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Abstract
RNA viruses, such as flaviviruses, are able to efficiently replicate and cap their RNA genomes in
vertebrate and invertebrate cells. Flaviviruses use several specialized proteins to first make an
uncapped negative strand copy of the viral genome that is used as a template for the synthesis of
large numbers of capped genomic RNAs. Despite using relatively simple mechanisms to replicate
their RNA genomes, there are significant gaps in our understanding of how flaviviruses switch
between negative and positive strand RNA synthesis and how RNA capping is regulated. Recent
work has begun to provide a conceptual framework for flavivirus RNA replication and capping
and shown some surprising roles for genomic RNA during replication and pathogenesis.

Flaviviruses are the most prevalent mosquito-transmitted viral pathogens worldwide, and
every year these viruses cause severe economic and human suffering. There are 35 known
flaviviruses that cause human disease, and it has been estimated that approximately 2/3rd of
the world population is at risk for infection by one or more of these pathogens. WNV has
become endemic in the United States since 1999 and continues to cause significant problems
with transplant recipients and other immunocompromised patients 1. Dengue viruses infect
approximately 50 million individuals each year and are a leading cause of mortality in
children in a number of Latin and Asian countries 2. Yellow fever virus is endemic in a
number of African and South American countries, and causes 200,000 cases and 30,000
deaths in Africa even with effective vaccines available 3. There are currently no clinically
useful antiviral drugs for the treatment of any flavivirus infection, and identification of novel
points of intervention for drug development is an active area of research. Inhibiting
flavivirus RNA genome replication is considered a potential approach to treating flavivirus
infections, and in-depth understanding of the mechanisms that flaviviruses use to replicate
their genomes is necessary for effective development of therapeutics and vaccines.

Flaviviruses are small, enveloped viruses with single-stranded RNA genomes of 11-12 Kb.
The 5′ end of the positive strand genomic RNA possesses a N7 methylated (me7)-guanosine
cap structure that directs viral polyprotein translation and protects the genome from 5′
exonuclease degradation 4,5. The 3′ end of the genome is non-polyadenylated and terminates
in a stable stem-loop structure (3′ SL). The genome contains ~100 nucleotide 5′ and
~400-700 nucleotide 3′ untranslated regions (UTR) that contain RNA structures critical for
RNA replication. Additional RNA structures are present in the ~3400 amino acid
polyprotein coding region that are involved in cyclizing the positive strand genome during
RNA replication. The flavivirus polyprotein encodes 11 mature viral proteins, three of
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which are involved in forming viral particles (Capsid (C), pre membrane (prM), and
envelope (E)) and 8 non-structural proteins that are involved in RNA replication (NS1 (NS1′
in the JEV subgroup 6), NS2A, NS2B, NS3, NS4A, 2K, NS4B, NS5) 7.

Overview of the Flavivirus RNA Replication Cycle
Flavivirus particles enter cell via endocytosis, and the nucleocapsid is released from the
virion via fusion of the viral membranes with the endosomal membrane 8. The viral genomic
RNA is trafficked to the rough endoplasmic reticulum, where viral polyproteins are
translated and co-translationally cleaved into mature proteins. The viral replication proteins
induce membrane rearrangements that generate membranous compartments where RNA
replication occurs. The positive strand genomic RNA is used as a template to produce low
levels of uncapped negative sense RNA, which is used as a template for production of high
levels of positive strand capped genomic RNA. A proportion of the newly synthesized
positive strand RNAs are used for further protein translation to support virion production,
some RNAs interact with and repress the RNAi and RNA decay pathways, and some
interact with capsid proteins and are packaged into nascent virions. Virions mature through
the trans-golgi system and are released into the extracellular milieu to spread virus infection
throughout the host.

RNA Structures Involved in Negative Strand RNA Synthesis
Several RNA structures are present in the coding and non-coding regions of flavivirus
genomes that help direct RNA synthesis (Figure 1). The short 5′ untranslated region (UTR)
contains several stem-loop structures critical for RNA synthesis and translation. A large
stem-loop structure is present at the 5′ end of the 5′ UTR (Stem-Loop A (SLA)) that binds to
NS5 and acts as a promoter for viral RNA synthesis 9,10. The core stem regions of SLA are
conserved among the flaviviruses whereas the top and side loops are somewhat divergent,
indicating the importance of the core stem regions. Along these lines, mutation of some but
not all SLA regions that form the putative stem-loop significantly impair RNA replication.
Mutations in SLA stems 1 and 2 reduced replication and gave rise to spontaneous revertants.
Mutation of the UU bulge between stems 1 and 2 gave rise to a UA revertant, indicating that
at least 1 U in that region is necessary for RNA replication. Deleting the terminal loop on
the side loop blocked replication, whereas mutants with elongated side loop stems or
sequence of the loop were viable. Internal base paring does not seem to be critical for stem
3, but disruption of base paring at the base of the top loop blocked replication and
demonstrated a requirement for this loop region for efficient RNA replication.

How does SLA contribute to RNA replication? At least part of this answer seems to be that
SLA is involved in binding NS5. Filomatori et al used RNA mobility shift and in vitro RNA
polymerization assays to demonstrate that the RNA dependent RNA polymerase (RdRP)
domain of NS5 binds to SLA on the positive strand RNA to promote negative strand RNA
synthesis 11. Interestingly, mutations in the top loop did not disrupt high affinity binding to
NS5 but abolished RNA replication, suggesting that SLA has a functional role in RNA
replication besides binding NS5. NS5 RdRP fingers domain mutants K456A and K457A
were unable to initiate RNA synthesis in the absence of SLA while retaining the ability to
bind to SLA, suggesting that this region is involved in SLA promoter dependent
initiation 12. While these data do not definitively prove a functional interaction between the
top loop and RdRP residues K456 and K457, they provide hints into how SLA may be
interacting with the NS5 RdRP domain during negative strand synthesis.

The 3′ end of the positive strand genomic RNA is the starting point for negative strand RNA
synthesis 13. The 3′ end of linear flavivirus genomes terminates in a stable stem-loop
structure (3′ SL) where the conserved 3′ nucleotides are base paired at the base of the 3′ SL
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structure. It was originally thought that the 3′ SL structure was directly involved in negative
strand synthesis, but several studies have indicated that the presence of the SL structure
actually inhibits negative strand RNA synthesis 9,14. Base paring of the 3′ nucleotides
presumably block RNA binding into the RdRP domain and not allow negative strand
synthesis to occur. Recent work by the Brinton group has shown that specific hybridization
between G7 and U75 in the 3′ SL is critical for the stability of the 3′ SL and mutation of
these residues alter negative strand RNA synthesis and overall RNA replication 15. The 3′
SL structure is disrupted when the genomic RNA cyclizes via the hybridization of the 5′ and
3′ cyclization sequences and hybridization of 5′ UTR stem loop B 5′ Upstream of AUG
(UAR) region and the 3′ Downstream of AUG (DAR) region at the 5′ end of 3′ SL 16,17 .
Hybridization of the 5′-3′ cyclization sequences bring SLA and the 3′ end of the positive
strand genome together and hybridization of the 5′UAR and 3′ DAR result in a
conformational reorganization of SL into a more suitable single-stranded template for the
RdRP (Figure 1). The close proximity of SLA to the single-stranded 3′ end positions in the
cyclized genome positions NS5 to recognize the 3′ end as a template for negative strand
RNA synthesis. The interaction between NS5 and SLA appears to be important as an RNA
selectivity mechanism, and may allow SLA bound NS5 to recognize and use only positive
strand genomes as negative strand RNA templates and avoid using cellular mRNAs also
present on the rough endoplasmic reticulum as templates.

Positive Strand RNA Synthesis: A Puzzle with Missing Pieces
While a good deal of effort has been spent on understanding negative strand RNA synthesis,
there is very little information about the molecular basis of positive strand synthesis during
infection. The only in vitro model system for studying positive strand RNA replication uses
cytoplasmic extracts from infected cells and monitors the production of the double-stranded
20S replicative form (RF), positive strand synthesizing 20-28S replicative intermediate form
(RI), and completed 44S viral RNA (vRNA) 18. This approach provides a global view of
flavivirus RNA replication, but without uncoupling negative strand and positive strand
synthesis it is difficult to test specific hypotheses about positive strand RNA synthesis. We
can deduce that positive strand synthesis is a much more complex process than negative
strand RNA synthesis (Figure 2). Negative strand RNA synthesis seems to primarily require
NS5 RdRP activity whereas positive strand RNA synthesis also incorporates 5′ RNA
capping and RNA unwinding, requiring multiple additional enzymatic functions from NS3
(helicase/ATPase/RNA triphosphatase) and NS5 (guanylyltransferase/methyltransferase)
that are described in more detail later in this article. The double-stranded RF RNA acts as
the template for positive strand synthesis. Paradoxically, the positive strand 3′ SL RNA is
thought to inhibit replication by forming double-stranded RNA and blocking RNA binding
to the RdRP, and the minus strand 3′ end would also be double-stranded RF form which
would be expected to block RNA binding by the RdRP. Because there is not a good in vitro
system available to probe how positive strand replication occurs, most of our understanding
of positive strand synthesis has necessarily been inferred from studies of the enzymatic
activities of the NS3 and NS5 replication proteins and how they form the RNA replication
complex.

The Flavivirus RNA Replication Complex: A Highly Integrated RNA
Replication Machine

The nonstructural NS3 and NS5 proteins constitute the core flavivirus RNA replication
complex. NS3 and NS5 possess all of the enzymatic functions necessary for replication of
flavivirus genomes, while the remaining nonstructural proteins (NS1, NS2A, NS2B, NS4A,
2K, NS4B) are thought to provide support for replication and aid in the formation of the
replication compartment 7. NS1 is located in the lumen of the endoplasmic reticulum, and
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NS2A, NS2B, NS4A, 2K, and NS2B are transmembrane proteins thought to reside within
the viral replication compartment and surrounding membranes. The membrane associated
proteins act to tether the NS3:NS5 complex to the membrane and NS1 helps organize the
membrane-associated proteins and support the function of NS3 and NS5 during
replication 19-23. Therefore, NS3 and NS5 represent the core replication complex and the
other nonstructural proteins enhance or regulate NS3/NS5 function to aid in replication.

NS3 is a ~650 amino acid protein that possesses two distinct globular domains connected
byã20 amino acid linker region. NS3 remains associated with the ER during replication and
encodes several enzymatic functions critical for replication. NS3 encodes a N-terminal
serine protease that cleaves the viral polyprotein in cis at several positions to form mature
proteins 1,24. NS3 also encodes an ATP dependent C-terminal RNA helicase function that
unwinds double-stranded RNA during replication 2,25,26 and is involved in positive strand
RNA synthesis. Recent studies have indicated that the helicase domain can contribute to
RNA annealing during replication which may contribute to cyclization of the positive strand
RNA for negative strand RNA synthesis 3,27. The helicase domain also contains nucleotide
triphosphatase (NTPase) activity used to power the helicase 4,5,28 and a RNA
triphosphatase 6,29 activity that removes the γ–phosphate from newly synthesized positive
strand RNAs to prepare the genome for RNA capping. The NS3 NTPase and RNA
triphosphatase functions utilize the same Walker B motif to perform each reaction 7,30.

NS5 is a ~900 amino acid protein found at the C-terminus of the flavivirus polyprotein. NS5
possesses two distinct domains, a N-terminal methyltransferase/guanylyltransferase domain
and a C-terminal RNA dependent RNA polymerase domain. The ~265 amino acid N-
terminal “capping enzyme” was originally identified as a methyltransferase by the presence
of a S-Adenosyl methionine binding motif homologous with the E. coli YdhB gene 8,31 and
later empirically verified to possess 2′-O- 9,10,32 and guanine N7- 11,33 methyltransferase
activities. In 2009, Issur et al demonstrated that the capping enzyme domain also possessed
guanylyltransferase activity that was able to form a covalent protein:GMP adduct (protein
guanylation) and transfer the GMP to di-phosphorylated RNA substrates to form the base
cap structure 12,34. The C-terminal ~600 amino acids of NS5 encode a RNA dependent RNA
polymerase responsible for synthesizing the negative and positive strand RNAs 13,35. A ~30
amino acid linker domain connects the capping enzyme and polymerase domain and has
been implicated in association with NS3 helicase domain 9,14,36,37 and import of NS5 into
the nucleus 15,38, although some crystallographic structures of the polymerase domain
suggest that the flexible linker region lies within NS5 residues 260-270 and not 322-407 as
previously thought 16,17,39,40.

NS3 and NS5 physically associate during replication to synergize their enzymatic activities
and synthesize positive strand RNAs. The NS3 NTPase and RNA triphosphatase activities
are higher in the presence of the NS5 RdRP domain than in isolation 18,41,42, and the NS5
capping enzyme guanylyltransferase activity is enhanced by the NS3 helicase domain 7,34.
These findings suggest that NS3 and NS5 allosterically regulate each other’s function during
RNA replication. It is currently unknown if NS3 helicase and NS5 RdRP activities are also
allosterically regulated by their association with NS5 or NS3, respectively.

NS3 and NS5 work together to replicate genomes, but there is limited information about
how these proteins physically associate or how allosteric regulation between the enzymes
may occur during viral RNA replication. The development of a co-crystal structure between
NS3 and NS5 would help illuminate how NS3 and NS5 interact, but at this time there is no
such structure available. To help visualize what the replication complex structure may look
like, we have developed a preliminary model for how NS3 and NS5 may physically interact
(Figure 3). This model is based on the location of enzymatic active sites in each protein,
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limited physical interaction and compensatory mutation data, and the logical progression of
RNA synthesis, RNA unwinding, and capping during flavivirus positive strand
synthesis 19-23,34,36,37,41-46.

Flavivirus RNA replication takes place in ER derived replication
compartments

Flaviviruses rearrange intracellular membranes during replication, and several studies found
that viral double-stranded RNA (dsRNA) were associated with rough endoplasmic
membranes 47-49. Further ultrastructural studies have demonstrated that viral dsRNA and
viral replication proteins NS1, NS2A, NS3, NS4A, and NS5 co-localized with ~100 nM
vesicle-like structures termed vesicle packets 50-53. Biochemical studies demonstrated that
viral RF and RI RNA forms were protected by membranes 54. Several studies indicated that
genomic RNA in the vesicle packets are also protected from cellular antiviral responses
during infection, including the RNAi and interferon responses, soon after infection 55,56.
Recent 3D electron microscopy tomography studies have shed light onto the structure of the
vesicle packets 57-59, which appear to be small spherical compartment structures contiguous
with the endoplasmic reticulum membrane. Viral RNA is localized within these replication
compartments, providing a protected environment for RNA replication to occur away from
antagonistic cellular responses while retaining access to cytoplasmic resources
(ribonucleotides, ions, ect.) through narrow pores. Data presented by Welsch et al. suggest
that these replication compartments are in close proximity to sites of virion packaging,
providing a mechanism to rapidly package genomic RNA into nascent virion particles while
keeping cytoplasmic exposure to a minimum 57. Proliferation of the endoplasmic reticulum
membrane appears to be involved in formation of these replication compartments, a process
that appears to be at least partially controlled by the NS4A transmembrane protein 60,61.
This process is likely linked with the observed perturbation of lipid homeostasis in infected
cells 62 and virus induced alterations in lipid metabolism 63. The fatty acid synthetase
enzyme has been observed in close proximity to replicating viral RNA and appears to be
recruited to replication sites via interactions with NS3, providing lipids necessary for
replication compartment formation 63. Inhibition of cholesterol biosynthesis has also been
show to affect flavivirus RNA replication in replicon assays 64, although the role of
cholesterol in replication compartment biosynthesis is still emerging.

RNA Capping in Flavivirus RNA Replication
The mature type cap 1 consists of a 5′-5′ linked me7 guanosine structure (me7-GpppN-me2).
me7-GpppG-me2 capping of cellular mRNA molecules occurs co-transcriptionally in the
nucleus by the action of four enzymes: RNA triphosphatase, RNA guanylyltransferase,
guanine-7-methytransferase, and nucleoside 2′-O-methyltransferase. The 5′ end of the
nascent RNA transcript (pppN) is hydrolyzed by the RNA triphosphatase to a di-phosphate
end (ppN), which is then ligated with guanosine monophosphate (GMP) in a 5′-5′ linkage by
the guanylyltransferase to form the base cap structure (GpppN). N7-methyltransferase
transfers a methyl group from S-adenosyl methionine (SAM) to the guanine N7 position,
resulting in me7-GpppN and S-adenosyl-L-homocysteine (SAH). This structure is known as
cap 0. In a second enzymatic step, a methyl group is transferred from another AdoMet
molecule to the 2′ hydroxyl position of the penultimate nucleotide by 2′-O-
methyltransferase, generating the cap 1 structure (me7-GpppN-me2).

The cellular mRNA capping machinery is located in the nucleus, whereas flavivirus RNA
replication occurs in ER-derived replication compartments in the cytoplasm. Because
flaviviruses do not have access to the cellular capping machinery they must provide their
own enzymes to produce capped RNA. Flavivirus genomic RNA is modified at the 5′ end of

Saeedi and Geiss Page 5

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



positive strand genomic RNA with a cap 1 structure (me7-GpppA-me2) generated by the
virus encoded NS3 RNA triphosphatase 29, NS5 guanylyltransferase 34, NS5 2′-O-
methyltransferase 32, and NS5 Guanine-N7-methyltransferase 65. X-ray crystal structures for
each of these viral enzymes have been solved 26,32,65-67, providing a wealth of information
about how these enzymes may function during RNA replication.

The order of RNA capping has not been completely defined for flaviviruses, but the
canonical Ping-Pong mechanism for cap formation appears to be the most-likely scenario
(Figure 4). The RNA triphosphatase is located in the NS3 helicase domain 68, and the RNA
triphosphatase appears to overlap with the NTPase active site that powers the helicase 69,70.
Newly synthesized negative and positive strand RNAs are triphosphorylated and would be
appropriate substrates for the RNA triphosphatase. It is currently unknown if the negative
strand RNA is modified by the RNA triphosphatase, but the observation that negative strand
RNA is only found in the double-stranded form and not unwound by the NS3 helicase
domain suggests that NS3 may not be a component of negative strand RNA synthesis. The
γ–phosphate is removed from positive strand RNAs in a Mg2+ dependent reaction 30,68,
resulting in a di-phosphorylated RNA. Di-phosphorylated RNA with a 5′ adenosine base is a
substrate for the NS5 guanylytransferase within the capping enzyme domain 34. The capping
enzyme binds GTP and forms a guanylated intermediate in a Mg2+ dependent manner
through an as yet unknown mechanism, then transfers the GMP to the dephosphorylated
RNA substrate. Studies on the methyltransferase function of the NS5 capping enzyme have
taken place with capped RNAs 32,33,65,71, but it is unknown if the di-phosphorylated RNA is
2′O methylated prior to capping. Methylation does not appear to be required for the NS5
guanylyltransferase to cap the di-phosphorylated positive strand RNA, as an unmethylated
in vitro generated RNA substrate was able to be capped by NS5 34.

Does phosphorylation control negative to positive strand RNA synthesis
switching?

Early RNA replication is biased towards the production of uncapped negative strand
template RNAs followed by capped positive strand RNAs later in infection. A major
unanswered question about flavivirus replication is how the switch from negative strand
RNA synthesis to positive strand RNA synthesis occurs. The majority of research on RNA
synthesis during flavivirus infection has been focused on negative strand synthesis, but there
are a few clues that may point to how this switch occurs. NS5 phosphorylation has been
implicated in controlling the association of NS3 with NS5 during infection and retarget NS5
to the nucleus 43. Later work suggested that phosphorylation of the NS5 linker region by
Casein Kinase II inhibited nuclear import of NS5 72, but it is still not known if Casein
Kinase II phosphorylation directly plays a role in the association of NS5 and NS3. As
mentioned above, there is little evidence that NS3 significantly functions in negative strand
synthesis, and it is unclear if NS3 associates with NS5 during early RNA replication, but a
reasonable hypothesis is that phosphorylation of the NS5 linker region early in infection
may reduce NS3 association with NS5, effectively removing helicase and RNA
triphosphatase activity from the replication complex. More recent data from the Striker
group suggests that phosphorylation may inhibit NS5 methyltransferase activity.
Phosphorylation of the yellow fever NS5 capping enzyme serine 56 was found to occur in
transient transfection experiments, and phosphomimic experiments indicated that this
phosphorylation event dramatically altered capping enzyme methyltransferase activity and
RNA replication 73. Casein kinase 1 α was suggested to be the kinase responsible for serine
56 phosphorylation 74, although serine 56 is in the priming phosphorylation site of the
consensus Casein kinase 1 α motif present in NS5 (S56XXS/T59) 75, so Casein kinase 1 α
may not be the primary kinase utilized during replication. It is currently unknown of Casein
kinase 1 α phosphorylation affects the RNA guanylyltransferase activity. If Casein kinase 1
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α does affect NS5 capping enzyme guanylyltransferase activity, there are two potentially
interesting outcomes. If phosphorylation down-regulates guanylyltransferase activity in a
similar fashion to methyltransferase activity, then phosphorylation may effectively shut off
RNA capping during replication. Alternatively phosphorylation may increase RNA
guanylyltransferase activity and act as a switch between the enzymatic functions found
within the capping enzyme domain. Either scenario would provide valuable insight into the
regulation of RNA capping during replication. Protein Kinase G has also been implicated in
phosphorylating the NS5 RdRP domain on residue threonine 449 in the RdRP fingers
domain 76. Mutation of threonine 449 to histidine or glutamic acid but not serine in a dengue
virus replicon aborted replication, indicating that the residue is critical for viral RNA
replication. Pharmacologic treatment of dengue 2 infected cells with a Protein Kinase G
inhibitor (8-Br-PET-cGMP) blocked viral replication. It is currently unclear what role
threonine 449 phosphorylation has on RdRP function, and further studies need to be
performed in this area. In each of the above cases it is unknown when these phosphorylation
events occur during the RNA replication cycle, and a careful kinetic analysis of NS5
phosphorylation during infection needs to be performed to explicitly determine if
phosphorylation is involved in temporal control of NS5 function and switching between
negative and positive strand RNA synthesis.

RNA Capping, Methylation, and Structure Controls RNA Stability and
Immune Evasion

RNA caps are critical to the function and stability of most translated RNAs. Capped mRNAs
are specifically recognized by the translation initiation factor eIF4E in combination with
eIF4A and eIF4G to form the eIF4F cap binding complex 77. Association of eIF4F with cap
1 structures is the first step in protein translation initiation and precedes ribosome 40S
subunit recruitment. 5′ RNA cap structures block exonucleolytic cleavage of the RNA,
increasing their lifespan and stability in cells 78. Additionally, cap 1 structures are used as an
antiviral mechanism to discriminate self mRNAs from viral RNAs 79. Each of these
properties demonstrates the importance of cap structures in cellular mRNA, and are
especially important with viruses whose genomes are capped RNAs. The absence of a fully
formed cap on many RNA virus genomes completely stops replication.

What happens to a flavivirus RNA when it is not capped? An obvious answer to this
question is that the viral polyprotein would not be translated and the viral RNA would be
degraded by the cellular RNA decay machinery. This, however, does not appear to be the
whole story. Recent studies have demonstrated that a proportion of the flavivirus positive
strand RNAs seem to be intentionally shunted into the RNA decay pathway to affect overall
RNA stability and support RNA replication. In 2004 a short fragment of the Japanese
Encephalitis virus positive strand RNA was identified by Northern blot that was originally
hypothesized to be involved in RNA replication 80. Later work with Kunjin virus defined
that the RNA fragment, now called the subgenomic flavivirus RNA (sfRNA), was an
incomplete digestion product generated by the cellular 5′ exonuclease XRNI stalling on DB1
structure in the viral 3′ UTR 81. Similar results were demonstrated in yellow fever virus 82.
Further work by Moon et al. demonstrated that sfRNA inactivates XRNI and results in
increased cellular mRNA accumulation 83. XRN1 and several other P-body components
have been found to be recruited to West Nile virus RNA replication sites, but interestingly
RNA decapping enzymes such as DCP1 were not associated with RNA replication sites 84.
XRN1 acts only on 5′ monophosphorylated RNA substrates, and if XRNI is degrading
positive strand RNAs and being inactivated by the sfRNA then a logical hypothesis is that
some proportion of positive strand RNAs are either uncapped during normal replication or
are specifically targeted to the P-bodies for decapping and subsequent degradation. sfRNA
deficient Kunjin viruses replicate to a similar extent as wild-type viruses in cell culture but
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display severely attenuated pathogenesis in mice 81. For a number of years there has been
speculation that one of the flavivirus non-structural proteins interfered with the RNAi
response, much like the B2 RNAi suppressor protein encoded by Flock House virus 85, but
no such protein-based function has been found to date. Schnettler et al demonstrated that the
sfRNA from West Nile virus was able to block siRNA and miRNA mediated gene
suppression in mammalian and insect cells through an as yet described mechanism 86,
providing an explanation for the partial resistance to RNAi observed during flavivirus
infection. The ability of sfRNA to interfere with cellular RNA metabolism pathways suggest
that the sfRNA does not play a direct role in RNA replication but is critical for pathogenesis
in vivo, potentially by disturbing cellular gene expression during infection.

What role does RNA N7 and 2′O-methylation play during viral replication? N7-methylation
of the RNA cap is used by the cellular cap binding protein eIF4E to recruit translation
factors and ribosomes to the RNA 77. Without N7 cap methylation eIF4E cannot efficiently
recognize the viral RNA and translation and replication is disrupted 33. West Nile virus
mutants that selectively disrupt ribose 2′O methylation attenuated but did not completely
block RNA replication in cell culture, indicating that 2′O methylation is not required for
RNA replication 65. Interestingly, 2′O methylation defective viruses generated protective
immunity against wild-type West Nile virus when used as a vaccine in mice. Michael
Diamond and Volker Thiel elegantly demonstrated that cap 2′O methylation is used by cells
as a molecular signature to discriminate self versus non-self RNAs, with 2′O methylation
deficient West Nile virus RNAs being recognized by cellular IFIT proteins as non-self and
stimulating robust interferon type I responses 79,87. These data show that RNA 2′O
methylation acts as an immune evasion mechanism during flavivirus infection and
potentially during other viral infections. More recently, Dong et al demonstrated that
internal adenosine residues in the viral genome are 2′O methylated, and that this methylation
affects viral translation, RNA replication, and potentially helps avoid the host immune
response 88. Therefore, the RNA cap, RNA methylation, and RNA structures play a broader
role in flavivirus biology than simply directing viral replication and polyprotein translation.

Conclusion and Perspectives
Our understanding of flavivirus replication has significantly advanced since the first
demonstration in 1969 that flavivirus RNA was infectious 89. With the advent of modern
molecular biology we have been able to build a conceptual model of how flavivirus
genomes enter cells, generate large numbers of daughter genomes, and spread to naïve cells
to propagate and cause disease.

However, there are still holes in our understanding of how flaviviruses replicate their
genomes that need to be filled if we want to fully understand how these important pathogens
replicate and cause disease. Studies of RNA synthesis during infection have focused almost
exclusively on negative strand synthesis, and we still have only a very rudimentary
understanding of the factors at play during positive strand RNA synthesis. The development
of a manipulable in vitro positive strand replication system is required to dissect the
molecular details of positive strand RNA synthesis. An in vitro positive strand replication
system will likely need to include both full-length NS3 and NS5 and may require
membranes and/or other cellular factors to proceed efficiently. The molecular regulation of
negative-to-positive strand RNA switching is also an area where limited information exists.
Replication events such as NS5 phosphorylation or formation of membranous replication
compartments may trigger switching from negative to positive strand RNA synthesis, and
further definition of how these events affect RNA replication is warranted. The composition
of the ER-derived replication compartments and how RNA replication occurs within the
compartments is also unclear. The volume within the replication compartment, which is
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roughly twice the outer diameter of a mature virion, appears to be large enough to
accommodate one genome length RNA 57,58. The space constraints within the replication
compartment suggest that there may only be enough space for one negative strand RNA in
the replication compartment and that synthesis of positive strand RNAs may need to go to
completion to before another round of RNA synthesis can occur. This scenario suggests that
only one replication complex is active in each replication compartment and that only one
positive strand RNA can be synthesized at a time, with the negative strand recycling within
the replication compartment to provide a template for further rounds of positive strand RNA
synthesis (Figure 5). This model correlates well with biochemical data presented by Chu and
Westaway 18, although further definition of the replication compartment molecular
organization is necessary. In summary, even though a good deal of information is now
available about how flaviviruses replicate their genomes, regulation of genome replication is
still an area with many unanswered questions.
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Figure 1. Flavivirus Genomic RNA Structures
A) Linear structure of a generic flavivirus RNA genome showing the positions of critical
RNA structures and protein coding regions. B) Cyclization of Flavivirus positive strand
genome promotes negative strand RNA synthesis. The 5′ end of the positive strand genomic
RNA interacts with the 3′ end of the positive strand RNA via interactions between the CS
and UAR/DAR regions. Hybridization between the 5′ UAR and 3′ DAR causes a re-
organization of the 3′ SL structure, exposing the 3′ end of the positive strand RNA. The
RdRP domain of NS5 binds to SLA on the 5′ end of the positive strand genome and utilizes
the exposed 3′ end of the positive strand RNA as a template for negative strand RNA
synthesis.
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Figure 2. Schematic of Flavivirus RNA Replication
44S Positive strand viral RNAs (vRNA) are trafficked from incoming viral particles to the
endoplasmic reticulum where viral polyproteins are translated. The newly synthesized NS5
RdRP generates a negative strand RNA (colored green) using the positive strand RNA as a
template. It is unknown if RNA capping activity or RNA helicase activity occurs during
negative strand RNA synthesis. The Replicative Form (RF) RNA is a duplex of negative and
positive strand RNA thought to act as a template for additional capped positive strand RNA
synthesis via the action of NS3 and NS5. The 28S Replicative Intermediate (RI) form is
comprised of newly synthesized capped positive strand RNA (colored red) and displaced
original capped positive strand RNA. The NS3 RNA triphosphatase and NS5
guanylyltransferase / methyltransferase enzymes generate a new RNA cap on the 5′ end of
the nascent RNA strand. NS3 RNA helicase and NTPase activities are necessary for
unwinding of dsRNA during positive strand RNA synthesis. Released positive strand RNAs
can be used for additional protein translation, interference with RNAi or RNA decay
pathways, packaging into viral particles, or generate additional RF forms.
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Figure 3. Model for NS3/NS5 Interaction Based on Known Structures and Enzymatic Active
Sites
In this model, the NS3 RNA triphosphatase / helicase domain interacts with NS5 via a
flexible linker found between the capping enzyme and RdRP domains (dashed line). The
NS3 protease domain is not included in this model for clarity. During positive strand RNA
synthesis, the single-stranded negative strand RNA template enters the RdRP active site, and
the polymerase catalyzes the elongation of a triphosphorylated positive strand RNA. The
positive strand RNA is initially duplexed with the negative strand RNA, and this dsRNA is
unwound by the helicase activity present in NS3. The positive strand RNA interacts with the
RNA triphosphatase active site, which removes the γ-phosphate from the triphosphorylated
RNA, resulting in a di-phosphorylated RNA substrate. The di-phosphorylated RNA is then
fed into the NS5 capping enzyme where the guanylyltransferase function caps the RNA and
the methyltransferase function methylates the RNA. The model was developed using the
following PDB files (NS3 Helicase/RNA Triphosphatase domain (PDB codes: 2 JLR /
2JLU 69, NS5 capping enzyme (PDB Code: 3EVG 66, NS5 RdRP (PDB Code: 2J7U) 90).
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Figure 4. Proposed Mechanism of Flavivirus RNA Capping
NS3 RNA triphosphatase binds to and cleaves the γ-phosphate from newly synthesized
positive strand RNAs, generating a di-phosphorylated RNA substrate. The NS5 capping
enzyme (CE) binds GTP and forms the guanylated intermediate in a Mg2+ dependent
reaction. The di-phosphorylated RNA substrate interacts with the guanylated NS5 protein,
which transfers the GMP moiety to the di-phosphorylated RNA to form the base cap
structure (GpppAGUAn). The base cap structure is first methylated at the guanine N7
position by the methyltransferase function within the capping enzyme, presumably by the
action of a second NS5 capping enzyme protein. The cap 0 structure is then 2′O methylated
to form the Cap 1 structure (m7GpppAm2GUAn). This model would allow the cap to be fully
formed without repositioning.
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Figure 5. Potential Model for Positive Strand RNA Replication within the Replication
Compartment
Flavivirus RF RNA is entirely contained within replication compartments, which protects
the negative strand RNA (colored green) from host antiviral factors such as RISC and PKR.
dsRNA may initially interact with a separate NS3 helicase molecule (shown without the
protease domain for clarity) that unwinds the RF form dsRNA and directs the original
capped positive strand RNA out of the replication compartment for translation, interference
with the miRNA and RNA decay pathways, and virion packaging. The 3′ end of unwound
negative strand RNA enters the NS5 RdRP domain within the NS3:NS5 replication complex
and results in the synthesis of a new capped positive strand RNAs (colored red) as described
in Figure 2. The negative strand RNA likely forms a new dsRNA duplex with the nascent
positive strand RNA to regenerate the RF form within the replication compartment, and the
newly synthesized positive strand RNA would be released from the replication compartment
during the next round of positive strand RNA synthesis.
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