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Abstract

DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-
pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions
trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell
responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The
involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized,
DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the
G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the
three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses
induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from
transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be
accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical
for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However,
in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which
would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead
to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.
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Introduction

Ultraviolet (UV) solar radiation is comprised of three wave-

lengths, UVA (320–400 nm), UVB (290–320 nm) and UVC (100–

290 nm). The first two, by inducing cellular DNA damage,

constitute important environmental carcinogens. Wavelengths

below 290 nm, i.e., those corresponding to the UVC portion,

are efficiently absorbed by the atmospheric ozone layer. The most

abundant UV induced DNA lesions are cyclobutane pyrimidine

dimers (CPDs) and pyrimidine (6–4) pyrimidone photoproducts

(6–4 PPs) [1,2].

Nucleotide excision repair (NER) is the main mechanism

involved in the removal of bulky helix distorting lesions, such as

those induced by UV. This type of damage interferes with both

normal DNA base pairing, and replication and transcription

processes. If not removed, it may lead to cytotoxicity and

mutagenesis. NER, a complex process involving the participation

of around 30 proteins in human cells [3,4], operates through two

sub-pathways, viz., transcription-coupled repair (TCR), which is

selective for lesions in the transcribed strand of active genes, and

specific for damage that blocks elongation of RNA-polymerase II,

and global genome repair (GGR), active with lesions throughout

the genome, including silenced regions and non-transcribed

strands of active genes [5,6].

Mutations in those genes involved in NER can cause rare

human hereditary diseases, such as Xeroderma Pigmentosum (XP)

and the Cockayne Syndrome (CS). The genes involved in

complementation groups A, B, D, F and G are necessary for both

NER sub-pathways, whereas XP-C and XP-E cells are deficient in

GGR but proficient in TCR. The genes involved in the two

complementation groups in the Cockayne Syndrome, viz., CS-A

and CS-B, are required for TCR only [7,8].

In addition to DNA repair, cells dispose of several mechanisms

when dealing with DNA damage [9,10]. The tumor suppressor

protein p53, which plays a central role in the regulation of cell

response to different forms of stress, including DNA damage [11],

is capable of stimulating DNA repair, promoting delays in cell-

cycle progression, and inducing apoptosis and senescence, thereby

regulating crucial processes used by cells to respond to genotoxic

stress. The tetrameric form of p53 can bind to specific DNA

sequence elements and activate the transcription of hundreds of

target genes [12–14]. The capacity of p53 in delaying the cell cycle

appears to be mediated by only a few genes, such as p21, which
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contributes to G1/S arrest by inhibiting the cyclin-dependent

kinase complexes that promote S phase entrance [12,15]. The

transactivation of pro-apoptotic genes is one of the functions of

p53 in the induction of cell death, although other transcription-

independent functions also appear to contribute to the process

[16–18].

In the absence of cell stress, p53, an unstable protein with a

short half-life, is constantly subjected to degradation by the

ubiquitin-proteasome system. It is targeted for degradation by the

ubiquitin ligase Mdm2, which also inhibits p53 transcriptional

activity through direct interaction with its amino-terminal

transactivation domain. Moreover, Mdm2, as a transcriptional

target of p53, together form a regulatory loop that controls the

levels of both proteins [12,13,19].

In response to cell stress, p53 may be stabilized due to its

diminished degradation, which is controlled mainly in the context

of its interaction with Mdm2 [20]. This interaction is affected by

post-translational modifications in both proteins, besides the effect

of other regulatory pathways that may attenuate or stimulate p53

activation [21]. Mdm2 is also capable of stimulating its own

degradation, thereby contributing to the complete activation of

p53 [12,22,23].

TCR-deficient human fibroblasts accumulate p53 and induce

apoptosis at lower UV doses than cells proficient in this NER sub-

pathway, thereby indicating that lesions present in the transcribed

regions of the genome serve as signals for the stabilization of p53

and apoptosis [24–26]. GGR-deficient XP-C fibroblasts present a

similar dose-response in relation to the accumulation of p53 and

RNA synthesis, when compared to normal fibroblasts [25].

However, from studies with primary human fibroblasts [27] and

CHO cells [28,29], it was inferred that UV-induced apoptosis

could be associated with cell progression through the S phase. In

fact, signaling resulting from the encounter of lesions during

replication as well as the generation of DNA double-stranded

breaks, due to the replication of non-repaired damage or due to

the destabilization and collapse of replication forks in front of

persistent lesions during S phase, contribute to explain the

induction of cell death in UV-irradiated cells [30].

While UV-induced lesions interfere with both transcription and

replication, the specific contribution of each process to apoptosis

induction remains uncertain. Nonetheless, the idea that persistent

signaling from DNA lesions leads to apoptosis would, in principle,

be applicable to lesions that block either transcription or

replication. This idea fits into a model where the cell fate after

genotoxic stress is determined by the capacity of cells to end the

apoptotic response mediated by p53 before pro-apoptotic genes

have been transcribed and expressed to a threshold level in which

the apoptotic process is irreversibly induced. Consistent with this

model, the absence of Mdm2 induction in human fibroblasts

deficient for TCR, was associated with apoptosis after UV [31],

thus compatible with the negative role of Mdm2 in the p53

function. Although in that study the same UVC doses for repair

proficient and deficient cells were used, it is possible to speculate

that Mdm2 induction would be dependent on the UV dose, and

that the same mechanism operates for both repair deficient and

proficient cells, the outcome being simply defined by the extent of

unrepaired DNA damage, and its resultant intracellular signaling.

In fact, both p53 and Mdm2 regulation, as well as their

interaction, were shown to be dose-dependent in human

fibroblasts [32].

This study addresses the responses of synchronized primary

human fibroblasts with different repair capacities to the irradiation

with the physiologically relevant UVB wavelengths and relates

them to the induction of Mdm2 protein. Our observations extend

to cells with different repair proficiencies a mechanism in which

termination of p53 activation would be critical for G1/S

progression and avoidance of apoptosis in G1-irradiated cells,

and strengthens the role of Mdm2 as an important marker

associated with recovery from UVB-induced transcriptional stress

in human skin fibroblasts. These observations also stress that even

after recovery from transcriptional arrest, the presence of

unrepaired DNA lesions can lead to cell cycle arrest, possibly

due to DNA synthesis blockage and apoptosis, a pathway that is

enhanced in the case of XP-C deficient fibroblasts.

Methods

Ethics Statement
This work was performed with primary human cells in culture,

part of a biorepository approved by the Ethical Committee for the

Research with Human Samples, of the Institute of Biomedical

Sciences, University of São Paulo.

Cell culture
Primary human fibroblasts were obtained from skin biopsies of a

normal individual (FHN) [33], a Xeroderma Pigmentosum group

C patient (XP17VI) [34] and a Cockayne Syndrome group B

patient (GM00739, Coriell Cell Repositories). The cells, kindly

provided by Dr. Alain Sarasin (IGR, Villejuif, France) and Dr.

Claudimara Lofti, were cultivated in a Dulbeccos Modified Eagle

Medium (LGC Biotecnologia, São Paulo, SP, Brazil) supplement-

ed with 15% fetal bovine serum (FBS) (Cultilab, Campinas, SP,

Brazil), 100 U/ml of penicillin G sodium, 100 mg/ml of strepto-

mycin and 0.25 mg/ml of amphotericin B (Life Technologies,

Carlsbad, CA). They were grown at 37uC, in a humidified, 5%

CO2 atmosphere.

Synchronization in the G1 phase of the cell cycle
Cell cultures, confluent for 3 to 5 days, were used to seed plates.

Irradiation took place twelve hours later, when cell adherence was

complete. At this point, and as confirmed by flow cytometry,

around 90% had already entered the G1 phase of the cell cycle.

Nonetheless, up to 18 hours after plating, none were detected in

the S phase.

Irradiation with UVB
Cells were irradiated by using a Vilber Lourmat VL-215MC

apparatus with a 15 W lamp emitting predominantly at 312 nm at

a dose rate of 5 J/m2s. Intensity was measured with a Vilber-

Lourmat VLX3W dosimeter coupled to a CX-312 probe (Marne

la Valle, France). Irradiation was in PBS within enclosed plates, to

so block any residual UVC incidence. Afterwards and prior to

collection, cells were incubated in fresh culture media over

different time periods.

Flow cytometry for sub-G1 and cell cycle analysis
Seventy-two hours after UVB irradiation, adherent cells,

collected by trypsinization and combined with floating cells, were

suspended in PBS/70% ethanol and stored at 220uC. They were

then stained with 50 mg/ml of propidium iodide (PI) for one hour

in the presence of 40 mg/ml of RNase A, prior to analysis by flow

cytometry, using Guava EasyCyte Plus (GE). Results were

analyzed with WinMDI 2.8 and ModFit LT softwares.

Morphologial detection of apoptosis and necrosis
Cells were collected by trypsinization together with floating cells

and suspended in 30–50 ml of PBS. Slides were prepared with 8 ml
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of the cell suspension and 2 ml of a dye mix containing 0.1 mg/ml

of Hoescht 33342, 0.25 mg/ml of PI and 0.5 mg/ml of fluorescein

diacetate. A Zeiss Axiovert 200 microscope was used for

visualization. At least 500 cells were classified and quantified as

viable, early apoptotic, late apoptotic and necrotic, according to

cytomorphological and membrane permeability criteria [35].

Determination of RNA synthesis
RNA synthesis was defined through pulse-labeling of nascent

RNAs with 10 mCi/ml of 3H-uridine (Perkin Elmer) in DMEM

containing 3% of dialyzed FBS for 1 hour at 37uC. Cells were

trypsinized and lysed with a solution containing 20 mM Tris-Cl,

300 mM NaCl, 2 mM EDTA, 1% SDS and 200 mg/ml of

Proteinase K for 5 minutes at 37uC. The lysates were applied to

thick filter paper, fixed with TCA 15% and washed with ethanol,

followed by measurement of 3H-uridine incorporation by liquid

scintillation. The amount of DNA, as measured by absorbance at

260 nm, was used to normalize the samples. Normalized values

were then divided by the results obtained for the non-irradiated

controls for each time point to determine the percentage of

transcriptional recovery.

Western blots
Cells were collected by trypsinization together with floating cells

and then lysed with a RIPA buffer containing protease inhibitors.

Lysates (50–100 mg) were separated on 7.5% or 12% denaturing

gels and transferred to nitrocellulose membranes. The antibodies

used were cleaved caspase-3 (Cell Signaling Technology), p53

(DO-7, DAKO), Mdm2 (SMP14, Santa Cruz Biotechnology),

actin (I-19, Santa Cruz Biotechnology), beta-tubulin (H-235, Santa

Cruz Biotechnology), and HRP-labeled secondary antibodies from

Molecular Probes. Reactive bands were visualized using a

chemiluminescent reagent from Millipore, followed by capture

in Image Quant photodocumentation equipment (GE).

Results

UVB induces human fibroblast apoptosis at a linear dose-
response rate
The apoptosis rates for normal (FHN), GGR-deficient (XP-C)

and TCR-deficient (CS-B) primary human fibroblasts were

determined, 72 hours after irradiation with increasing doses of

UVB, by flow cytometry-quantification of the cellular sub-

population with sub-G1 DNA content. Synchronized cells were

irradiated when predominantly in the G1 phase of the cell cycle.

The results are shown in Figure 1a, where it is possible to observe

that the central part of the individual curves obtained present an

approximately linear dose-response rate. For the three cell lines,

the apoptosis levels reached a plateau, where levels of apoptosis

were saturated with increasing doses of UVB. Two doses with

equivalent toxicity were defined for each cell line, one considered

as ‘‘low dose’’, with at least 5% increased apoptosis in comparison

with the non-irradiated controls, and the other as ‘‘high dose’’

chosen within the early plateau regions of the curves for each cell

line. The defined doses resulted in apoptosis rates within the range

10–20% for low doses, and 40–60% for high ones. Table 1

indicates the low and high dose ranges of UVB defined for each

cell line based on the above.

Microscopic assays, for examining alterations in cytomorphol-

ogy and membrane integrity, also corroborated cell death by

apoptosis in FHN cells (Figure 1b). The data confirm the time

interval of 72 hours as being adequate for the satisfactory

differentiation between low and high doses of UVB, since the

difference in apoptosis was much more pronounced than with the

48 hour time interval, whereas at the 96 hour point, the counting

of apoptotic events was compromised by cell lysis in late apoptosis.

The results were also consistent with the death rates shown in

Figure 1a for FHN fibroblasts.

Normal and NER-deficient fibroblasts show cell-cycle
blockage after equivalent high UVB doses
Cell cycle progression was examined after irradiation of FHN,

XP-C and CS-B fibroblasts with the defined low and high doses of

UVB. Cells were irradiated in the G1 phase of the cell cycle,

collected at different periods, and then submitted to flow

cytometry. The histograms so generated were analyzed with

ModFit LT software, to determine the proportion of cells in G1, S

and G2/M for each time point and dose. The results obtained are

Figure 1. UVB induced apoptosis in FHN, XP-C and CS-B
fibroblasts: a) Cells were synchronized in G1, irradiated with steadily
increasing doses of UVB, and collected 72 hours after the irradiation.
Apoptosis rates were determined by sub-G1 quantification through
flow cytometry. b) Cytomorphological analysis of FHN fibroblasts was to
determine the percentage of apoptotic cells.
doi:10.1371/journal.pone.0076936.g001

Table 1. UVB doses defined as low or high based on the
levels of apoptosis (sub-G1) induce in each cell line (based on
Figure 1a).

Fibroblasts Low dose (J/m2) High dose (J/m2)

CS-B 125–250 500

XP-C 375–500 750–1000

FHN 750–1000 2000

doi:10.1371/journal.pone.0076936.t001

DNA Damage Signaling to Cell Death

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76936



compiled in Figure 2. For both NER proficient and deficient cells,

there were delays in progression to the S phase after low UVB

doses, in comparison with the non-irradiated controls, as shown by

the delayed increase over time, in the percentage of S phase cells.

Both non-irradiated fibroblasts and fibroblasts irradiated with low

doses of UVB showed a decrease in G1 cells over time, with a

concomitant increase in the proportion of S phase and, at later

periods, G2 phase cells. With time, the amount of G1 cells

gradually increased, due to cell division, as well as growth-contact

inhibition, which normally causes an accumulation of cells at this

phase. The one exception was XP-C fibroblasts irradiated with the

low dose of UVB, since for which, the proportion of G1 cells kept

decreasing up to the longest time tested, i.e., 72 hours. Up to

48 hours after irradiation, this was accompanied by a steady

increase in S phase cells, thereby inferring the pronounced

difficulty for XP-C cell progression through the S phase to G2, and

subsequently, to cell division. Thus, for these UVB doses that

induce only low levels of apoptosis, the cells are capable to

progress their cell cycle, despite of a certain delay. Interestingly,

after the high doses of UVB, the distribution of cells in the

different phases of the cell cycle remained practically constant, an

indication of prolonged cell cycle arrest in G1 phase, for the three

cell lines. As these high doses represent the early plateau of

apoptosis, the result indicates the cells are unable to progress

through S phase triggering cell death.

Recovery of transcription after UVB in normal and NER-
deficient fibroblasts
The capacity of FHN, XP-C and CS-B fibroblasts to recover

from transcription inhibition was checked up to 24 hours after

irradiation with low and high doses of UVB (Figure 3). FHN and

CS-B fibroblasts presented transcriptional recovery after the

application of low doses (500 and 1,000 J/m2 for FHN and 125

and 250 J/m2 for CS-B), but not after high doses (2,000 J/m2 and

500 J/m2, respectively). As to XP-C cells, a very similar pattern to

that of DNA-repair proficient cells was observed, when analyzed

in terms of absolute UVB-dose irradiation. Notwithstanding,

based on apoptosis rates, in the case of UVB-doses with similar

relative killing efficiency, transcription recovery was observed at

both the low and high doses (500 and 1,000 J/m2), but not after a

still higher dose (1,500 J/m2), up to 24 hours post-irradiation.

Accumulation of p53 and Mdm2 after UVB damage
p53 induction in FHN, XP-C and CS-B fibroblasts after UVB

irradiation was confirmed by western-blot. As expected, induction

generally became more pronounced with the increase in UVB

dose (Figure 4). As to Mdm2 levels, more detailed temporal data

were collected for FHN and XP-C cells (Figure 4, panels a and b).

The results were strikingly similar for both cell lines, despite

differences in repair capacities and UVB sensitivity. On comparing

doses of 375 and 750 J/m2, the more efficient p53 induction at the

higher dose could be associated with increased Mdm2 levels.

Accumulation of Mdm2 occurred after a dose of 1,000 J/m2, but

not after that of 2,000 J/m2. As to CS-B cells, Mdm2 induction

was observed 6 hours after irradiation with 125 J/m2, and

24 hours after doses of 125 and 250 J/m2. Therefore, in the case

of FHN and CS-B, a correlation certainly exists between Mdm2

accumulation and cell survival, since Mdm2 increased-protein

levels were absent at UVB doses defined as being associated with

high levels of cell death by apoptosis. On the other hand, XP-C

cells did not present that correlation, in the same way they had not

in the experiments dealing with transcriptional recovery. Howev-

er, on considering absolute doses, there appears to be a similar

response between FHN and XP-C. Thus, at least for XP-C cells,

there was every indication of apoptosis induction, despite the high

levels of Mdm2 expression (e.g., after 750 J/m2 – Figure 4b).

To better understand the timing of Mdm2 induction in human

cells, up to 24 hours after irradiation, FHN fibroblasts were

irradiated with consecutively increasing doses of UVB and

checked for Mdm2 levels. Clearly, a retarded increase in these

Figure 2. Effect of the irradiation of FHN, XP-C and CS-B fibroblasts with low or high UVB doses during cell cycle progression: Cells
were synchronized in G1, irradiated with different doses of UVB, and collected at the indicated times after irradiation. Fluorescence histograms were
obtained for each condition after PI staining and flow cytometry. The proportion of cells in the G1, S and G2 phases of the cell cycle were analyzed
and quantified for each histogram using ModFit LT. The results obtained were combined to generate the graphs presented. UVB doses used were:
upper panels – non-irradiated controls; middle panels – low doses (750, 375 and 125 J/m2 for FHN, XP-C and CS-B respectively); lower panels – high
doses (2,000, 750 and 500 J/m2 for FHN, XP-C and CS-B respectively).
doi:10.1371/journal.pone.0076936.g002
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levels was observed as higher UVB doses were used, in comparison

with the lowest dose of 500 J/m2 tested, after which the

accumulation of Mdm2 was evident, 6 hours post-irradiation

(Figure 5).

Discussion

Dermal fibroblasts obtained through skin biopsies from healthy

individuals and patients with XP and CS syndromes, are

particularly important in investigating factors involved in apoptosis

signaling. Primary fibroblasts have the additional advantage of

incorporating physiological levels and regulation of p53 proteins,

as well as the other signal-transduction pathways involved in cell

response to DNA damage. Even so, in the past, only scarce data

correlating apoptosis in primary human fibroblasts with physio-

logical UV doses were available. This is particularly so for the

biologically relevant UVB component of solar radiation, since

UVC wavelengths emitted by germicidal lamps were often

employed. In the available studies, a wide range of doses (50 to

3,500 J/m2) was used [32,36–38]. Herein, it was considered

crucial to define an interval of UVB doses, where cell death by

apoptosis would be either very low, or high enough but still within

the linear increase range, in order to explore those cell

mechanisms liable for detecting DNA damage, and translating

the acquired information into the various forms of cell response.

Furthermore, irradiation of cells in the G1 phase facilitated both

studying the effects of DNA-lesion induction in the absence of

DNA replication, and following cell progression into the S phase.

As expected, normal fibroblasts were more resistant to UVB

irradiation than NER deficient XP-C and CS-B cells (Figure 1a).

When compared with XP-C cells, the greater sensitivity of CS-B

cells to UVB-induced apoptosis indicated the stronger contribu-

tion of lesions in the transcribed portions of the genome (and thus

normally corrected by TCR) to apoptosis signaling, whereas XP-C

fibroblasts were more sensitive to cell death by apoptosis than

normal ones, a clear contribution of lesions in the non-transcribed

and silenced regions of the genome to UVB-irradiation induced

cytotoxicity.

CS-B fibroblasts presenting much weaker recovery from RNA

synthesis inhibition after UVB irradiation than XP-C and DNA

repair proficient fibroblasts, was consistent with the role of TCR in

the removal of transcription blocking lesions. Interestingly, RNA

synthesis recovery was still efficient at low UVB doses, which

induced low levels of apoptosis (Figure 3). The kinetics for recovery

from transcriptional blockage was amazingly similar in TCR-

proficient normal and XP-C cells, in spite of the much higher

sensitivity in the latter. For example, at a UVB dose of 1,000 J/

m2, XP-C cells were still capable of partially recovering RNA

synthesis, as were FHNs, even though in the former (XP-C cells),

the levels of apoptosis and permanent cell cycle arrest were high.

Cell cycle arrest and cell sensitivity, at UVB doses that do not elicit

a strong transcriptional blockage, probably reflect a significant

obstruction of DNA replication caused by lesions not removed,

due to deficient GGR. From this perspective, the permanent arrest

of XP-C fibroblasts irradiated with the high UVB dose of 750 J/

m2 (Figure 2) could be explained by initiation of the S phase

through the removal of transcription-blocking lesions by TCR,

followed by difficult progression through this phase, due to the

excess of replication-blocking lesions, thereby generating G1/S

arrest. This cell cycle blockage normally occurs at a UVB dose that

eventually leads to cell death.

A correlation between recovery from transcription inhibition

(Figure 3) and accumulation of Mdm2 (Figures 4 and 5) was

observed for all the UVB doses tested, independent of cell DNA-

repair capacity. In CS-B cells, Mdm2 accumulation occurred at

low UVB doses, thus consistent with the low capacity for recovery

from transcription inhibition. Accumulation of this protein was

similar for both XP-C and FHN cells. Transduction pathways that

receive inputs from DNA damage signaling probably control both

MDM2 gene expression and Mdm2 protein stability. Once the

triggering signal is terminated, there is a rise in Mdm2 protein

levels and general transcription is resumed. Once stabilized,

Mdm2 can counteract p53 activation and hinder progression to

Figure 3. Recovery of transcription in FHN, XP-C and CS-B
fibroblasts after irradiation with low and high UVB doses: Cells
were synchronized in G1, irradiated with different UVB doses, and
labeled with tritiated uridine for 1 hour, starting at the indicated time
intervals after irradiation. Incorporation was measured after cell lysis
through liquid scintillation counting. The results are indicated as
percentages of the values obtained for the non-irradiated controls for
each time-point.
doi:10.1371/journal.pone.0076936.g003
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the apoptotic threshold through transcription of pro-apoptotic

genes. The extended time interval for accumulation of Mdm2 after

irradiation with increasing doses of UVB (Figure 5) diminished the

window of opportunity for inactivation of p53-mediated apoptotic

response, thereby compromising cell survival.

As far as we know, this study is the first to characterize the cell

cycle progression of primary human fibroblasts after UVB

Figure 4. Western blot detection of p53 and Mdm2 proteins: FHN (a), XP-C (b) and CS-B (c) fibroblasts were irradiated with the indicated
doses of UVB and collected at the time intervals shown. Beta-actin was used as loading control.
doi:10.1371/journal.pone.0076936.g004

Figure 5. Kinetics of protein levels of Mdm2 and p53 in FHN fibroblasts irradiated with increasing doses of UVB (as indicated). Beta-
tubulin was used as loading control.
doi:10.1371/journal.pone.0076936.g005
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irradiation in the G1 phase. It is interesting to observe that the

three cell lines tested presented similar responses, regardless of

their different repair capacities, i.e. delays in cell-cycle progression

after low doses of UVB and permanent arrest after high doses

(Figure 2). These observations with human cells are consistent with

experiments with hamster cells in culture [39], in which irradiation

of CHO cells synchronized in G1 with UVC resulted in dose-

dependent delays for entering the S phase. Furthermore,

prolonged blockage in G1 leading to apoptosis was observed in

a subpopulation of hamster cells under similar conditions [40].

Here, apoptosis induction was observed in arrested cells,

coincident with the G1 phase in which they were irradiated. In

CHO isogenic cell lines synchronized in G1 and irradiated with

UVC, both temporary and prolonged arrests in G1 in TCR-

deficient cells occurred after lower UV doses, thereby inferring

that the persistence of damage in transcribed regions of the

genome inhibits progression from G1 to S [40].

In this work with human cells, cell cycle delays and arrests were

also observed with the lowest UVB doses in TCR-deficient CS-B

fibroblasts. Therefore, the removal of transcription blocking

lesions might be the determinant factor in G1/S progression after

irradiation with UVB in G1. In this sense, it is also possible that a

more direct association exists between Mdm2 accumulation and

recovery from G1 arrest after UVB irradiation in human

fibroblasts. It was shown that Mdm2 and its analog Mdm4,

through mediation by proteasome in the G1 phase and early S,

interact directly with p21 thereby regulating its degradation in an

independent, although cooperative, way [41]. Thus, accumulation

of Mdm2 is probably involved in the release from G1 arrest caused

by UV-induced p53 transactivation of p21.

In the case of XP-C cells, apoptosis induction occurred at doses

where Mdm2 accumulated, thus demonstrating this is not

sufficient for cell-life maintenance. In fact, the stronger correlation

of apoptosis with permanent arrest in G1/S was probably due to

complete DNA-synthesis blockage, thus consistent with previous

works describing the effects of DNA replication in cell death

induction by UV [1,29,30,34].

Conclusions

Our data, besides showing the strong correlation between

Mdm2 accumulation and recovery from transcription inhibition in

primary human fibroblasts irradiated with UVB in G1, point to

the removal of damage in transcribed regions of the genome as the

determining factor towards this correlation. Thus, the tumor

suppressor protein p53 and its binding partner Mdm2 form a

critical regulatory node in response to UVB-induced stress.

Signaling from DNA damage that block transcription contributes

to p53-induction, which then transactivates Mdm2. In TCR

deficient cells (CS-B), this transcription blockage and thus lack of

Figure 6. Proposed model for the different responses of human cells to UVB irradiation depending on their ability to remove DNA
lesions. Upon UVB-irradiation of human fibroblasts synchronized in the G1 phase of the cell cycle, the presence of lesions on transcribed regions of
the genome elicits the DNA Damage Response (DDR), comprising DNA repair, cell cycle arrest, and general transcription inhibition. In CS-B cells, the
lack of TCR leads to low levels of Mdm2 and apoptosis induction. When DNA repair removes transcription blocking lesions (TBLs), Mdm2 counteracts
p53 activation and cells are released to go through S-phase, and survive higher levels of lesions. In the case of XP-C (GGR2) fibroblasts, however non-
removed lesions lead to replication blockage and cell death, even in the presence of increased levels of Mdm2.
doi:10.1371/journal.pone.0076936.g006
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Mdm2 accumulation seem to have a strong effect on G1 arrest and

the induction of cell death. Nevertheless, although this appears to

be the prevalent mode of cell killing by UVB in G1-synchronized

CS-B cells, it does not preclude the possibility of DNA replication

also being a crucial event leading to cell-death induction in

unsynchronized cells following elevated UV irradiation, since

transcriptionally blocked genes may constitute important lesions,

not easily bypassed by replication forks, thereby also triggering cell

death [27].

As to XP-C cells, transcription inhibition and the accumulation

of Mdm2 still occurred, but at doses similar to those for DNA

repair proficient cells. Due to the excess of unrepaired lesions, the

higher sensitivity of these cells to UVB irradiation was more

dependent on DNA replication blockage. Therefore, both types of

cell death mechanisms are potentially triggered, as represented in

the schematic illustration of the proposed model on Figure 6.

Transcription and replication blockages both play their part, when

saturated levels of unrepaired DNA damage are encountered by

the DNA processing machinery in the genome of UVB-irradiated

cells.
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