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Abstract

Background: To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the
assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon’s
entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain
injury (TBI) in a rat.

Methods: Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy
values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and
cerebrospinal fluid (CSF). Axonal densities’ from the same regions of interest (ROIs) were evaluated in Bielschowsky and
Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected
to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of
entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky
and Luxol fast blue staining.

Results: Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant
agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal
density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach
is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling
regions with crossing axons, confirmed with immunohistological staining.

Conclusions: Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with
FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate
reflection of axonal changes that occur in neurological injury and disease.
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Introduction

Diffusion Tensor Imaging (DTI), developed more than a decade

ago [1], has been successfully used for the study of brain anatomy

and in clinical neurodiagnostics, the latter especially for disease

processes involving the white matter, such as multiple sclerosis

(MS) [2,3], amyotrophic lateral sclerosis (ALS) [4], cerebral

ischemia [5,6], brain tumors [7,8], and head trauma [9,10,11].

The diffusivity from traditional DTI is derived from a

symmetric rank-2, positive tensor[12]. The most important indices

that can be derived from DTI are diffusivity, Relative Anisotropy

(RA), Fractional Anisotropy (FA), color-coded fiber direction maps

and 3-D fiber tractography [13]. Amongst these, FA is the most

widely used index for quantitatively characterizing neurodegener-

ative conditions, such as aging, Parkinson’s disease, developmental

disorders [14], and white matter disease [15,16,17].

Despite its popular application, conventional DTI has short-

comings resulting from its two underlying assumptions. First, the

use of a ‘single’ diffusion tensor for characterizing a pixel volume,

which may contain thousands of tissue components, results in a

diffusion tensor representing only an average of these multiple

tissue components (compartments). Examples of DTI model

failure in analyzing areas of fiber crossing in white matter have

been documented [18,19]. For example, areas of white matter

containing two (or more) fiber systems passing within the same

pixel appear hypo-intense in FA. Conventional DTI thus

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e76343



inappropriately yields low FA in these crossing fiber regions. Also,

FA is insensitive in detecting axonal density in gray matter due to

the relatively random fiber orientation distribution and lower

axonal density. The second shortcoming of the DTI model results

from its assumption that water diffusion in white matter follows a

Gaussian distribution [20]. It has been shown that diffusion

heterogeneity of compartments may result in non-Gaussian

diffusion [21,22,23,24,25]. Indeed, recent experimental results

have demonstrated non-Gaussian diffusion in white matter,

especially with high b-values, [21,23,26,27]. Collectively, the

foregoing observations indicate the unreliability of the conven-

tional DTI model in addressing the non-Gaussian diffusion in the

brain.

To overcome these limitations of DTI, Q-space diffusion tensor

imaging (Q-DTI), such as high angular resolution diffusion

imaging (HARDI)[18], was developed to resolve intravoxel fiber

crossing [18,28,29,30,31,32,33]. In contrast to conventional DTI,

free model Q-DTI can measure diffusion function directly, based

on the Fourier relationship between diffusion signal and diffusion

function within each voxel, without relying on a superimposed

model. This model-independent approach can resolve axonal fiber

crossing in the brain [29,34]. Two types of information are

obtained by Q-DTI: directionality and distance – the mean free

path (from the second moment of the probability distribution

function (PDF) of path lengths), and higher moments. The various

approaches to the assessment of directionality, such as diffusion

spectrum imaging (DSI) [34], q-ball [29], persistent angular

structure MRI (PASMRI) [19], have been previously described.

These methods are more focused on the directionality of fiber

crossing, however little attention is paid to the mean free path and

quantification[33,35,36]. In this study, we investigated the

diffusion entropy approach for quantitatively characterizing

uncertainty of mean free path from diffusion-weighted magnetic

resonance imaging. This approach relies on the application of

Shannon’s entropy and calculates entropy based on the probability

distribution of random variables [37]. We demonstrate that

entropy measurements can better characterize axonal properties in

locations containing multiple diffusion orientations, resulting in

improved image contrast when compared with FA maps. We also

test the ability of diffusion entropy in white matter reorganization

with crossing axonal bundles after TBI.

Theory
Shannon’s entropy is a measure of uncertainty or randomness

based on information theory [37]. Entropy yields the information

content of the data: more information reflects a greater reduction

of uncertainty, or higher certainty. In this study, we hypothesized

that entropy changes according to brain tissue types. Less structure

in isotropic tissues such as CSF would indicate the presence of

more equal states and therefore higher certainty or lower entropy,

while in tissues with higher compartment density and complexity

there exists more information content yielding higher uncertainty

or higher entropy.

Shannon’s entropy (H) is evaluated via the equation:

H(xi) ~ {
X

xi[ k

p(xi) log p(xi) ð1Þ

where p(xi) is the probability that xi is in the state xi, here we used xi

to represent the attenuation value, k is all possible diffusion

gradient directions, and p(xi) shows probability of repetition of

specific attenuation in special gradient direction. The logarithm is

based 2 and entropy can be articulated in bits. p(xi) log p(xi)

becomes 0 when p = 0. Since CSF is essentially isotropic in

diffusion, diffusion in CSF is independent of gradient directions,

yielding equal probabilities in all directions, resulting in dimin-

ished values of entropy H. This is not however the case for gray or

white matter [36].

Materials and Methods

Thirteen volunteers aged 18–55 years (9 males and 4 females;

34.9610 years, median 32 years) with no history of neurological or

psychological disorders participated in this study. Ten subjects

were enrolled for the comparison between entropy and FA and the

remaining three for the investigation of the effects of numbers of

gradient directions on entropy. In our case study, a rat with MSC

treatment after TBI was also studied [10]. The crossing axon

bundles in the remodeling areas of the TBI animal brain had been

identified [10] and to be used to test the ability of diffusion

entropy. All studies were conducted within the guidelines of the

internal review board and IACUC of our institution.

MRI Measurements in Human Subjects
MR images were obtained with a GE 3T MRI scanner utilizing

an eight-channel head coil. The subject’s head was comfortably

secured in the head coil using foam padding. Disposable earplugs

were provided to minimize the subject’s exposure to instrument

noise during scanning. T2 and DTI MRI measurements were

obtained using the following parameters.

T2 measurements. T2 was obtained using a fast spin-echo

sequence. A TR value of 2.5 seconds was utilized with effective

echo times of 14 and 120 milliseconds. Images were produced with

a 24 cm field of view, 4 mm slice thickness, 32 slices, and a

5126512 matrix.

DTI measurements. DTI was acquired using a pulsed

gradient spin-echo echo-planar sequence with a TE/TR ratio of

92/10 ms, a 24 cm field of view, 96696 imaging matrix, 2.6 mm

slice thickness, b-value of 1500 s/mm2, 15–90 directions uniformly

distributed in space depending on the experiments, and 1 average

and 6 b = 0 T2 weighted images.

Animal Model and Experiment
Traumatic brain injury (TBI) via controlled cortical impact

[38,39] was induced in a male Wistar rat (n = 1). Seven days after

TBI a collagen scaffold suffused with 36106 human bone marrow

stromal cells (hMSCs) was implanted into the core of the lesion

[10]. During surgery and during transplant of hMSCs, animals

were anesthetized with 3.5% halothane and then maintained with

1.0,2.0% halothane in N2O:O2 (2:1).

MRI Measurements in 7 Tesla Animal System
MRI measurements were performed using a Varian 7 Tesla

MRI scanner (Palo Alto, CA). A 12 cm bore actively shielded

gradient coil set, capable of producing magnetic field gradients up

to 20 gauss/cm was used. A saddle radio-frequency (RF) coil was

used as the transmitter and a surface coil as the receiver. The

animal was sacrificed at 6 weeks after TBI and ex vivo DTI was

performed one day after death.

Ex vivo Q-space DTI measurement. Q-ball based DTI

was performed using a pulsed gradient spin-echo sequence. The

FOV was 32 mm; four average, 1286128 imaging matrix, 1 mm

slice thickness with 16 slices, TR = 1.5 s, TE = 38 ms, d= 12 ms,

D= 20 ms, 128 diffusion attenuated directions with b = 1500 s/

mm2 in each slice [19], for a total acquisition time of about

27 hours.

Brain Remodeling and Diffusion Entropy
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Histological Staining
Human brain autopsy tissue samples (n = 30) and animal brain

(n = 1) were studied for axonal analysis. To identify cerebral white

matter properties, immunohistochemistry was performed on

formalin-fixed, paraffin-embedded coronal brain sections (6 mm).

Axonal density and orientation were examined using a combined

Nissl/silver-staining method (Bielschowsky staining) [40]. Double

Bielschowsky and Luxol fast blue [41], staining was used to

demonstrate axons and myelin, respectively. For Bielschowsky

staining, slides were placed in 20% silver nitrate in the dark, then

ammonium hydroxide was added to stain slides until the tissues

turned brown with a gold background, and were then treated with

sodium thiosulfate. Slides were then stained in Luxol fast blue

solution, washed in 95% alcohol, and then placed in lithium

carbonate. Nuclei are colorless; myelin is blue and axons appear

black.

Data Analysis
Entropy was calculated on a voxel-by-voxel basis using equation

(1) via in-house software written in Matlab (The Mathworks,

Natick, MA). Fiber orientation maps from q-ball DTI data were

derived using Camino [19,42]. FA map was generated using

DTIstudio Software [43]. Regions of interest (ROI) were chosen in

CSF, frontal white matter with U-fiber crossing, parallel-oriented

axonal fibers of the corpus callosum splenium, and, gray matter

(thalamus, caudate, putamen, cortical gray matter) as shown in

Fig. 1.

To perform comparisons between histological axonal density

with corresponding MRI entropy and FA, five randomly chosen

fields of view in each ROI of cortical gray matter, corpus callosum

(CC), putamen, thalamus, and frontal white matter (FW) of

histological sections were digitized using a 406objective (Olympus

BX40) via the MCID imaging system (Imaging Research, St.

Catharines, Canada). Captured images were digitally level-

adjusted using the public domain NIH Image analysis program

version 1.42 (National Institutes of Health). Each black and white

8-bit image was binarized with the intensity threshold set at a pixel

value of 170. The number of black pixels divided by the total

number of pixels in the selected area was measured to represent

axonal density. The average value from five fields of view in each

ROI of histological sections was used in the correlation data

analysis. The MRI entropy and FA were measured to correlate the

histological axonal density from the same anatomic ROI. MRI

analysis and histological analysis were performed by blind analysis

of two persons.

ANCOVA was used to test the differences between entropy and

FA (as outcome of interest) among the regions (as correlated

dependent covariate) to test overall region (CC, FW) effect on the

difference. The paired t-test was performed at the region level if

there was an overall region effect. For evaluating the correlation

between entropy, FA, and histological axonal density, we

correlated the means of entropy, FA, and histological axonal

density in each ROI, as exploratory analysis, since we could not

get the histological data from patients alive and the MRI and

histological data were from different samples. Spearman correla-

tion coefficient was calculated to measure the correlation of

entropy and FA with histological evaluation, respectively. For

evaluating effects of number of gradient directions (as 15, 25, 55,

70 and 90 directions) on entropy, entropy was measured at four

regions of interest (CC, FW, gray matter, and CSF). The doubly

repeated measure analysis of variance (ANCOVA) was used to test

the direction and region effects (as correlated covariates) on

entropy measurements (outcome of interest). The analysis started

with testing for the number of directions by region interaction,

followed by the subgroup analysis with focus on the direction effect

at each specific region, if the interaction was significant at 0.05

level. A significant interaction indicated that the direction effects

varied among the regions. The optimal number of directions was

selected if entropy values with minimum directions approached

that measured in 90 directions.

Results

In the human study, the signal intensities in the entropy and FA

maps showed similar patterns of intensity changes, from the

highest in CC, intermediate in gray matter, and the lowest in CSF.

However, entropy maps exhibited a significantly enhanced

dynamic range of contrast, especially in gray matter, compared

with FA maps as demonstrated in Figure 2. Also, the anatomic

details of brain structure in gray matter can be much more easily

identified in the entropy map compared with the more uniform

unidentified dark regions seen in the FA map.

To investigate the effects of number of directions of gradients on

entropy in the human study, fifteen to ninety directions of diffusion

gradients were performed. The corresponding entropy values

measured from the same ROIs in CC, Cortex gray matter, FW,

and CSF ROIs in figure 1 were listed in the table 1. The entropy

values in the CC increased with increase in number of directions

from 15 to 55 and then were relatively stable from 55 to 90.

Statistical results in CC exhibited significant difference (p,0.05)

between 15 and 25 directions vs 90 directions, and no significant

difference between 55 and 70 vs 90. In CSF ROI, entropy values

decreased as number of directions increase, but significant

difference was only detected between 15 vs 25.

Entropy in gray matter increased as number of directions

increase from 15 to 90 and there were significant differences

between 15 and 25 vs 90 and 70 as well as 15 vs 55. The entropy

in FW exhibited a trend independent of the number of directions.

However, a significant difference was detected only between 15

and 25 directions.

Figure 3 shows a direct comparison between entropy and FA

values in CSF, gray matter, and WM. CC has the largest and CSF

has the smallest value in both entropy and FA maps. Using FA, it

Figure 1. Regions of interest for entropy and FA measure-
ments: 1, CSF; 2, cortical gray matter; 3, thalamus; 4, putamen;
5, caudate nucleus; 6, corpus callosum; and 7, frontal white
matter.
doi:10.1371/journal.pone.0076343.g001

Brain Remodeling and Diffusion Entropy
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is difficult to differentiate between CSF and gray matter, and

between different locations in gray matter like putamen and

caudate nucleus. However, entropy exhibited a better separation

between CSF and gray matter than did FA. Entropy values in

different brain structures, especially in gray matter, also exhibited

greater dynamic range than FA values.

To quantitatively compare the differences between entropy and

FA, entropy and FA values from each ROI were measured and are

listed in table 2. The distinction of mean values between CC and

different locations in gray matter is more pronounced in the

entropy map than in the FA map.

To better compare the differences between entropy and FA,

percentages of normalized values for entropy and FA in different

regions with respect to corpus callosum were calculated as listed in

the table 2. Comparing with FA, the relative values of entropy

were almost doubled in FW and thalamus, tripled in putamen and

caudate nucleus, and quadrupled in brain cortex, respectively.

Figure 4 shows histograms of diffusion attenuation values in the

ROI of CSF, gray matter, and WM. The histogram of CSF shows

that the probability of occurrence of attenuation values is nearly

independent of the direction of gradient, which represents

isotropic tissues with a high probability of occurrence in all

diffusion gradients, and the entropy is close to zero. In contrast,

white matter tissues show dependency of attenuation values on the

direction of gradients. As noted in the histogram of white matter,

the attenuation values are more evenly spread, which indicates,

that as direction of the gradient changes so does information, with

a higher uncertainty or higher entropy value.

In figure 5 the correlations between means of entropy values

and axonal density from Bielschowsky and Luxol fast blue staining

for the same ROIs are presented. The entropy values provide

better correlation with the histological axonal density (r = 0.91,

p = 0.04) for each region compared with FA (r = 0.86, P = 0.01).

Figure 6 shows Q-ball fiber orientation map in CC and FW and

corresponding Bielschowsky and Luxol fast blue images from

human autopsy brain sections. The CC shows very dense and

unidirectional axons in Bielschowsky and Luxol fast blue image

(Fig 6E) consistent with the fiber orientation in Q-ball image

(Fig 6C), whereas in FW axons are less dense (Fig 6 D) and show

multi directionality of fibers (Fig 6B). As demonstrated in table 2,

entropy reveals a decrease in magnitude in axonal density from the

frontal white matter to thalamus, cortex gray matter, and putamen

following the same pattern of decrease in axonal densities

measured in Bielschowsky and Luxol fast blue images from

human autopsy brain sections.

Figure 7 shows ex vivo FA (A), entropy (B), and q-ball fiber

orientation direction (FD) maps (C, D), and Bielshowsky and

Luxol fast blue images (E-H) from the fixed animal brain 6 weeks

after TBI. White matter reorganization after MSC treatment,

confirmed by an increase in axons (C-H, black) and myelination E-

H, blue), coincided with increases in FA (B, FA and D, red

arrowheads) in the extended region of the corpus callosum

surrounding the lesion. The entropy map revealed increased

diffusion entropy not only at the boundary of the lesion as shown

on the FA map but also at the base of the lesion (yellow arrow),

where fiber crossings of axons were confirmed by the q-ball fiber

Figure 2. Comparison between the entropy (A) and the FA map (B) from the same subject. Gray matter is more visible in the entropy map
compared to the FA map.
doi:10.1371/journal.pone.0076343.g002

Table 1. Entropy changes with number of gradients directions in different brain structures

ROIs 15 directions 25 directions 55 directions 70 directions 90 directions

Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

WM (CC) 2.67 (0.72) 2.74 (0.55) 3.03 (0.62) 2.95 (0.7) 2.97 (0.62)

FW 1.48 (0.4) 1.45 (0.4) 1.36 (0.5) 1.45 (0.41) 1.51 (0.34)

GM (cortex) 0.85 (0.32) 0.95 (0.3) 1.13 (0.22) 1.17 (0.39) 1.35 (0.35)

CSF 1.07 (0.12) 0.99 (0.13) 0.96 (0.14) 0.93 (0.2) 0.83 (0.2)

doi:10.1371/journal.pone.0076343.t001
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orientation map (D, yellow arrows) and the Bielshowsky and Luxol

fast blue images (F, yellow arrowheads and G, arrowheads).

Discussion

In this study, diffusion entropy is investigated to detect axonal

remodeling after injury. Our data demonstrated that diffusion

entropy extracts more accurate structural details from brain tissues

with crossing axonal bundles than does the conventional Gaussian

model of DTI. The entropy method exhibits better dynamic range

and distinction between different gray matter structures and CSF,

without making any assumptions or modeling during the diffusion

process. Our data also demonstrates that entropy strongly

correlates with axonal density measured in human autopsy brain

(r = 0.91), and is an important and sensitive method for detecting

axonal remodeling during neurological recovery from animal

model of TBI.

Brain injury, such as TBI, remains a leading cause of mortality

and disability among children and young adults. Current research

in brain injury has been restricted to acute neuroprotection

treatment with a short treatment window [44,45]. Effective

interventions to enhance brain repair restorative cell-based and

pharmacological therapies with extended therapeutic windows for

experimental TBI have been developed[46,47,48]. In these

investigations, functional recovery after TBI may be driven by

neuronal and vascular remodeling[46,47,48]. Currently, the

investigation of neuronal remodeling after brain injury has been

dominated using traditional DTI such as FA and fiber tracking. As

demonstrated in previous studies, FA has excellent potential for

the assessment of white matter remodeling after TBI

[6,11,49,50,51,52]. However, when white matter fiber tracts cross,

conventional DTI produces an anomalous result, showing inability

to resolve more than one fiber direction and an overall lowering of

FA despite the presence of highly-oriented tissue [18,19,29,

33,35,53]. The inability of conventional DTI to resolve multiple

fiber directions and low FA derive from the assumption of

Gaussian diffusion inherent to the tensor model, and different

q-space DTI (qDTI)methodologies have been developed to

address these issues [18,19,29,33,35,53]. Comparing the successful

in developing Q-DTI to resolve multiple fiber directions

[18,19,29,34], there are few published studies to target the issue

related to low FA in areas with multiple fiber directions

[33,35,53,54] and no investigation has been published in white

matter remodeling after brain injury, such as TBI, using diffusion

entropy MRI. Our data demonstrated that diffusion entropy is

more sensitive to axonal density than orientation and can detect

axonal remodeling with random fiber orientation after TBI. We

determined that entropy is superior to FA in detecting white

matter reorganization with prominent crossing axons; moreover, it

is sensitive to early stages of white matter reorganization (more

crossing fibers), and increases significantly compared with the

relatively low FA. However, both entropy and FA show a similar

pattern if the white matter bundle is well organized in a single

Figure 3. Entropy vs. FA in CSF, cerebral gray matter (GM), thalamus (TH), putamen (PU), caudate nucleus (CA), FW, and CC. The
details for gray matter, putamen, caudate nucleus are enlarged from the bottom box area. Error bars indicate one standard deviation (N = 10).
doi:10.1371/journal.pone.0076343.g003

Table 2. Entropy, FA, corresponding axonal density in the ROIs displayed in Fig1.

Tissue Type in ROIs Axonal density Mean (std) Entropy Mean (std) Mean% of entropy FA, Mean (std) Mean% of FA

WM(corpus callosum) 69.5 (4.6) 3.61 (0.17) %100 0.83 (0.04) %100

Frontal white matter 60.1 (1.9) 2.11 (0.25) %59 0.25 (0.06) %30

Thalamus 38.3 (3.0) 2.06 (0.21) %57 0.27 (0.03) %33

Cortex GM 24.4(1.6) 1.45 (0.25) %40 0.08 (0.02) %10

Caudate nucleus N/A 1.42 (0.21) %39 0.11 (0.02) %13

Putamen 19.9 (4.4) 1.30 (0.24) %36 0.11 (0.03) %13

CSF N/A 0.58 (0.17) %16 0.05 (0.01) %6

Mean% means percentage after normalization with respect to CC
doi:10.1371/journal.pone.0076343.t002

Brain Remodeling and Diffusion Entropy
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direction. A combination of entropy and FA may provide

information about the stage of white matter reorganization in

the injured brain, e.g., increased entropy in the absence of elevated

FA would represent an early stage of recovery as typified by

random crossing fibers, while increased FA would identify more

mature linear fibers.

Entropy measurement can overcome the limitations of the

conventional Gaussian model of DTI in detecting structural

changes in gray matter and white matter containing crossing

Figure 4. Histograms of diffusion attenuation values in CSF (top) shows high probability of occurrence of attenuation values,
causing smaller values of entropy. Gray matter (middle) and white matter (bottom) show more spread of attenuation values, causing larger
entropy.
doi:10.1371/journal.pone.0076343.g004

Brain Remodeling and Diffusion Entropy
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axons. Although conventional DTI based on the Gaussian model

has become an important clinical measurement in detecting WM

changes, it can not detect structural changes in gray matter due to its

associated very small dynamic range, and can also produce large

errors in detecting WM with crossing axons [19,29,34]. When white

matter fiber tracts cross, conventional DTI shows an overall

lowering of FA despite the presence of highly-oriented tissue. The

inability of conventional DTI to resolve multiple fiber directions

derives from the assumption of Gaussian diffusion inherent to the

tensor model [18,24,55]. The conventional tensor model assumes

Gaussian diffusion, and a Gaussian function has only a single

directional maximum. Consequently, the conventional tensor

model cannot capture multidirectional diffusion. The MR diffusion

signal has significant multimodal structure, in clear disagreement

with the conventional tensor model [19,29,34,55]. However,

current Q-space DTI research has mainly focused on fiber

orientation detection and less on the quantitative determination of

the density in complex brain tissues. In the current study,

quantitative measurement of entropy shows great potential in

characterizing complex brain tissues. In contrast to FA (4–7%),

entropy exhibits much larger differences (from 20–24%) between

CSF and different gray matter structures, e.g., putamen, caudate

nucleus and cortex. The relative values of entropy in gray matter

structures with respect to the corpus callosum were approximately

triple compared with FA. This enhanced contrast provided by the

entropy map provides detailed visible structural information and is

able to detect structure changes in gray matter. Most importantly,

our data demonstrated that entropy strongly correlated to axonal

density and was less dependent upon orientation. Therefore,

entropy could provide more accurate information about structural

changes than conventional DTI in gray matter and WM with

crossing axons (during disease processes). Our data demonstrated

that entropy is highly correlated with axonal density. High entropy

value in CC was induced from the high density of axons, confirmed

Figure 5. Correlation between entropy and axonal density measured from Bielschowsky and Luxol fast blue staining. Error bars
indicate one standard deviation, and N = 5
doi:10.1371/journal.pone.0076343.g005

Figure 6. Selection of ROIs from frontal white matter (A, FW, top) and corpus callosum (A, CC, bottom), magnified of ROIs from A in
FW (B) and CC (C). The corresponding Bielschowsky and Luxol fast blue staining images in FW (D), and CC (E), respectively, showing axonal density
changes in these ROIs.
doi:10.1371/journal.pone.0076343.g006

Brain Remodeling and Diffusion Entropy
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with histology data, and from the unidirectionality of axons which

causes a more even distribution of attenuation values in each

direction of gradients, as demonstrated in Fig 4. Comparing with

CC, reduced entropy in other regions could arise predominately

from lower axonal density and also from multiaxonal orientation.

Therefore, the non model based entropy approach can reduce the

modeling induced errors to derive a measurement more close to

axonal density compared to FA, since the lower FA value in FW is

attributed to its inherent modeling error especially in the fiber

crossing regions.

The number of diffusion directions affects entropy values.

Although entropy values could be more stable and accurate with

increased number of directions, it is more time consuming and less

tolerable for patients. The optimum number of directions is

determined by obtaining stable and reliable entropy values close to

that measured with a large number of directions, such as 90, with

minimum scan time or minimum number of directions. The

entropy in CSF decreases with the increase in number of

directions. CSF should have an entropy value close to 0 due to

evident lack of structure. The measured entropy values in CSF are

most likely due to image noise. The increased number of directions

will increase the signal and decrease noise to derive decreased

entropy. The CC has more dense unidirectional brain structure

and therefore higher entropy values. The entropy value should be

increased and then be stabilized after number of directions could

provide proper information content and signal to noise ratio. Our

data indicate that 55 directions may be an optimum number for

diffusion directions to have relatively stable entropy in white

matter and CSF. Also, there is no significant difference in entropy

values between 55 and 90 directions in all the ROIs.

Distribution of diffusion attenuation reflects amplitude of

entropy. Mobility of water molecules along different gradient

directions in brain can be evaluated using the attenuation of the

MRI signal [13,23]. Depending on the direction of the applied

gradient, attenuation values change due to anisotropic tissue

structures. As demonstrated in Figure 4, a lack of brain structure,

such as CSF, has isotropic diffusion, yielding higher probability of

occurrence along all diffusion directions, and has higher occur-

rence probabilities, which therefore results in lower entropy values

close to zero. In contrast to CSF, CC has higher axonal density, a

unidirectional axonal bundle, and therefore exhibits a more even

distribution of diffusion attenuation (Figure 4) resulting a higher

entropy. Simply based on attenuation values brain, structures in

brain can be differentiated [36]. Although entropy exhibits a high

agreement with axonal density, it is also affected by the geometry

of tissue structure.

Entropy is superior to FA in detecting white matter reorgani-

zation with prominent crossing axons. The entropy is sensitive to

the early stage of white matter reorganization with more crossing

fibers, where the entropy significantly increases compared with the

relatively low FA. However, the entropy shows a similar pattern as

FA if the white matter is well organized to a single direction. The

combination of entropy and FA may provide information about

the stage of white matter reorganization in the injured brain, with

increased entropy alone (without FA elevation) representing an

early recovery stage of white matter reorganization with crossing

fiber, while the increased FA identifies more mature linear fibers.

Conclusion

This study investigated diffusion entropy in evaluating different

brain tissues and its ability in detecting axonal remodeling after

injury. Diffusion entropy resolves crossing fibers induced error

without making any model assumption on the diffusion process,

and detects axonal remodeling with crossing axonal bundles. Our

results show high agreement (r = 0.91) between entropy and

axonal density and superior image contrast in entropy compared

with that in FA. Compared with FA, entropy may provide

improved quantitative biomarkers of diseases that affect brain

structures involving gray matter and white matter with crossing

axons.
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