
Guided Exploration of Genomic Risk for Gray Matter
Abnormalities in Schizophrenia Using Parallel Independent
Component Analysis with Reference

Jiayu Chen1,2, Vince D. Calhoun1,2,3,4,5, Godfrey D. Pearlson4,5, Nora Perrone-Bizzozero3,
Jing Sui2, Jessica A. Turner2, Juan R Bustillo3,6, Stefan Ehrlich7,8,9, Scott R.
Sponheim10,11, José M. Cañive6,12, Beng-Choon Ho13, and Jingyu Liu1,2

1Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque,
NM USA 87131
2The Mind Research Network, Albuquerque, NM USA 87106;
3Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
USA 87131
4Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT USA 06106
5Department of Psychiatry and Neurobiology, Yale University, New Haven, CT USA 06511
6Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM USA
87131
7Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical
School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA USA 02129
8Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston,
MA USA 02114
9Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden
University of Technology, Dresden, Germany 01307
10Minneapolis Veterans Affairs Health Care System, One Veterans Drive, Minneapolis, MN USA
55417
11Departments of Psychiatry and Psychology, University of Minnesota, Minneapolis, MN USA
55454
12Psychiatry Research Program, New Mexico VA Health Care System, Albuquerque NM 87108
13Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA USA
52242

Abstract

© 2013 Elsevier Inc. All rights reserved.

The corresponding author: Jingyu Liu, The Mind Research Network, 1101 Yale Blvd. NE. Albuquerque, NM USA 87106-3834,
Phone: (505)272-0002; Fax: (505)272-8002; jliu@mrn.org.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Financial disclosures. The authors declare no potential conflicts of interest.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 December 01.

Published in final edited form as:
Neuroimage. 2013 December ; 83: . doi:10.1016/j.neuroimage.2013.05.073.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One application of imaging genomics is to explore genetic variants associated with brain structure
and function, presenting a new means of mapping genetic influences on mental disorders. While
there is growing interest in performing genome-wide searches for determinants, it remains
challenging to identify genetic factors of small effect size, especially in limited sample sizes. In an
attempt to address this issue, we propose to take advantage of a priori knowledge, specifically to
extend parallel independent component analysis (pICA) to incorporate a reference (pICA-R),
aiming to better reveal relationships between hidden factors of a particular attribute. The new
approach was first evaluated on simulated data for its performance under different configurations
of effect size and dimensionality. Then pICA-R was applied to a 300-participant (140
schizophrenia (SZ) patients versus 160 healthy controls) dataset consisting of structural magnetic
resonance imaging (sMRI) and single nucleotide polymorphism (SNP) data. Guided by a reference
SNP set derived from ANK3, a gene implicated by the Psychiatric Genomic Consortium SZ study,
pICA-R identified one pair of SNP and sMRI components with a significant loading correlation of
0.27 (p = 1.64×10−6). The sMRI component showed a significant group difference in loading
parameters between patients and controls (p = 1.33×10−15), indicating SZ-related reduction in gray
matter concentration in prefrontal and temporal regions. The linked SNP component also showed
a group difference (p = 0.04) and was predominantly contributed to by 1,030 SNPs. The effect of
these top contributing SNPs was verified using association test results of the Psychiatric Genomic
Consortium SZ study, where the 1,030 SNPs exhibited significant SZ enrichment compared to the
whole genome. In addition, pathway analyses indicated the genetic component majorly relating to
neurotransmitter and nervous system signaling pathways. Given the simulation and experiment
results, pICA-R may prove a promising multivariate approach for use in imaging genomics to
discover reliable genetic risk factors under a scenario of relatively high dimensionality and small
effect size.
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Introduction
Imaging genomics is an emerging field dedicated to the study of genetic variants associated
with brain structure and function. Structural or functional imaging markers are believed to
be closer to the underlying biological mechanisms affected by genetic variants than
behavioral or symptom-based measures (Rasch et al., 2010; Turner et al., 2006). A recent
meta-analysis lent support for this notion, where schizophrenia (SZ) risk variants were found
to show larger effects at the level of brain structure and function than behavior (Rose and
Donohoe, 2012). Consequently, interest in studying imaging measures has increased. In the
case of structural imaging, measurements can be obtained via different approaches, ranging
from single region-of-interest (ROI) methods, to image-wide approaches such as voxel
based morphometry (VBM) (Ashburner and Friston, 2005) and surface-based measures such
as FreeSurfer (Fischl and Dale, 2000).

High-throughput genotyping employing genome-wide techniques has made it feasible to
sample the entire genome of a substantial number of individuals (Oliphant et al., 2002; Shen
et al., 2005). More targeted candidate gene strategies examining a limited number of points
of genetic variations have been successfully applied to the study of illnesses such as Fragile
X syndrome (Lightbody and Reiss, 2009). Yet, the candidate gene approach is less
applicable when the genetic basis of a disease is complex and less understood. For instance,
little success has been achieved in replicating evidence for causal genes in schizophrenia
(SZ) (Duan et al., 2010) using traditional candidate gene approaches. In contrast, recent
works (Derks et al., 2012; Purcell et al., 2009) lent support for a polygenic model in many
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cases (Gottesman and Shields, 1967) of SZ, where an aggregate of common genetic variants
were shown to collectively account for a substantial proportion of variation in risk, despite
concomitant evidence for rare mutations of large effect size (Xu et al., 2009). Given such
evidence, an unbiased search of the entire genome may more effectively describe the genetic
architecture underlying complex disorders in which a significant proportion of risk for the
disorder is likely due to many genetic variants, each carrying a small proportion of disease
risk and failing to reach genome-wide significance individually.

While there is growing interest in image-wide and genome-wide approaches which allow
unbiased searches over a large range of variants, novel mathematical and computational
methods are desired to optimally combine these two strategies. One of the most challenging
problems is the correction for the huge number of statistical tests used in univariate models.
The correction makes it highly difficult to identify a factor of small effect size with a
practical sample size. In addition, univariate approaches are not well-suited to identify weak
effects across multiple variables. For this reason, multivariate approaches show specific
advantage for simultaneously assessing many variables for an aggregate effect. To better
identify aggregate effects across many variables, a number of models have been derived,
including principal component regression (PCReg) (Wang and Abbott, 2008), sparse
reduced-rank regression (sRRR) (Vounou et al., 2010) and parallel independent component
analysis (pICA) (Liu et al., 2009).

PCReg, sRRR, and pICA are designed to deal with datasets of high dimensionality and yield
interpretable results. However these approaches are not able to take prior information into
account. Such information can be useful to enable a guided yet flexible approach and can
improve the robustness of the results compared to a fully blind approach. For instance, some
genes known to participate in a biological pathway critical to a disease may help identify a
set of genes contributing in a coordinated way to a larger network. The incorporation of
prior information may be especially helpful in analyzing genomic data, where a component
usually accounts for a small amount of variance in the data and is more difficult to identify
(Liu et al., 2012). Thus, we propose parallel independent component analysis with reference
(pICA-R), which extends pICA to incorporate prior information to provide a reference to
guide analyses. While pICA is designed based on regular (blind) ICA to enhance correlation
between two modalities, pICA-R further takes advantage of a priori knowledge to guide the
analysis and pinpoint a particular component of interest embedded in a large complex
dataset. In this work, we compare pICA-R with other multivariate models through simulated
data and evaluate the models under several scenarios. In addition, we apply pICA-R to a real
dataset consisting of whole-brain gray matter concentration images and genome-wide single
nucleotide polymorphisms (SNPs) to test whether pICA-R is able to yield reliable and
interpretable components given a sample size of 300.

Material and Methods
pICA-R

pICA-R is formulated by incorporating a reference constraint into pICA to guide the
component extraction towards a priori knowledge. Typical pICA builds on regular infomax
(Amari et al., 1996; Bell and Sejnowski, 1995) to extract independent components in
parallel for each modality, followed by a conditional enhancement of the inter-modality
correlations (Liu et al., 2009). In comparison, pICA-R imposes an additional constraint upon
the infomax framework to minimize the distance between a certain component and the
reference. The mathematical model is shown below, and Fig. 1 illustrates the flow of the
approach.
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(1)

(2)

(3)

Given a dataset X with dimension of sample (i.e., subjects) × feature (i.e., voxels [m=1],
SNPs [m=2]), Eq. (1) illustrates the mathematical model of data decomposition, where the
observed dataset X is decomposed into a linear combination of the underlying independent
components, or sources. S is the component matrix, A is the loading or mixing matrix
(estimated as the pseudo inverse of W), W is the unmixing matrix, and the subscript m runs
from 1 to 2, denoting the data modality. Specifically, pICA-R iteratively solves the
unmixing matrices W1 and W2 simultaneously for the two modalities, gradually maximizing
the objective functions F1, F2 and F3 in the manner described in Fig. 1. In particular, F1 is
the objective function of the regular infomax (Bell and Sejnowski, 1995) for modality 1,
where independence among components is achieved by maximizing the entropy (H), as
shown in Eq. (2). fy(Y) is the probability density function of Y and W0 is the bias vector. In
contrast, F2 is the objective function for modality 2, where an additional closeness metric is
imposed to extract maximally independent components, one of which also closely resembles
the reference r. The inter-modality correlation function F3 shown in Eq. (3) is designed to
maximize the correlations computed over the columns of the loading matrices A1 and A2,
capturing connections between pairs of inter-modality components.

pICA-R incorporates an additional constraint to the unmixing matrix of modality 2 (W2),
detaching itself from regular blind pICA. The objective function F2 is shown in Eq. (2) and
Fig. 2 illustrates how the constraint is applied. In this application modality 2 is the genomic
data. The reference r is a binary vector with the same number of loci as the genomic data,
where the selected reference loci are set to “1” and the rest are “0”s. This binary reference
effectively serves as a mask such that the closeness between the component and reference is
measured on the reference loci only. This design considers that for a given reference a
number of loci are presumably of interest and set to 1, while the status of the remaining loci
is to-be-determined instead of not interesting. Therefore, we choose to optimize the
closeness specifically for the selected reference loci while allowing the remaining loci to

show their own importance driven by data. This is equivalent to minimizing  in

F2, where  denotes a subvector of r,  denotes a subvector of S2k (the kth row of S2),

W2k denotes the kth row of W2 and  denotes a submatrix of X2, as illustrated in Fig. 2. ||
·||2 represents the L2-norm Euclidian distance, and λ is a weighting parameter. It should be
noted that we apply the constraint only to one modality in this work, which provides a
simple proof-of-concept and also fits the proposed application in imaging genomics. The
constraint can be extended to both modalities if necessary.

To solve this linearly weighted multi-objective optimization problem for modality 2
(Klamroth and Tind, 2007), we have adopted several strategies to avoid local optimization
and overfitting. First, the constrained component (i.e., S2k in F2) is selected dynamically
based on the data. Specifically, in each iteration, we examine the distances between the
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reference and all the components, and then select only the closest component to be
constrained. Second, to avoid over-emphasizing the distance metric, we adaptively adjust
the constraint weight λ. Starting with a heuristic weight, we monitor the overall
independence (log|det(W2)|) and the distance measure after each iteration, then adjust λ
accordingly to ensure the balance between the two objectives in the objective function.

The three objective functions (F1, F2 and F3) are optimized using gradient maximization.
Specifically, for F1 and F2, W1 and W2 are updated by the natural gradient learning rule
(Amari, 1998), and for F3, A1 and A2 are updated by the steepest descent learning rule (Liu
et al., 2009), as shown in Eq. (4). α1, α2, αc1 and αc2 denote the leaning rates.

Simulation
The proposed pICA-R approach was evaluated using simulated functional MRI (fMRI) and
SNP data for its capability to extract factors of interest, particularly in the genetic modality.
The fMRI data consisted of 200 samples (i.e., subjects) and 10K voxels. Eight non-
overlapping brain networks were simulated using the SimTB toolbox ((Erhardt et al., 2011),
http://mialab.mrn.org/software). The SNP data were simulated to investigate the
performances of pICA-R when components accounted for different amounts of variance in
the data, which was achieved through adjusting sample-to-SNP ratios, causal loci ratios, and
effect sizes of causal loci. The sample-to-SNP ratio compared the sample size (or number of
subjects) with the total number of SNP loci (or SNP dimensionality); the causal loci ratio
compared the number of causal loci with the SNP dimensionality; the effect size of causal
loci was measured by percentage of variance explained in disease status. Specifically, the
SNP data consisted of 200 simulated samples (subjects), each with equal SNP
dimensionality, which ranged from 10K to 500K. Eight non-overlapping SNP components
were simulated using PLINK (Purcell et al., 2007), each involving 150 causal loci associated
with a randomly generated case-control pattern. The resulting sample-to-SNP ratio ranged
from 0.02 (200/10K) to 4.00×10−4 (200/500K), and the causal loci ratio ranged from 0.015
(150/10K) to 3.00×10−4 (150/500K). The effect size of individual causal loci ranged from
0.003 to 0.21. None of the SNP components shared common causal loci. No high linkage
disequilibrium (LD) was observed among causal loci (maximum correlation < 0.39). We
further designed a mixing matrix for the fMRI data where randomly selected columns were
correlated to particular case-control patterns of the SNP components. The simulated brain
networks were then combined into one fMRI observation matrix through this mixing matrix.
Random Gaussian noise was superimposed afterwards. We did not adjust the number of
components in the simulations as the ability to recover the independent hidden factors is not
significantly affected by how many components are embedded, provided that the number of
components can be correctly approximated. We used second-level (subject × feature) fMRI
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data in this simulation, however we would expect comparable performances when pICA-R
is applied to structural grey matter images, given that both are feature-based maps and
structure-function associations have been observed at the feature level in an ICA framework
(Calhoun et al., 2006; Segall et al., 2012).

We then applied pICA-R to the simulated datasets and compared its performance with those
of ICA (regular infomax), ICA with reference (ICA-R) (Lin et al., 2010) and pICA. Default
settings were used for infomax, ICA-R and pICA. Since infomax, pICA and pICA-R require
selection of the component number, we set this to 8, the true component number for the
simulated data, for the fMRI modality in all tests. For the SNP modality, due to different
data properties, the true component number may not yield reliable results (Chen et al.,
2012). Therefore, in the tests with infomax and pICA, we examined component numbers
ranging from 5 to 50 (in steps of 5), and selected the one yielding optimal results. The
number of components was selected to be 50 in all pICA-R tests, given our observation that
the proposed pICA-R tends to be robust to over-estimation.

The performance was evaluated based on accuracies of the genetic components and
loadings, as well as the inter-modality connections. The SNP component accuracy was
assessed by a sensitivity measure, the ratio of correctly identified causal loci (among the top
150 loci) to the built-in true causal loci. The genetic loading accuracy was reported as the
absolute value of the correlation between the simulated case-control pattern and the
extracted loadings. We also calculated the correlations between loadings of the two
components (SNP and fMRI) that most resembled the ground truth of the two modalities,
respectively, to assess the accuracy of the inter-modality connections.

Particularly, for the two semi-blind methods (pICA-R and ICA-R), we investigated how
their performances would be affected by the reference accuracies (ratio of true causal loci in
the reference, as illustrated in Fig. 2). Previous work indicated that a 20-loci reference of
accuracy 1 was required for ICA-R to reliably extract factors of interest when the sample-to-
SNP ratio was 0.02 (Liu et al., 2012). Guided by this, we first tested a reference of accuracy
1, spanning 20 randomly selected true causal loci. We then tested a 40-loci reference of
accuracy 0.5, primarily to investigate how the performances would be affected by adding
random loci. Then accuracies were adjusted from 0.1 to 0.5 for the 40-loci references to
investigate the influence. The performance was evaluated in terms of sensitivity (as
described above) and reference-imposed false discovery rate (FDR), which was to assess the
overfitting by evaluating how many referential random loci were falsely elevated as causal.

Real data experiment
Structural MRI (sMRI) and SNP data were obtained from The Mind Clinical Imaging
Consortium (MCIC), a collaborative effort of four research teams from University of New
Mexico-Mind Research Network, Massachusetts General Hospital, University of Minnesota
and University of Iowa) and from a local COBRE (Center of Biomedical Research
Excellence) study. The institutional review board at each site approved the study and all
participants provided written informed consents. All healthy participants were screened to
ensure that they were free of any medical, neurological or psychiatric illnesses, including
any history of substance abuse. The inclusion criteria for patients were based on a diagnosis
of schizophrenia, schizophreniform or schizoaffective disorder confirmed by the Structured
Clinical Interview for DSM-IV-TR disorders (SCID, (First et al., 1997)) or the
Comprehensive Assessment of Symptoms and History (CASH, (Andreasen et al., 1992)).
After preprocessing, we obtained a total of 300 participants (160 healthy controls and 140
SZ patients) for which both sMRI and SNP data were collected. Table 1 provides the
demographic information.
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The T1-weighted sMRI data (for details about data collection, see SI Materials and Methods)
were preprocessed in Statistical Parametric Mapping 5 (SPM5, http://www.fil.ion.ucl.ac.uk/
spm) using voxel based morphometry (VBM) (Ashburner and Friston, 2005), a unified
model where image registration, bias correction and tissue classification are integrated.
Brains were segmented into gray matter, white matter and cerebrospinal fluid based on
unmodulated normalized parameters. The resulting gray matter images consisted of
voxelwise gray matter concentrations. Images were re-sliced to 2 × 2 × 2 mm, resulting in
91 × 109 × 91 voxels. The gray matter images were then smoothed with 10mm full width at
half-maximum Gaussian kernel. In the subsequent quality check, we further excluded two
participants whose images were four standard deviations away from the average gray matter
image. A mask was then generated to include only the voxels inside the brain as well as
exhibiting an average gray matter concentration greater than 0.1, resulting in a total of
253,632 voxels. Finally, a voxel-wise regression analysis was performed at each voxel to
eliminate the effects from age, sex and collection site. The gray matter images corrected for
the above variables were then analyzed in conjunction with the SNP data.

DNA was extracted from blood samples of MCIC participants and saliva samples of
COBRE participants, respectively. Genotyping for all participants was performed at the
Mind Research Network using the Illumina Infinium HumanOmni1-Quad assay spanning
1,140,419 SNP loci. BeadStudio was used to make the final genotype calls. No significant
difference was observed in genotyping call rates between blood and saliva samples. Next,
the PLINK software package ((Purcell et al., 2007), http://pngu.mgh.harvard.edu/~purcell/
plink) was used to perform a series of standard quality control procedures (Anderson et al.,
2010), including missingness, relatedness, heterozygosity, Hardy-Weinberg equilibrium and
minor allele frequency (MAF), resulting in the final dataset spanning 728,683 SNP loci.
Population stratification was then assessed through principal component analysis (PCA)
(Price et al., 2006); for additional details, see SI Materials and Methods.

We leveraged the results from an independent genome-wide SZ study to obtain genetic
references. First, we selected a potential susceptibility gene ANK3 with intragenic SNPs
exhibiting top genome-wide associations in the Psychiatric Genomics Consortium (PGC) SZ
study ((Ripke et al., 2011), Table S10), which is currently the SZ study with the largest
sample size. This gene is involved in neuronal activities (Lambert et al., 1997; Zhou et al.,
1998) and therefore poses a promising candidate to be a reference in this imaging genetics
study. We then identified the corresponding SNPs in ANK3 and grouped neighboring SNPs
with moderate LD (|r| > 0.5) into a cluster, which could serve as a reference set. The LD
threshold was determined by a visual inspection of our data, while also considering that
SNPs with r2 > 0.2 are not considered independent (Ripke et al., 2011). For this proof-of-
principle and method development study, our primary strategy for reference selection was
that, in pICA-R, the reference loci are expected to contribute simultaneously to one single
component, which is the case most likely to happen for SNPs in LD. Therefore, we chose to
use LD clusters as references to elicit more SNPs contributing in a coordinated manner.
Finally we tested three reference sets from ANK3, each spanning more than 40 SNPs, which
were to yield at least 20 true loci with an accuracy of 0.5, a reasonable size as observed in
simulations. It should be noted that we only examined a limited number of references in this
work, as the major purpose was to demonstrate an application of the proposed approach
instead of performing a complete SZ study. While there are also other genes that are of great
importance, they will be left for future investigations.

For the purpose of validating our finding, the SNP component identified by pICA-R was
examined for its SZ enrichment based on the independent results of the PGC SZ study
(Ripke et al., 2011). We first selected out SNPs significantly contributing to the identified
component. Next, we compared the ratios of SZ-related SNPs in the selected top
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contributing SNPs and in the whole genome. For each SNP, the SZ-relevance was
determined based on the significance of association reported in the PGC SZ study, such that
a SNP exhibiting SZ association with a p-value less than Pth was considered as SZ-related.
To examine the enrichment across different significance levels, we tested a Pth range from
the standard level of 0.05 to a more significant level of 0.001. Then based on this criterion of
SZ-relevance, we performed Fisher’s exact test to evaluate the significance of SZ
enrichment in our finding compared to the whole genome.

In addition, we applied ICA, pICA and ICA-R to the sMRI-SNP dataset for a comparison. In
case of ICA, we applied two separate regular ICAs to the sMRI and SNP data respectively.
Then pairwise correlations were calculated based on the loadings. In case of pICA, the
dataset were directly analyzed for inter-modality associations. In case of ICA-R, we applied
regular ICA to the sMRI data while ICA-R was used to extract the SNP component given
the same reference. As in pICA-R, the number of components was selected to be 10 for the
sMRI data and 27 for the SNP data, if a component number estimation applied.

Results
Simulations

As expected, fMRI components were accurately identified (component and loading
accuracies higher than 0.9) in all tests, given that each component carried a considerable
amount of variance in the data. Regarding the SNP modality, with a 20-loci reference of
accuracy 1, pICA-R exhibited consistently better performance than the other algorithms in
identifying SNP components with different levels of sample-to-SNP ratio, causal loci ratio
and effect size. Fig. 3a and 3b summarize the simulation results, where the error bar reflects
mean ± SD based on 100 runs. It can be seen that accuracies of SNP components, associated
loadings and connections between SNP and fMRI measured by sensitivity or correlation
were all improved compared with infomax, ICA-R and pICA. Also it is noted that pICA-R
was able to identify the component with a sensitivity above 0.5 given a median effect size as
low as 0.024 while the sample-to-SNP ratio was controlled at 0.02 and the causal loci ratio
at 0.015. While the median effect size was controlled around 0.05, pICA-R in general
exhibited robust performances within the tested ranges of sample-to-SNP ratio and causal
loci ratio. We also conducted a simulation at the low sample-to-SNP ratio (200/500K) with
an increased causal loci ratio (1000/500K), a scenario similar to SZ application, and found
that pICA-R exhibited a comparable sensitivity (0.53) using a 20-loci reference of accuracy
1 (not shown). Therefore, we assume that a reference spanning at least 20 true causal loci is
suitable for the real data application provided that the causal loci ratio is above 3.00×10−4.

The reference accuracy is crucial for identifying the correct component, as illustrated in Fig.
4. As expected, pICA-R showed increased sensitivities with references of higher accuracies.
It is also noted that a 40-loci reference of accuracy 0.5 yielded a sensitivity around 0.5,
comparable to that obtained with a 20-loci reference of accuracy 1. Most importantly, the
results indicated that when the sample-to-SNP ratio was lower than 0.004 (200/50K) and the
causal loci ratio lower than 0.003 (150/50K), pICA-R started to benefit in sensitivity
compared to ICA and pICA with a reference accuracy as low as 0.2. In contrast to
sensitivity, the performance in reference-imposed FDR was less affected by the reference
accuracy and remained below 0.05. Overall, pICA-R exhibited improvements in both
sensitivity and reference-imposed FDR compared to ICA-R.

Real data experiment
On the real sMRI and SNP dataset, the number of components was estimated to be 10 on
uncorrelated voxels of the sMRI data using minimum description length (MDL) (Rissanen,
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1978). For the SNP data, 27 components were extracted based on the metric of consistency
(Chen et al., 2012). We tested the three reference sets generated from ANK3 (Ripke et al.,
2011), and one reference set spanning 82 SNPs helped elicit significant inter-modality
connection. These 82 SNPs exhibited moderate LD with an average correlation of 0.57 and
were separated by an average of 1,276 base pairs. Guided by this reference, pICA-R
identified one component pair exhibiting the highest correlation of −0.27 and a p-value of
1.64×10−6 (passing Bonferroni correction of 0.05/10/27). After regressing out variables
(specifically age, sex, race/ethnicity, collection site and SZ diagnosis for the SNP
component; race/ethnicity and SZ diagnosis for the sMRI component), the sMRI-SNP
association remained significant, exhibiting a partial correlation of −0.24 (p = 2.81×10−5), as
shown in Fig. 5.

The loadings of the linked sMRI component significantly differed between SZ patients and
healthy controls (two tailed t-test, p = 1.33×10−15). Note that effects from age, sex and
collection site were already regressed out from the data and we did not observe any
significant regression (two tailed t-test, p = 0.11) effect from the race/ethnicity on the sMRI
component while controlling for diagnosis. We further examined whether medication
affected the identified brain network in patients and found no significant regression effect
(two-tailed t-test, p = 0.62) from the reported chlorpromazine equivalent dosage (Gardner et
al., 2010) on the sMRI loadings while controlling for race/ethnicity. Fig. 6a shows the
spatial map of the sMRI component thresholded at |Z| > 3. The identified brain network
included medial and inferior frontal gyri, superior temporal gyrus, insula and anterior
cingulate, as listed in Table 2.

The loadings associated with the linked SNP component exhibited a significant group
difference between patients and controls (two tailed t-test, p = 0.04). The SNP component
followed a super-Gaussian distribution and Fig. S2 shows a logistic fit to the histogram.
Based on the normalized component weights, we selected out 1,030 top contributing SNPs
(top 1,030 based on the absolute values of the normalized component weights,
corresponding to |Z| > 3.60, p = 0.003 based on the logistic fit, see Fig. S3) as our finding.
Fig. 6b shows a Manhattan plot of weights of loci for the identified SNP component, where
clusters spanning more than 10 top contributing SNPs are marked. Table S1 provides a
summary of the identified 1,030 SNPs, including SNP position, corresponding gene,
normalized component weight, and MAFs in patient and control groups. Fifty-four out of the
top 1,030 contributing SNPs were from the reference set and are marked in Table S1. A
complete list of the 82 reference SNPs is also provided in Table S2. After these 54 reference
SNPs were excluded, 656 out of the remaining 976 SNPs had been investigated in the PGC
study for associations with SZ. We then conducted Fisher’s exact test on SZ enrichment
between these 656 matched SNPs and the whole genome of PGC data (spanning a total of
1,252,901 SNPs). As shown in Fig. 7, significant SZ enrichment was consistently observed
within the entire range of tested Pth’s.

We further investigated biological functions in which these top contributing SNPs are
involved. While 522 out of 1,030 SNPs were mapped to 228 unique genes, Ingenuity
Pathway Analysis (IPA: Ingenuity® Systems, http://www.ingenuity.com) indicated a
significant enrichment of the domain of central nervous system development (p =
2.88×10−4) in our finding, where 7 genes were involved, as highlighted in Table 3a. The
identified genes were also significantly overrepresented in glutamate receptor signaling (p =
2.75×10−2) and DARPP32 regulated pathway (p = 4.07×10−2), as well as synaptic long term
depression (LTD, p = 1.58×10−2) and potentiation (LTP, p = 3.24×10−2), as highlighted in
Table 3b. In addition, the DAVID (Database for Annotation, Visualization and Integrated
Discovery) bioinformatics resource (Huang et al., 2009a, b) identified significant clusters
functionally related to cell adhesion (p = 1.14×10−5), synaptic transmission (p = 2.86×10−4)
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and neuron projection morphogenesis (p = 1.75×10−3) respectively, as highlighted in Table
3c.

In addition, we applied ICA, pICA and ICA-R to the sMRI-SNP dataset for a comparison. In
case of ICA, we applied two separate regular ICAs to the sMRI and SNP data respectively.
Then pairwise correlations were calculated based on the loadings. In case of pICA, the
dataset were directly analyzed for inter-modality associations. In case of ICA-R, we applied
regular ICA to the sMRI data while ICA-R was used to extract the SNP component given
the same reference. As in pICA-R, the number of components was selected to be 10 for the
sMRI data and 27 for the SNP data, if a component number estimation applied.

Discussion
In this work, we present a semi-blind multivariate approach, pICA-R, to jointly analyze MRI
and genetic data and identify relationships between hidden factors. pICA-R is designed to
analyze multiple variants for an aggregate effect. The model employs prior information to
guide the analysis while allowing the remaining variants to show their own importance
driven by the data, enabling a guided yet flexible approach to improve the robustness of the
results compared to a fully blind approach. In this way, a limited number of variants which
comprise a small portion of a polygenic component, can help elicit other variants previously
not expected of playing a role, thus improving the understanding of the underlying biology.
Leveraging prior information also allows the model to pinpoint a particular component of
interest embedded in a complex high-dimensional dataset and provides a better chance to
dissect complex traits. Overall, pICA-R holds the promise to accelerate the pace of
discoveries of trait-associated polygenic components through integrating diverse data types
and incorporating knowledge learned from previous studies (Stranger et al., 2011).

The simulation results demonstrate that the approach helps capture factors of interest more
accurately. As illustrated in Fig. 2a and 2b, pICA-R show consistently better results for
component accuracy, component loadings and inter-modality link compared to regular ICA,
ICA-R and pICA, and the improvement becomes more pronounced with lower sample-to-
SNP ratio and causal loci ratio, or smaller effect size. It can be seen that the proposed
approach yields a sensitivity above 0.5 at a low sample-to-SNP ratio of 4.00×10−4

(200/500K) and a causal loci ratio of 3.00×10−4 (150/500K), while the median effect size is
around 0.05. This observation encourages the application of pICA-R to genomic data with
comparable sample-to-SNP and causal loci ratios, where a million or so loci may be
involved given an increased yet affordable sample size and hundreds of causal loci. On the
other hand, it needs to be emphasized that reference accuracy plays an important role in the
performance of pICA-R. As clearly shown in Fig. 4, when random loci are incorrectly
selected as references, pICA-R exhibits reduced sensitivity. However, at relatively low
sample-to-SNP ratios (below 200/50K), even with accuracies as low as 0.2, pICA-R still
benefits in sensitivities compared to blind ICA and pICA, indicating a big tolerance of false
inputs. Meanwhile, the reference-imposed FDR remains below 0.05, and decreases to 0 with
accuracies greater than 0.3. This effective control on reference-imposed FDR is believed to
result from a well maintained balance between independence and closeness metric such that
the latter never dominates to excessively elevate the referential random loci. Based on the
simulation results, a general conclusion can be drawn that a relatively accurate reference is
recommended for pICA-R. Compared to a large number of reference loci with low
confidence, a small set of reliable reference loci would lead to a better performance.
Retrospectively, through investigating the sensitivity and reference-imposed FDR as
functions of reference accuracy, we can empirically infer the quality of a reference. The
simulation shows that, if more than 10% of the reference SNPs show up in the most
significant (i.e., top component weights) findings, the reference accuracy is most likely
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higher than 0.2 and, the reference benefits the performance. In contrast, a low ratio of
reference loci in the most significant findings usually indicates the distance metric being de-
emphasized due to low reference accuracy.

In pICA-R, reference SNPs are predicted to contribute simultaneously to only a single
component. Therefore, it may be inappropriate to directly combine multiple presumed
susceptibility loci identified in univariate analyses, which may then result in a reference
containing true SNP hits from multiple components. In this case, the reference is essentially
of low accuracy as pICA-R is currently designed to optimize the distance between the
reference and one constrained component and the true hits from other components cannot be
recognized. Given a low-accuracy reference, minimizing distance will contradict with
maximizing independence, which can be captured by the online monitoring of the overall
independence. pICA-R will then adaptively adjust the constraint weight to de-emphasize the
distance metric to assure the integrity of independent components (as reflected in
simulations, Fig. 4). When the distance metric is significantly de-emphasized, pICA-R
effectively converges with results from blind pICA. Particularly in this work, we adopted the
most straightforward strategy to generate a reference set based on LD clusters of one single
gene. Genome-wide association study (GWAS) is based on the premise that a causal variant
is located on a haplotype, and thus a marker allele in LD with the causal variant should show
(by proxy) an association with the trait of interest (Stranger et al., 2011). Therefore, SNPs in
one LD cluster are more likely to contribute simultaneously to one single component and
serve as good candidates for reference. We understand that this primary strategy has
limitations, and plan to extend pICA-R to accommodate multiple reference sets where the
interrelationships are unknown.

While it is true that reference accuracy plays an important role in pICA-R performance, this
should not compromise the applicability of the model. First, we implement a binary
reference, thus users only need to determine whether the loci are relevant or not to the trait
of interest instead of specifying the accurate effect sizes. Second, the model is highly robust
to inaccurate reference SNPs. As demonstrated in simulations, pICA-R outperforms blind
methods with the accuracy as low as 0.2 when the sample-to-SNP ratio is lower than
4.00×10−3 (Fig. 3 and Fig. 4). Last but not least, while the choice of reference SNPs is
informed by evidence, this is not necessarily limited to association studies. Independent
molecular, cellular or system biological knowledge can also guide the selection. Even when
informed by association studies, an enormous sample is not a necessity. Replication across
studies can help increase confidence in the selection. For example, an association is more
likely to be true and poses a good candidate for the reference if consistently observed in
several independent studies of small sample sizes. Overall, we believe that the large amount
of available data and information learned from previous studies are sufficient to generate
testable references for a particular research interest, which can be leveraged by our pICA-R
method to increase, broaden or deepen our knowledge at large.

When applied to experimental sMRI and SNP data (sample-to-SNP ratio around 4.12×10−4),
pICA-R identified one sMRI-SNP component pair exhibiting a significant association (r =
0.24, p = 2.81×10−5) while controlling for age, sex, race/ethnicity, collection site and SZ
diagnosis, indicating that the association was not mainly attributable to these factors. The
loadings associated with the SNP component differentiated patients from healthy controls (p
= 0.04), while the sMRI loadings showed a more significant group difference (p =
1.33×10−15). Overall, the results suggest that the identified genetic factor might underlie a
proportion of variation in gray matter concentration that further contributes to SZ
phenotypic symptoms (Harrison, 1999).
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sMRI component
The loadings associated with the sMRI component were significantly lower in patients,
indicating an overall SZ-related loss of gray matter, which has been indicated in a number of
studies (Glahn et al., 2008; Gur et al., 2007; Narr et al., 2005; van Haren et al., 2007). The
identified brain network consisted of dorsolateral (Brodmann Areas (BA) 9) and
ventrolateral (BA6 and 47) prefrontal cortices (DLPFC and VLPFC), as well as anterior
cingulate (BA32) and insular cortex (BA13). This network overlaps considerably with an
SMRI component identified before in these data, and found to be heritable in a sibling-pair
analysis (Turner et al., 2012). DLPFC is connected to a variety of brain areas and plays an
important role in working memory (WM), executive function and other higher-order
cognitive processes. Recent work also lends support for DLPFC contributing to the encoding
of relational memory, which may further promote long-term memory (LTM) formation,
through its role in WM organization (Blumenfeld et al., 2011; Murray and Ranganath,
2007). VLPFC, compared with DLPFC, is generally considered as involved in LTM
formation, where the left frontal region is more associated with verbal memory while the
non-verbal memory activates more of the right frontal region (Buckner et al., 1999). The
anterior cingulate (BA32) consists of affective and cognitive subdivisions, the former more
associated with emotional processes and the latter more activated by tasks requiring
cognitive and attentional control (Davidson et al., 2002; Pizzagalli, 2011). The above
highlighted regions have been consistently reported to be altered in SZ patients, including
reductions in gray matter and cortical thickness (Cannon et al., 2002; Glahn et al., 2008;
Kuperberg et al., 2003; Shenton et al., 2001; Xu et al., 2008), as well as exhibiting abnormal
task-related functional activation (Glahn et al., 2005; Manoach, 2002; Minzenberg et al.,
2009). Overall, our findings are in line with a considerable evidence of gray matter
abnormalities in prefrontal and temporal regions as one of the characteristic deficits in SZ.

SNP reference
Although the SNP highlighted in the PGC study (rs10994359 from ANK3) is not covered in
our data, the nearest SNP (rs10761503, 307bp upstream, in LD with rs10994359 with a D-
prime of 1 according to the HapMap CEU LD data) is in moderate LD with the reference set
(exhibiting a mean correlation of 0.43). In addition, we mapped the selected reference SNPs
to the PGC data. 18 out of the 82 reference SNPs were investigated in the PGC study, and
12 were implicated for SZ relevance (p < 0.05), leading to a true causal loci ratio of 0.67
(12/18). Given that the 18 PGC-mapped SNPs were uniformly distributed along the 82
reference SNPs, this ratio of 0.67 provided a reference for estimating the number of true
casual loci in our reference set, which should be about 55 (0.67*82). In fact, our results did
echo this true causal loci ratio, where 54 out of the 82 reference SNPs were identified as top-
contributing. The 54 identified SNPs included 9 PGC-implicated causal loci, and the
remaining 45 SNPs demonstrated very high LD with the PGC findings. According to the
HapMap CEU LD data, 16 SNPs are in complete LD with the 12 PGC-implicated SNPs (D-
prime = 1), and another 4 demonstrate a D-prime of 0.871, 0.875, 0.939 and 0.883,
respectively. For other 25 SNPs not covered in the HapMap CEU LD data, we evaluated in
our data their relations with the 12 PGC-implicated SNPs and found high correlations (r >
0.96) except for one locus. These observations suggest that LD can provide good guidance
in reference selection. When limited true causal loci are known, searching clusters of SNPs
exhibiting LD with them may be the most effective approach to generate a testable reference
in this pICA-R model.

SNP component
The SNP component was significantly associated with the sMRI component. On average,
SZ patients carried higher loadings on the SNP component while exhibiting lower gray
matter concentration in the identified regions of the sMRI component. The SNP component
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was predominantly contributed to by 1,030 SNPs exhibiting top component weights. Cross-
evaluation based on PGC results confirmed that the top contributing SNPs were significantly
overrepresented in terms of SZ-relevance, which validated our finding. It is noted that when
the threshold of SZ-relevance (Pth) increased, the enrichment diminished, which is
reasonable. The top contributing SNPs comprised a number of clusters distributed across the
whole genome, which is not surprising given our model, where SNPs in LDs would exhibit
comparable effects. Clusters spanning more than 10 top contributing SNPs are highlighted in
Fig. 5 and marked by the corresponding cytogenetic bands, some of which have been
implicated in previous studies, such as 5q15 for bipolar disorder (Scott et al., 2009), 15q15.1
for attention deficit/hyperactivity disorder (Bakker et al., 2003), as well as 17q23.3 for
autism (Girirajan et al., 2011) and schizophrenia (Wahlbeck et al., 2000).

Among the 1,030 top contributing SNPs, 522 reside in a total of 228 unique genes. The
remaining 508 intergenic SNPs lie within sequences not presently annotated but they could
have a regulatory function on large non-coding RNAs and other regulatory non-coding
RNAs.

Pathway analyses of the 228 known genes revealed that they participate in a number of
neurotransmitter and nervous signaling pathways, including glutamate receptor signaling
and DARPP32 regulated pathway, as well as synaptic LTP and LTD. It was noted that some
pathways and clusters were no longer significant after the Benjamini–Hochberg correction;
however this does not necessarily indicate a false positive finding. First, the correction was
performed for all candidate pathways, which may not be independent from each other,
indicating a possibility of over-correction. Second, the identified canonical pathways and
functional annotation clusters remained highly stable when we adjusted the number of top
contributing SNPs from 1,000 to 5,000. In particular, the enrichment became significant
even after the correction at some point (Table S3 and Table S4). Finally, as emphasized by
IPA, the enrichment score simply provides guidance for interpretation, and it is more
important to further explore the functions of involved genes to interpret the finding. In this
study, the pathway analyses results are provided to help unravel the genetic architecture. The
involved genes are discussed in more details to understand the biological connections
between the identified component and the disorder.

Glutamate receptor signaling (SLC1A1, GRM4, GNG2)
Glutamate receptor signaling plays a crucial role in neurocognitive processes and aberrant
glutamate neurotransmission may be associated with positive and negative symptoms as
well as cognitive deficits in SZ (Coyle, 2006; Egan et al., 2004; Krystal et al., 2010). Recent
work also provides evidence for an association between perturbed glutamate function and
gray matter volume variation in prodromal SZ (Stone et al., 2009). In particular, one SNP in
GNG2 (encoding guanine nucleotide-binding protein, gamma-2) has been identified, with its
minor allele relating to an increased gray matter volume in medial prefrontal cortex
(Chavarria-Siles et al., 2012). Also, some glutamate transporters including SLC1A1
(encoding excitatory amino-acid transporter 3) are believed to have pivotal functions in
mediating neurotoxicity, which raises the possibility of underlying structural changes in SZ
(Deutsch et al., 2001; Olney and Farber, 1995). In our finding, three SNPs contributed to the
glutamate pathway, including rs2150195_A (SLC1A1, ‘A’ denotes the minor allele),
rs1873249_G (GRM4) and rs10150721_G (GNG2). The first SNP contributed with a
positive weight, indicating an increased MAF being associated with lower gray matter
concentration; and the latter two SNPs presented negative weights, implying gray matter
loss being associated with decreased MAFs.
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Dopamine-DARPP32 signaling (CACNA1A, CACNA1C, PLCB1, PPP2R2C, PRKD1)
These proteins modulate dopamine and DARPP32 regulated gene expression and function,
which likely influences synaptic plasticity such as LTP and LTD (Jay, 2003; Svenningsson
et al., 2004) as well as being associated with SZ risk (Albert et al., 2002; Howes and Kapur,
2009). In our finding, five genes are involved in this pathway, including CACNA1A
(rs4926278_C and rs4926279_C), CACNA1C (rs2238070_T), PLCB1 (rs2745764_T),
PPP2R2C (rs7688267_G) and PRKD1 (rs12883327_T). CACNA1C is likely a major risk
gene for bipolar disorder (Ferreira et al., 2008). Meanwhile, it is of particulate interest that
CACNA1A and CACNA1C (calcium channels, voltage-dependent) also participate in
calcium signaling, which plays an important role in neuronal processes (Lidow, 2003;
Mattson, 1992) and may also contribute to the reduction in neuronal number given its
suggested role in cell death (Sastry and Rao, 2000; Toescu, 1998).

Synaptic LTP and LTD (IGF1R, PLCB1, PPP2R2C, GRM4, PRKD1, CACNA1C)
synaptic LTP and LTD are two forms of synaptic plasticity resulting in altered synaptic
strength, which underlie learning and memory (Collingridge et al., 2010; Cooke and Bliss,
2006; Linden and Connor, 1995). While learning and memory impairments are well
documented in SZ (Aleman et al., 1999; Paulsen et al., 1995), direct evidence has also been
provided for disrupted LTP/LTD in SZ (Frantseva et al., 2008; Weng et al., 2011). In our
finding, three genes are involved in both LTD and LTP processes, including PLCB1, GRM4
and PRKD1. GRM4 (encoding metabotropic glutamate receptor 4) is also implicated in
glutamate signaling, while PLCB1 (1-phosphatidylinositol 4, 5-bisphosphate
phosphodiesterase beta-1), PRKD1 (Serine/threonine-protein kinase D1) and PPP2R2C
(Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B gamma isoform) are
also implicated in DARPP32 regulated pathway, indicating a possible convergence in
pathology. On the other hand, IGF1R (Insulin-like growth factor 1 receptor, rs8038015_C
and rs6598542_G) is involved only in LTD, where both of two SNPs contributed with
positive weights.

Besides those genes implicated in the aforementioned neurotransmitter and nervous
signaling pathways, it is noteworthy that a number of the remaining detected genes have
been implicated in other neuronal processes. For instance, CNTNAP2 (encoding contactin-
associated protein-like 2) and RELN (encoding reelin), as reported by DAVID, are among
the functional cluster of cell adhesion, which plays an important role in brain development
(Edelman, 1983; Rutishauser and Jessell, 1988). CNTNAP2 is shown to mediate
intercellular interactions during latter phases of neuroblast migration and laminar
organization (Strauss et al., 2006). This gene exhibits a high expression in anterior temporal
and prefrontal regions in humans, yet low or absent expression in rodents (Abrahams et al.,
2007), suggesting a possible role in higher cognitive functions such as language (Vernes et
al., 2008). RELN is suggested to regulate neurogenesis and migration, as well as enhance
synaptic LTP (Hoe et al., 2009; Pujadas et al., 2010; Spalice et al., 2009). In addition, RELN
mutations have been associated with SZ (Guidotti and Di-Giorgi-Gerevini, 2002; Wedenoja
et al., 2008).

It’s noted that IPA indicates an enrichment of coronary artery and vascular disease in the
identified component, as shown in Table 3a. While comorbidity between these diseases and
SZ has been documented, most of the previous works highlighted environmental factors,
such as cigarette smoking and metabolic syndrome (Hennekens et al., 2005; Jeste et al.,
1996). This issue may deserve further investigation.

Combining the sMRI and SNP findings, pICA-R revealed an association between one
genetic component and SZ-related reduction in gray matter concentration in distributed brain
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regions. The identified brain regions are among those shown to exhibit gray matter deficits
partly attributable to genetic factors (Cannon et al., 2002; Thompson et al., 2001). The
genetic component reflects enrichment in neuronal processes. It is noteworthy that both
genetic and imaging findings show a particular relevance to cognition, especially memory
function. While the underlying mechanism remains to be elucidated, our finding strongly
suggests that the identified genetic component may affect neurobiological conditions that
play a role in the cognitive deficits of SZ.

The limitations of this study lie in the participants’ population stratification, effects from
multiple data collection sites, and the possible effect of antipsychotic medications on the
majority of the SZ subjects, which were addressed in different ways. Population
stratification effects were minimized through PCA correction ((Price et al., 2006), see
supplementary information). Regarding the sMRI-SNP association, after regressing out
controlling variables (specifically age, sex, race/ethnicity, collection site and SZ diagnosis
for the SNP component; race/ethnicity and SZ diagnosis for the sMRI component), the
sMRI-SNP association remained significant, exhibiting a partial correlation of −0.24 (p =
2.81×10−5). In addition, in a Caucasian-only subset (109 SZ versus 141 HC), pICA-R also
identified a same sMRI-SNP association (r = −0.31, p = 4.93×10−7), which remained
significant after controlling for the above listed variables (partial correlation, r = −0.29, p =
2.94×10−6). Therefore, we concluded that the finding was robust to the population structure.
The influence of multiple collection sites was assessed through the controlling variable of
collection site. Specifically, we performed a voxel-wise regression to eliminate the site
effect from the sMRI data. Regarding the SNP modality, no significant site effect was
observed, which was expected given that genotyping for all participants was performed at
the Mind Research Network. The subsequent partial correlation and regression analyses
indicated that the identified sMRI-SNP association was not majorly due to any of these
controlling variables (age, sex, race/ethnicity, collection site and SZ diagnosis). We
examined medication effects in the patient group and found no significant regression effect
from the reported chlorpromazine equivalent dosage on the identified gray matter
concentration reduction in prefrontal and temporal regions. This observation is consistent
with the previous report where progressive cortical thinning was demonstrated in the
absence of antipsychotic medication in twins discordant for SZ, supporting a familial
contribution to this endophenotype (Brans et al., 2008). Overall, our data suggests that,
independent from exposure to antipsychotic medications, specific genetic polymorphisms
contribute to reduction in grey matter concentration in a prefrontal-temporal network in this
illness.

Being aware of the importance of excluding correlated SNPs prior to the enrichment
analysis, we examined the 1,030 top contributing SNPs in our data and then excluded SNPs
in high LD (r2 > 0.85, as suggested in PLink). However, we could not examine the LD in the
background as the PGC genotype data were not available. While in this case an enrichment
test might be skewed by an underestimation, the results still indicated a significant SZ
enrichment in the identified component for the tested range of pth (Fig. S5). Overall, these
results suggested a low possibility that the SZ enrichment observed in the indentified
component is a false positive.

In summary, our study provides proof-of-concept for the application of pICA-R in imaging
genomics. This semi-blind multivariate approach is designed to reveal relationships between
two modalities. Our simulations indicate that pICA-R helps extract the factor of interest with
improved accuracy. When applied to experimental data, pICA-R identified a significant
sMRI-SNP association under the guidance of a reference derived from ANK3, a gene
implicated in the PGC SZ study. The sMRI findings are in line with those reported in prior,
related work, while the SNP findings are validated through the independent PGC study, and
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the inter-modality connection suggests that the SZ-related reduction in gray matter
concentration observed in frontal and temporal regions is partly attributable to a combined
effect from multiple genetic variants involved in neurotransmission and nervous signaling
pathways. Given the relatively small sample size, our findings may need further replication
in larger studies. However, we believe, this pilot study demonstrates the ability of pICA-R
as a promising approach for extracting reliable factors accounting for small amounts of
variance in high-dimensional data. The method is a general one which can be applied to
other modalities and to the study of healthy human brain as well as other diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A novel reference guided multivariate approach to reveal relationships of
features.

• Designed for imaging genomics to extract specific genetic factors from the
genome.

• Simulation and real data application demonstrate its feasibility.

• Schizophrenia-related gray mater reduction related to multiple genetic variants.
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Figure 1.
Flow chart of pICA-R. W1 and W2 denote the unmixing matrices of the two modalities,
respectively. F1, F2 and F3 represent the objective functions based on which unmixing
matrices are updated.
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Figure 2.
Illustration of the applied distance constraint: (a) the underlying component with highlighted
causal loci (black region); (b) the generated reference, where r is the reference vector with
selected reference loci set to 1 (gray region) and other loci set to 0.  denotes a subvector
consisting of all the reference loci; (c) the closeness is optimized specifically for the selected
reference loci of one component. W2 is the unmixing matrix of modality 2, X2 is the data

matrix and S2 is the component matrix.  denotes a subvector of S2k (the kth row of S2),

W2k denotes the kth row of W2 and  denotes a submatrix of X2.
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Figure 3.
Performance comparisons among pICA-R, ICA (infomax), ICA-R and pICA: (a) on
simulated datasets with different effect sizes when the sample-to-SNP ratio was controlled at
0.02 and causal loci ratio at 0.015; (b) on simulated datasets with SNP dimensionality
ranging from 10K to 500K, resulting in sample-to-SNP ratios ranging from 0.02 to
4.00×10−4 and causal loci ratios from 0.015 to 3.00×10−4, the median effect sizes were
0.057, 0.055, 0.050 and 0.050 respectively. For pICA-R and ICA-R, results were obtained
with a 20-loci reference of accuracy 1. The error bars reflect mean ± SD based on 100 runs.
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Figure 4.
Performance comparisons between pICA-R and ICA-R, with 40-loci references of different
accuracies: (a) on simulated datasets with different effect sizes when the sample-to-SNP
ratio was controlled at 0.02 and causal loci ratio at 0.015; (b) on simulated datasets with
SNP dimensionality ranging from 10K to 500K, resulting in sample-to-SNP ratios ranging
from 0.02 to 4.00×10−4 and causal loci ratios from 0.015 to 3.00×10−4, the median effect
sizes were 0.057, 0.055, 0.050 and 0.050 respectively. The solid and dotted lines reflect
results of pICA-R and ICA-R, respectively.
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Figure 5.
Scatter plots of loading coefficients associated with the identified sMRI and SNP
components in patient and control group respectively. Controlling variables (age, sex, race/
ethnicity, collection site) are corrected.
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Figure 6.
Maps of identified components: (a) spatial map of brain network for the identified sMRI
component (thresholded at |Z| > 3); (b) Manhattan plot for the identified SNP component
(threshold at |Z| > 3.60 for top contributing SNPs).
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Figure 7.
Fisher’s exact test on SZ enrichment between the identified SNPs and the whole genome
based on PGC results. Pth denotes the threshold p-value of SZ-relevance, ranging from 0.001
to 0.05.
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Table 1

Demographic information of participants

Demographics SZ (140) HC (160) P-value

Sex Male 106 104 0.04

Female 34 56

Age Mean ± SD 36 ± 12 33 ± 11 0.03

Range 18 - 63 18 - 63

Race/Ethnicity Caucasian 109 140 0.19

African American 20 8

Asian 5 5

Native Hawaiian 1 0

American Indian 1 2

Unreported 4 5

Collection site Harvard 28 24 0.85

Iowa 32 59

Minnesota 30 19

New Mexico 50 58
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Table 2

Talairach labels of identified brain regions.

Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z)

Medial Frontal Gyrus 9, 10, 6, 8 3.2/1.4 4.21(0,42,22)/3.98(2,49,10)

Inferior Frontal Gyrus 47, 13 2.6/2.8 5.09(−40,17,−14)/5.67(44,13,−9)

Superior Temporal Gyrus 38, 22, 13 2.3/3.8 4.94(−44,17,−13)/5.54(44,13,−11)

Insula 13, 22, 47 0.4/1.8 3.74(−44,9,−6)/5.28(44,9,−7)

Anterior Cingulate 32, 10 0.7/0.3 4.01(0,49,7)/3.86(2,47,9)
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Table 3

Biological Pathway analysis and functional annotation clustering.

1a. IPA biological function Genes P-value/P-value (B-H)

Coronary disease ACE, ASIC2, CACNA1C, CERS6, CHRNA5,
CSMD1, CSMD2, ITGB2, MECOM, MGAM,
PPARA, PTPRM, SAMD12

2.24E-05/1.68E-02

Vascular disease ACE, ASIC2, CACNA1A, CACNA1C, CERS6,
CHRNA5, COL4A1, COL4A2 (includes EG:12827),
CSMD1, CSMD2, ITGB2, MECOM, MGAM, PPARA,
PTPRM, SAMD12, TEK

8.53E-05/2.25E-02

Aggregation of tumor cell lines CMIP, DAPK3, IGF1R, ITGB2, PRKD1 9.70E-05/2.25E-02

Coronary artery disease ASIC2, CACNA1C, CERS6, CSMD1, CSMD2,
ITGB2, MECOM, MGAM, PPARA, PTPRM, SAMD12

1.20E-04/2.25E-02

Development of central nervous system ADAM22, ASIC2, CNTNAP2, DSCAML1, MYO16,
PARK2, ZBTB16

2.88E-04/4.31E-02

Atherosclerosis ACE, ASIC2, CACNA1C, CERS6, CSMD1, CSMD2,
ITGB2, MECOM, MGAM, PPARA, PTPRM, SAMD12

4.26E-04/5.33E-02

1b. IPA Canonical Pathway Genes P-value/P-value (B-H)

AMPK Signaling PFKFB3, AK5, ACACB, PPP2R2C, PFKP, CHRNA5 4.17E-03/7.93E-01

Aldosterone Signaling in Epithelial Cells DNAJC17, ASIC2, DNAJC18, PLCB1, DNAJC10, PRKD1 9.77E-03/8.08E-01

Synaptic Long Term Depression IGF1R, PLCB1, PPP2R2C, GRM4, PRKD1 1.58E-02/8.08E-01

Maturity Onset Diabetes of Young (MODY)
Signaling

CACNA1C, CACNA1A 2.04E-02/8.08E-01

Glutamate Receptor Signaling SLC1A1, GRM4, GNG2 2.75E-02/8.08E-01

Synaptic Long Term Potentiation CACNA1C, PLCB1, GRM4, PRKD1 3.24E-02/8.08E-01

Dopamine-DARPP32 Feedback in cAMP
Signaling

CACNA1C, PLCB1, PPP2R2C, PRKD1, CACNA1A 4.07E-02/8.08E-01

Agrin Interactions at Neuromuscular Junction ITGB2, NRG3, ARHGEF7 4.37E-02/8.08E-01

G Protein Signaling Mediated by Tubby PLCB1, GNG2 5.01E-02/8.08E-01

RhoGDI Signaling CDH12, ARHGEF7, CDH10, GNG2,
ARHGAP8/PRR5-ARHGAP8

5.13E-02/8.08E-01

1c. DAVID functional annotation cluster Genes P-value/P-value (B-H)

Cell adhesion PTPRM, CLSTN2, MAGI1, TNC, PCDH9, FBLIM1,
DSCAML1, ITGB2, PTPRT, COL5A1, BTBD9, CDH12,
SEMA5A, PKP2, TEK, PECAM1, CNTNAP2, RELN,
CNTN4, IZUMO1, ADAM22, CDH10

1.14E-05/1.14E-02

Synaptic transmission GRM4, ACCN1, DLGAP1, GABRR1, CHRNA5, PARK2,
VIPR1, CACNA1C, KCNIP1, RIMS1, SLC1A1,
CACNA1A

2.86E-04/9.18E-02

Neuron projection morphogenesis SEMA5A, IGF1R, PTPRM, ANK3, DSCAML1, CNTN4,
RELN, GAS7, CACNA1A

1.75E-03/1.78E-01

Note: P-value(B-H) represents the Benjamini-Hochberg corrected p-value of enrichment.
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