Figure 7. Model of how muscle activity stimulates muscle growth through differential translational regulation.
Previous studies indicated a role of TORC1 (a known cell size regulator) in activity-dependent muscle growth (1). TORC1 regulates growth by inhibiting the translation initiation inhibitor eIF4EBP (2) and by activation of S6K (3) [108], both leading to increased translation. In the absence of muscle activity, muscle fibers undergo atrophy, a reduction in size and strength. Both the FoxO/Atrogin-1 axis (4) and the calcineurin pathway (5) contribute to atrophy. We found that during muscle development lack of muscle activity increases the levels of eIF4EBP3L in muscle (6) and reduces the activity of TORC1 pathway (1), preventing eIF4EBP3L phosphorylation (2) and thereby activating it. High levels of active eIF4EBP3L prevent initiation of protein synthesis from specific mRNAs (7). Among mRNAs regulated by TORC1/eIF4EBP3L is that encoding the transcription factor Mef2ca, which is also regulated by calcineurin and is required for normal myofibrilogenesis and muscle growth (8). We hypothesize that other mRNAs are also differentially regulated by the activity/TORC1/eIF4EBP3L axis (9) and contribute to muscle homeostasis along with the FoxO and calcineurin pathways.