SLI [39]. Given that both
oral language and reading skills rely on an intact language
system, one view of the overlap between SLI and dyslexia is
that they both stem from a language impairment affecting
reading only in its mild form, and oral language and reading in
more severe cases. Consistent with this view are findings of
shared genetic effects across SLI and dyslexia [40-42].
However, recent evidence including separable genetic effects

[41] and subtle dissociations in the oral language profiles of the
two populations [43,44] suggest that this single deficit/severity
view is too simplistic.

Observations of the qualitative differences between SLI and
dyslexic groups have led to the suggestion that both
phonological and nonphonological dimensions of language
must be considered in order to account for variations in
language and reading development [45]. The prominent feature
of the reading difficulty in classic dyslexia is a difficulty mapping
between phonology and orthography stemming from a
phonological processing deficit [46]. These children may
struggle to decode unfamiliar words, but are able to
comprehend those words once successful decoding has been
achieved. Effortful decoding over many words, however, may
lead to some breakdown in comprehension. While children with
SLI often struggle with decoding, they also experience difficulty
with reading comprehension even when they have accurately
read a word [45,47]. It has been suggested that the oral
language deficits in SLI impair comprehension of both spoken
and written language [45]. Bishop and Snowling [45] have
suggested a two-dimensional model to account for the unique
and intersecting patterns of SLI and dyslexia including a
common phonological deficit and an additional language-based
(but nonphonological) impairment in SLI.

Dyslexia and Dyscalculia
Generally high rates of comorbidity have been reported for

dyslexia and dyscalculia ranging from 17% [33] to
approximately 60% [48,49]. As is the case for dyscalculia
generally, research comparing dyscalculic groups with and
without comorbid reading impairment is still in its early stages.
Jordan and colleagues [50-52] found that children with
comorbid dyscalculia and dyslexia performed more poorly than
children with dyscalculia-only in exact calculation and solving
story problems. No specific deficits were found for the
dyscalculia-only group relative to the comorbid group.
Consistent with these results are findings of similar patterns of
impairment across a range of number processing tasks for
dyscalculic groups with and without reading difficulties [24,53].

Nevertheless, some researchers have reported qualitative
differences between groups with dyscalculia with or without
dyslexia. Fuchs and Fuchs [54] replicated Jordan and Hanich’s
[50] findings of poorer performance of dyscalculic groups with
reading impairment than those without on untimed math facts
and simple story problems. However, Fuchs and Fuchs did
observe a disproportionate impairment for their dyscalculia-only
group relative to the comorbid group on complex mathematical
operations involved in story problems and real world problem
solving. These results were interpreted as suggesting that the
children with dyscalculia-only had more serious deficits in math
procedures. Naming speed [55] and phonological and
magnitude processing [56] have been examined in dyslexic-
only, dyscalculic-only, and dyslexia/dyscalculia groups. These
researchers found phonology-based impairments in the
dyslexic groups irrespective of arithmetic status, and
magnitude processing deficits in the dyscalculic groups
irrespective of reading status. The deficits in the dyslexia/
dyscalculia groups were considered additive in that they were
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equivalent to the impairments characterizing each respective
specific group. The researchers hypothesized that dyslexia and
dyscalculia have separable cognitive profiles that may co-
occur.

The high rate of comorbidity between dyslexia and
dyscalculia may appear to undermine a strictly separable but
co-occurring account of these disorders. An alternative view is
that verbally based deficits may give rise to both reading and
math impairments whereas a more domain-specific impairment
related to number processing may underpin pure dyscalculia.
Rourke and colleagues [57-59] have provided evidence
consistent with this view. Children with comorbid dyslexia and
dyscalculia had more difficulty with verbal than visuospatial
neuropsychological tests whereas children with dyscalculia-
only were more likely to struggle with visuospatial than verbal
materials. Also in broad agreement are suggestions of
subtypes of children with dyscalculia [20,60] including those
with impairments in primary verbal working memory and
conceptual knowledge, retrieval of facts from long-term
memory, or visuospatial abilities. It should be noted, however,
that there is a lack of evidence replicating the group differences
[61] or supporting Geary’s subtyping (but see 54). Part of the
problem across these research studies may be that
consistency is lacking both in the criteria employed for
identifying dyscalculia and dyslexia, and in the range of
numerical, reading, and cognitive tasks investigated.

SLI and Dyscalculia
To our knowledge, no studies have investigated the

comorbidity of dyscalculia and SLI. Nevertheless, a relationship
may be expected. According to Dehaene et al.’s [62] Triple
Code Model, three distinct systems may be recruited during
mathematical processing including the quantity system
(nonverbal), the visual system, and verbal representations
(lexical, phonological, syntactic). Verbal representations are
tapped, for example, during tasks involving fact retrieval or
sentence-level processing. The reliance on verbal
representations during some mathematical operations would
lead to the prediction that children with SLI may experience
difficulties in mathematical learning, and indeed, such a
relationship has been reported. Children with SLI have difficulty
acquiring early verbal numeracy skills such as logical
operations and numerical representations but score at age
appropriate levels on early nonverbal numeracy tasks such as
numeral estimations [63-67]. Indeed, Kleemans et al. [67]
found that phonological awareness, grammatical ability, and
naming speed were significant predictors of early numeracy
skills in children with SLI. It is clear that a systematic
investigation of oral language, and verbal and nonverbal
numeracy skills is needed to further our understanding of the
relationships between developmental language and math
impairments.

The Present Study
The findings reviewed above provide strong evidence for the

presence of important relationships between SLI, dyslexia, and
dyscalculia. Nevertheless, work in this area has been hindered
by inconsistencies in the criteria applied to define each learning

disability, and in the tasks and analyses employed to
investigate group differences. In addition, most studies have
investigated the overlap between these disorders by focusing
on small groups exhibiting only one or two of these disabilities.
While informative, these studies cannot describe the overall
pattern of variance and covariance in learning language,
reading, and mathematics present in children generally, and in
those struggling to learn specifically. It was the purpose of the
present study to provide this crucial population perspective
concerning SLI, dyslexia, and dyscalculia. In particular, this
study is the first to consider learning patterns and challenges in
language, reading, and math within subjects in a large
developmental sample. The emerging patterns from this work
can then form the basis for future research questions aimed at
understanding corresponding deficits.

A large, unselected group of school age children completed
measures of language, reading, and math. One aim of the
study was to examine the patterns of performance across
measures using cluster analysis in which sets of observations
are created using the dimensions of interest such that sets are
more similar to each other within clusters than between
clusters. We anticipated that general ability (i.e., performance
across all tasks of interest) would yield several clusters
reflecting ability levels (e.g., clusters identifying children who
generally score in the low, average and high ranges across all
tasks). Nevertheless, we were interested in differentiating
patterns of performance, and so the analysis aimed to reveal
additional clusters with unique profiles if they do in fact exist.
Findings of clusters identifying solely language, reading or
math weaknesses would be suggestive of specific and
separable underlying mechanisms with comorbidity due to
artifacts in the data. The presence of clusters with weaknesses
in multiple areas would be reflective of potentially meaningful
comorbidity perhaps suggesting a different pattern of core
deficits. We also examined whether the same pattern of
learning profiles would be found for those performing at the low
end of the distribution. Findings of similar distributions would
suggest that our cluster rates might be applicable to learning
disabilities.

A second goal of the study was to provide a preliminary
validation of our clusters, and to explore cognitive performance
differences across clusters using data available for a subset of
the large, unselected sample. Findings that a particular
cognitive profile characterizes both unitary and comorbid
clusters would implicate similar underlying processes whereas
different cognitive deficits for unitary and comorbid clusters
might suggest separate underlying cognitive constraints.

Methods

The Nonmedical Research Ethics Board at The University of
Western Ontario approved all procedures in this study.

Participants
A total of 34 schools (including 5 rural schools) in the

southwest region of Ontario, Canada were recruited to the
study. All children in senior kindergarten through grade 4 in
each of the schools were invited to participate in October of the
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school year, corresponding to an age range of 4 years;10
months to 10;10. Approximately 5967 consent forms were
distributed of which 1605 were returned, signed by parents. Of
these, 1387 children participated in the study (the remainder
were either outside the age range, n = 61, or could not be
screened within the time frame of the study, n = 157).
Complete data sets were obtained for 1120 children aged 6;0
to 9;11 (Epidemiological Sample). Children under 6;0 were not
included in the present study because they did not complete
the reading screening measure (n = 178). Of those meeting the
age criteria for the present study, 14 did not have complete
data sets. By parent report, approximately 86% of the children
were right handed, 85% spoke English as their first language,
and 82% of mothers had at least some college or university
education. It should be noted that these proportions did not
differ from that of the full sample (n = 1605). Additional data
were available for a subset of the Epidemiological Sample who
participated in further studies with our research group (referred
to as the Standardized Test Subsample, see below; n = 383).

Procedure
All participants in the Epidemiological Sample completed a

10-minute screening protocol consisting of four tasks,
Sentence Recall, Math Fluency, Sight Word Reading
Efficiency, and Phonemic Decoding Efficiency. The
Standardized Test Subsample completed a battery of
standardized language, reading, math, phonological
awareness, intelligence, and working memory tests (and other
measures not reported here) in three visits occurring one week
apart and within 6 months of the original screening. All tasks
were administered individually in a quiet room in the child’s
school by a trained research assistant.

Screening Measures
All participants completed the screening measures described

below.
Sentence Recall.  The sentences were taken from

Redmond [68] and consisted of 16 sentences each composed
of 10 words (10 to 14 syllables) with an equal number of active
and passive sentences. Although not standardized, this task
has been found to have good sensitivity and specificity for
identifying children with language impairment [69]. The
sentences were presented in fixed order via a digital audio
recording of an adult female speaker using headphones.
Sentences were scored online by the research assistant with
either a 2 (correct), 1 (three or fewer errors), or 0 (more than
four errors or no response).

Math Fluency.  The Math Fluency subtest of the Woodcock-
Johnson III Test of Achievement (WJ III; [70]) involves the rapid
application of basic addition, subtraction, and multiplication
procedures. Questions graded in difficulty were presented on
an 11” by 17” sheet, and children were asked to complete the
problems as quickly and accurately as possible for three
minutes. The total number of problems completed correctly
was counted.

Reading Efficiency.  The Test of Word Reading Efficiency
[71] was administered. In the Sight Word Efficiency (SWE)
subtest, children read as many printed words as possible in 45

seconds. In the Phonemic Decoding Efficiency (PDE) subtest,
children read as many pronounceable printed nonwords as
possible within 45 seconds. The total number of words/
nonwords read correctly was counted for each subtest.

Standardized Test Battery
The Standardized Test Subsample was comprised of

monolingual English speakers, and was selected based on
criteria motivated by other studies focusing on children with
impairments and on practical constraints. Briefly, standard
score cutoffs equivalent to -1.3 SD (19.5 standard score points)
below the full sample mean were set separately for each of the
sentence recall (M = 103; SD = 18), phonemic decoding
efficiency (M = 106, SD = 13), and math fluency tasks (M = 93,
SD = 14), or for a pattern of low performance equivalent to -1.0
SD (15 standard score points) on more than one of these
tasks. The cutoff point of -1.3 SD was based on previous
findings of high agreement between clinician judgments of SLI
and test scores of at least -1.25 SD below the standardized
mean [72]. The cutoff for a pattern of low performance across
tasks was narrowed to -1.0 SD due to practical limitations
related to testing all the children meeting the corresponding
criteria. For the applied criteria, standard scores were based on
the present sample for the sentence recall, and on the
published test norms for the remaining tests. No cutoff was set
for the sight word efficiency test.

The Standardized Test Subsample comprised all low
performers, that is, all who scored below the cutoffs and who
could be tested (186/255), and children who scored within the
average range on all screening tasks and attended the same
schools as the low performers (n = 193). Although the
composition differs from that of the Epidemiological sample, the
performance of the Standardized Test Subsample provides
some indication of the characteristics of relevant learners when
interpreted with caution. The information may be especially
relevant to those with learning challenges because low and
average scorers on the screening tasks were represented in
roughly equivalent proportions in this Subsample. All
participants in the Standardized Test Subsample completed the
measures described below.

Language.  Each child in the Standardized Test Subsample
completed the four core subtests appropriate for the child’s age
for the Composite Language Score (CLS) from the Clinical
Evaluation of Language Fundamentals IV (CELF-IV; [73]). In
the Concepts and Following Directions subtest, the child
pointed to aspects of a picture following a spoken instruction.
For Recalling Sentences, the child repeated sentences
immediately after hearing them and for Formulated Sentences,
created a sentence using a given word. Children under 9 years
completed the Word Structure subtest involving completing a
sentence with the grammatically correct word form, and those 9
years and over completed the Word Classes 2 subtest
involving identifying which two of four words have a related
meaning.

Reading and Math.  Two subtests from the WJ III [70] were
administered to each child. In the Reading Fluency subtest, the
child read a sentence and answered yes/no questions about
the sentence. The child completed as many as possible in

Learning Profiles

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e77463



three minutes. In the Calculations subtest, the child was asked
to complete mathematical operations.

Phonological Awareness.  In the Elision subtest of the
Comprehensive Test of Phonological Processing (CTOPP;
[74]), the child was asked to isolate and delete a phoneme from
a word. For example, say ‘stop’, say it again without saying ‘t’.

Intelligence.  The children completed the four subtests of
the Wechsler Abbreviated Scale of Intelligence (WASI; [75]).
The nonverbal intelligence subtests included Block Design, in
which the child arranged blocks to match a model, and Matrix
Reasoning, which involved choosing a picture to complete a
pattern. The verbal intelligence subtests included Vocabulary,
in which the child provided definitions, and Similarities, which
involved identifying related pictures or describing similarities
between words.

Working Memory.  Eight subtests from the Automated
Working Memory Assessment (AWMA; [76]) were
administered. Measures tapping phonological short-term
memory involved immediate repetition of numbers or nonword
forms (Digit Recall, Nonword Recall), and those tapping
visuospatial short-term memory required recall of locations (Dot
Matrix, Block Design). Verbal working memory measures
involved recall of counts or final words after counting or
processing a sentence, respectively (Counting Recall, Listening
Recall), while those involving visuospatial working memory
required the recall of location or orientation after identifying a
different shape or mentally rotating an image, respectively
(Odd One Out, Spatial Recall).

Data Analysis
In order to compare performance across our screening tasks,

we created our own normative scores based on our large,
unselected Epidemiological Sample. To do this, raw scores
from the screening measures were converted to z-scores within
four age bands (6;0-6;11; 7;0-7;11; 8;0-8;11; 9;0-9;11) and
then transformed to a standard score scale with a mean of 100
and a SD of 15. Standard scores for all of the tests completed
by the Standardized Test Subsample were based on the
respective published test norms.

In order to explore the patterns of unique learning profiles in
our Epidemiological Sample, we completed a two-step cluster
analysis appropriate for large samples (SPSS v. 17). The
cluster analysis technique groups cases of observations into
discrete subgroups based on their similarity across a set of
chosen dimensions. The clustering procedure proceeds
hierarchically so that smaller subgroups (clusters) are merged
iteratively into increasingly larger clusters. We planned to
explore the number of unique learning profiles by
systematically increasing the number of clusters to be found by
the solution until no further unique learning profiles were
established. Additional tests available for the Standardized
Test Subsample allowed us to examine performance on related
cognitive measures for each profile group.

Results

Cluster Analysis
The four screening variables, Sentence Recall, Math

Fluency, Sight Word Efficiency, and Phonemic Decoding
Efficiency, were entered into a two-step cluster analysis with
noise handling set to the 25% default and using the log-
likelihood distance measure. The autoclustering statistics
include the Schwarz’s Bayesian Information Criterion (BIC),
BIC changes, ratio of BIC changes, and ratio of distance
measures. Smaller BICs and BIC changes reflect better models
and are used to find an initial estimation for the number of
clusters. The initial estimate is refined by taking into account
the ratio of distance measure, which reflects the greatest
change in distance between the two closest clusters in each
hierarchical clustering stage (SPSS, 2001). In the current
analysis, the absolute value of the BIC declined to five clusters
although the ratio of distance measures indicated that the
complexity beyond three clusters is not necessary. Given our
interest in identifying the largest number of unique clusters that
would fit our data, we repeated the two-step cluster analysis
requesting increasing numbers of clusters from three until
profiles were duplicated. It should be noted that the order of
case entry can influence cluster formation in these analyses.
We validated our clustering by repeating the analyses with four
additional uniquely randomized case orders and found no
additional unique profiles.

Results of the cluster analyses are displayed in Figure 1,
which presents the percent of participants included in each
cluster and the Student’s t statistics reflecting each variable’s
importance to each cluster. In comparison to the critical value
line, the t-values provide a guideline as to how each variable
contributes to the formation of the cluster and how individual
clusters differ from the overall average. As can be seen in
Figure 1, the model with 3-clusters selected by the
autoclustering procedure included clusters of children
distinguished by below average performance overall (34%),
above average performance overall (32%), and largely average
performance with above average sentence recall and below
average math fluency scores (average with language strength;
34%). Analyses were discontinued at 7 clusters due to the
presence of two clusters with the same profile: positive and
significant t-values on all four measures. The most complex
solution of unique clusters, then, was the 6-cluster model,
which included both overall below (cluster 1) and above
average profiles (cluster 6), as well as separable profiles for
below average reading efficiency (both sight word and
phonemic decoding efficiency; cluster 3), below average math
fluency (cluster 5), below average math fluency and reading
efficiency (cluster 4), and below average sentence recall and
reading efficiency (cluster 2).

Descriptive Statistics for Clusters
Table 1 presents descriptive statistics for the 6-cluster

solution including cluster size, sex distribution, age, screening
measure centroids and standard deviations, and cluster
descriptors. The mean ages across clusters varied by five
months with cluster 5 (below average math fluency) and cluster
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6 (above average overall) tending to be comprised of older
children. While significant age differences did occur in this
large sample, effect sizes did not exceed 0.02 indicating a very
small effect of chronological age on the clustering. There were
no significant sex differences in the 6-cluster model, X2(5) =
9.7, p = .082. In the 3-cluster model selected by the
autoclustering solution (see Figure 1), however, more males
comprised the below average overall cluster while more
females comprised the average with language strength cluster,
X2(2) = 8.6, p = .014.

The boxplot presented in Figure 2 compares performance on
all screening measures for the 6-cluster model. The number of
outliers was greatest for the sentence recall measure. Clusters

1, 2, and 6 have a pattern of low sentence recall compared to
stronger and similar word and nonword reading efficiency and
math fluency. These clusters (1,2,6) are distinguished by
overall performance (low, average, high, respectively). Clusters
3 and 4 show the opposite pattern with stronger sentence recall
performance compared to reading and math performance.
Finally, cluster 5 is characterized by lower math than sentence
recall or reading scores.

Cluster Validation
In order to validate our clusters, the same pattern of

performance across clusters would need to be demonstrated
for additional measures of language, reading, and math such

Figure 1.  Attribute importance for possible cluster solutions (Language – sentence recall; Sight Word – sight word
efficiency; Decoding – phonemic decoding efficiency).  Dashed lines represent critical t-values at the .05 level.
doi: 10.1371/journal.pone.0077463.g001

Table 1. Descriptive statistics for 6 clusters (means and standard deviations).

Cluster n No. males Age (mths) SR SWE PDE MF Cluster Descriptor
1 111 63 93.3 (12.4) 73.3 (11.4) 81.0 (10.9) 83.1 (7.8) 83.2 (9.7) Below average overall
2 188 102 93.7 (13.9) 86.1 (10.2) 96.6 (7.2) 95.0 (7.9) 98.3 (11.3) Below average sentence recall
3 202 108 94.1 (14.4) 109.6 (6.0) 95.7 (5.9) 93.0 (5.8) 99.0 (10.6) Below average reading efficiency
4 120 74 95.0 (13.6) 102.8 (7.3) 79.1 (9.9) 82.7 (7.7) 89.6 (9.7) Below average math and reading
5 186 83 98.3 (12.7) 104.5 (9.6) 108.5 (6.4) 107.4 (6.9) 94.0 (7.8) Below average math fluency
6 313 179 96.7 (12.3) 108.3 (9.4) 115.1 (8.1) 116.1 (11.0) 115.1 (11.3) Above average overall

doi: 10.1371/journal.pone.0077463.t001
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as those available for our Standardized Test Subsample. Thus,
we compared the standardized test performance of our
Standardized Test Subsample in a multivariate ANOVA with
the Composite Language Score (language), reading fluency,
and calculations scores entered as multivariates. The between
group factor in this ANOVA was the cluster (6 levels) to which
each child had been assigned in our cluster analysis. All effects
were significant, F (5, 316) > 11.5, p < .001, η2

p > 0.155.
Descriptive statistics and results of pairwise comparisons with
Bonferroni correction are presented in Table 2. Clusters 1 and
6 (overall below and above average) were readily distinguished
in these comparisons by their low vs. high scores, respectively.
There was reasonable agreement for two of the other clusters:
Cluster 2 (below average sentence recall) was associated with
lower language than reading fluency scores and cluster 4
(below average math fluency and reading efficiency) was
associated with higher language than reading fluency and
calculations scores. Numerically, results corresponded for
cluster 5 (below average math fluency) with the math
calculations score lower than scores on the language or
reading fluency measures for this group, however this
difference was not significant. The pattern for the remaining
cluster, cluster 3 (below average reading efficiency), did not
match the cluster profile in that the reading fluency score was

not disproportionately lower. On these additional tests, cluster
3 presented with average test scores on all measures (average
overall).

Associations with Related Measures
Given the reasonable validation of our clusters in the

Standardized Test Subsample as described above, we next
explored differences in performance on our cognitive measures
across clusters. To do this, we completed a multivariate
ANOVA with cluster (6 levels) as the between group factor, and
the data related to short-term memory, working memory,
intelligence, and phonological awareness from our
Standardized Test Subsample entered as multivariates. All
effects were significant, F (5, 300) > 5.9, p < .001, η2

p > 0.09,
all cases. Descriptive statistics and results of pairwise
comparisons with Bonferroni correction are presented in Table
3. Cluster 1 (below average overall) was consistently
distinguished (relative to at least three other clusters) by a
significantly below average pattern of performance on all of the
measures except block recall (visuospatial short-term memory).
Cluster 2 (below average sentence recall) was differentiated by
significantly lower phonological short-term memory in the
context of average performance on the remaining measures.
Cluster 4 (below average reading and math) was associated

Figure 2.  Boxplot for screening measures for each cluster in the 6-cluster solution (Language – sentence recall; Sight
Word – sight word efficiency; Decoding – phonemic decoding efficiency).  Solid line marks standard score of 100, and dashed
line marks standard score of 85.
doi: 10.1371/journal.pone.0077463.g002
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with lower phonological awareness but average phonological
short-term memory. Clusters 5 (above average except math)
and 6 (above average overall) were characterized by higher
performance IQ. Cluster 3 was not distinguished by any of the
test scores. Cluster 3 was identified as ‘below average reading
efficiency’ in the cluster analysis, but had average overall
performance in the cluster validation. This latter pattern is
consistent with the finding that this cluster was not
distinguished by any of the related measures. Nevertheless,
this group did show high variability on a task closely related to
reading, the phonological awareness task with a standard
deviation of 6.5, more than 2.5 times that of any of the
remaining groups (range of SD for remaining groups: 2.4 to
2.6).

Profiles of Children with Impaired Performance on
Screening Measures

The distribution of cluster membership across the
epidemiological sample is shown in Table 4. Approximately
equal proportions (16-18%) of children were included in
clusters 2 (below average sentence recall), 3 (below average
reading efficiency), and 5 (below average math fluency) with
lower proportions (10-11%) included in clusters 1 (below
average overall) and 4 (below average reading and math), and
a higher proportion in cluster 6 (above average overall: 28%).
Thus, 38% of the sample had a general learning profile with
largely equivalent performance across measures (clusters 1 or
6), and 62%, a more specific learning profile with marked
differences in performance on at least one measure (clusters 2,
3, 4, and 5).

A final descriptive analysis considered whether the learning
profile distributions of children with a potential learning
disability differed from that of the Epidemiological Sample. To
do this, we compared the cluster membership distribution (see
Table 4) in the Epidemiological Sample to that of children for
whom we had some evidence of a learning disability as
reflected by performance of at least 1 SD below the mean on at
least one screening measure (Sentence Recall, Sight Word
Reading Efficiency, Phonemic Decoding Efficiency, Math
Fluency). The cutoff criterion of -1 SD, conventionally
considered to reflect a large effect size (Cohen, 1988), was
chosen to capture all children who performed poorly on at least
one screening measure. Note that this cutoff criterion differs
from that described for the Standardizd Test Subsample, which
was motivated by other studies and not suited to the research
question being addressed in this analysis. The proportions of
children with a general learning profile was smaller for the
potential learning disability group (clusters 1 and 6: 30 vs. 38%,
for the potential learning disability and Epidemiological
Samples, respectively), and included a higher proportion of
below average profiles (cluster 1: 27% vs. 10%). A higher
proportion of the potential learning disability group had a
specific learning profile (clusters 2, 4, and 5: 70% vs. 58%).
Comparatively high proportions characterized the potential
learning disability group for clusters 2 (below average sentence
recall: 24 vs. 17%) and 4 (below average reading and math 4:
27 vs. 11%) whereas smaller proportions were found for
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clusters 3 (below average reading efficiency: 12% vs. 18%)
and 5 (below average math fluency: 7% vs. 16%).

Discussion

In a large epidemiological sample, we identified clusters of
children differing in patterns of relative strengths and
weaknesses in language, reading, and math. In addition to
finding profiles of children who had globally above or below
average abilities across all three academic skills, we found
separable profiles of children who had relative weaknesses
specific only to language, reading efficiency, math fluency, or
reading and math combined. Using independent measures
available for a subsample of the original participant group, we
validated all profiles except that involving relative weaknesses
in reading efficiency. Examination of the learning profiles of the
subset of the epidemiological group for whom there was some
evidence of a learning disability (i.e., below average
performance on one or more screening measures) revealed
higher proportions of relatively specific deficits in language, or
reading and math. Importantly, we discovered that these
unique learning profiles could be further distinguished by
differing abilities in underlying cognitive processes including
immediate memory, intelligence, and phonological awareness.
Perhaps not surprisingly, the overall below average group was
weak across all of these cognitive processes, and higher
nonverbal intelligence scores characterized the above average
overall group. Of interest, limitations in phonological short-term
memory characterized the group with a relative weakness in
language, whereas limitations in phonological awareness were
observed in the group with dual reading and math weaknesses.

The present findings clearly establish that there are patterns
in children’s learning that go beyond a simple below average,
average, above average grouping. Using a novel cluster
analysis approach, we identified children with both general and
specific learning profiles. Over one third of our large
epidemiological sample had a general learning profile

Table 4. Distribution of cluster membership (percentage) for
study subsamples.

 
Cluster Descriptor / Validation
Descriptora

Epidemiological
Sample

Children with
potential LDb

1 Below av. Overall 10% 27%

2
Below av. sentence recall / Lower
language than reading

17% 24%

3
Below av. reading efficiency / Av.
Overall

18% 12%

4
Below av. math and reading / Below
av. reading (and math)

11% 27%

5
Below av. math fluency / Above av.
language and reading

16% 7%

6 Above av. Overall 28% 3%

Note: a – Validation descriptor shown if different from cluster descriptor; b –
children who scored < 1 SD below standardized mean on at least one screening
measure; av. – average
doi: 10.1371/journal.pone.0077463.t004
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characterized by either consistently above or below average
performance across all measures. These groups with generally
enhanced or depressed learning were further distinguished by
significantly higher or lower nonverbal intelligence,
respectively, a finding consistent with the well-established
relationship between general intellectual ability and academic
performance (e.g., [77,78]).

Of greater interest are the four specific learning profiles we
observed characterized by below average scores on one of
language, reading and math, reading only, or math only. Our
validation analysis using independent measures in a subset of
the original sample confirmed the first two profiles, and was
numerically consistent for the group with a specific math
learning difficulty. There was less evidence for a specific
reading difficulty in that this profile was not confirmed in our
validation analysis using an additional reading fluency measure
that involved reading short sentences. Nevertheless, it may be
that the reading fluency task was not as sensitive to individual
differences in reading as the single word and nonword reading
measures employed in our cluster analysis. The results of this
validation analysis must be interpreted with caution because
the subsample on which it was based differed in composition
from the original epidemiological sample. Nevertheless, the
considerable consistency in the learning characteristics
between the two independent sets of measures suggests that
the learning profiles identified in our cluster analysis warrant
further attention.

Our analysis of children who performed poorly on the
screening measures provided unique information about the
learning profiles of children with possible learning disabilities.
Just over one quarter (27%) of these children exhibited a
general pattern of poor scores across measures, compared to
10% in the entire sample. Importantly, 70% presented with a
relatively specific learning impairment. These data are the first
to suggest that specific patterns in learning strengths and
weaknesses characterize the majority of children with learning
disabilities.

What does the observed comorbidity tell us about potential
underlying factors? Consider first the pattern observed in the
present results for the oral language measure, sentence recall.
Poor language coupled with somewhat higher and similar
scores on reading and math occurred across three clusters and
characterized 45% of the entire sample. Low language scores
never occurred entirely in isolation. They occurred either with
below average reading only (relative to the sample), or, in more
severe cases, both below average reading and math (i.e., a
general below average profile). Thus, poor language was
associated with below average reading consistently, but was
linked to low math scores only when language scores were
markedly poor. These language-based clusters were
differentiated in our analysis of related cognitive measures by
low phonological short-term memory, a finding consistent with
previous research demonstrating strong links between
phonological short-term memory and vocabulary development
[79,80], and poor phonological short-term memory and SLI
[81,82]. Taken together, this pattern of results suggests that a
primary language impairment may underlie deficits in the other
academic domains for these language-based clusters.

Reduced efficiencies in reading occurred either with a
language deficit, with a math deficit, or with no other deficits.
The two comorbid clusters (i.e., weaknesses in reading and
language, or in reading and math) were differentiated by their
cognitive profile: the below average reading and language
cluster was associated with poor phonological short-term
memory, whereas the below average math and reading cluster
had low phonological awareness. These differing cognitive
profiles may suggest different underlying causes, the language
impairment in the case of the below average reading and
language cluster with low phonological short-term memory, and
a deficit specific to another aspect of phonological processing
for the below average reading and math cluster. Although less
clear, the results for the reduced reading efficiency cluster
revealed high variability in phonological awareness potentially
indicating some phonological processing weakness in this
group as well. The common cognitive profile of low/variable
phonological awareness in the low reading only and low
reading and math clusters suggests a possible common
etiology to this reading impairment that is distinct from the
mechanism involved in the below average language and
reading cluster. Certainly, the finding of a specific association
between phonological awareness and reading is consistent
with many previous studies of typical reading development [83]
and dyslexia [18].

For math fluency, below average scores occurred in relative
isolation, with below average reading efficiency, or with a
general below average profile (including markedly low
language). The comorbid clusters with math were differentiated
by their cognitive profiles with the below average reading and
math cluster having a phonological awareness deficit, and the
general below average group having multiple deficits.
Importantly, the cognitive profile of the general below average
cluster had an impairment in common with the other clusters
involving below average language, phonological short-term
memory. Once again, these results suggest distinct etiologies
for these two comorbid deficits, one possibly language-based
in the general below average profile, and one related to reading
but not language. Unfortunately, our measures did not capture
any cognitive deficits in our below average math fluency
cluster. The only indication of a difference between our below
average math only vs. below average math and reading
clusters was that the below average math and reading cluster
had a phonological awareness deficit while the below average
math fluency group did not. It may be that differences in these
groups would have been revealed had additional cognitive
measures been included. In future, studies of this nature
should include measures specific to the cognitive mechanisms
thought to support math skills such as estimating the number of
objects in a group [23], or comparing quantities [24,25].

While it is interesting to speculate on the patterns observed
in the present study, it is clear that caution is warranted in
interpreting the observed comorbidity. For one, the 3-cluster
solution adequately explained the data. It may be that a
general factor can capture a considerable proportion of the
variation characterizing young children’s learning. Indeed, our
reading and math measures were timed placing demands on
processing speed, which has been suggested as a common
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deficit in reading disorder and ADHD [84]. Nevertheless, we
ensured that our clustering was reflective of the data by
completing several runs with different ordering of the data. We
considered it important to examine all of the unique learning
profiles present in the data, and so explored additional clusters
until no further unique profiles were identified. Importantly, the
character of these results did not change when we used these
different approaches, supporting the view that the clusters were
robust. As well, the epidemiological sample in the present
study was relatively small for a population-based sample.
Replication of the cluster analysis with a larger sample is
needed to better establish the learning profiles. Finally, we
used single measures to estimate language, reading, and math
skills, which could have influenced our results. Although we
employed valid and reliable measures commonly used in
identifying language, reading, and math disabilities, the use of
a single indictor per construct is not ideal. It is possible too that
the particular indicator influenced the cluster characteristics.
For example, there are phonological short-term memory
demands associated with sentence recall, the task that indexed
language skills in the present study. It may be no surprise,
then, that the weak language clusters were associated with low
phonological short-term memory. It is clear that future studies
should include multiple measures of each of these complex
skills in order to provide a more robust estimation of these
abilities. Further research should also include additional
cognitive measures administered to all individuals in the
epidemiological sample in order to better understand comorbid
learning disabilities in children.

Conclusion

The present study examined learning profiles on language,
reading, and math screening measures across a large

epidemiological sample of school age children. Three primary
clusters reflective of below average, largely average, and
above average performance across measures were sufficient
to describe the sample. More detailed analyses identified
overall above and below average profiles, as well as unique
learning profiles involving weaknesses in language, reading,
math, or reading and math. These latter four specific profiles
characterized 70% of those with a potential learning disability
as evidenced by below average performance on at least one
screening measure. As well, differences in cognitive profiles
characterized several of the clusters including associations
between poor phonological short-term memory and language-
based weaknesses, and between poor phonological awareness
and reading weaknesses. The results have implications for the
study of learning disabilities that warrant further investigation
and replication. Specifically, distinct specific and cormorbid
subtypes of learning profiles were identified and were common
among those with potential learning disabilities. As well, the
findings suggest different etiologies for language-based deficits
across domains, reading-related impairments in reading and
math, and isolated math disabilities.
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