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Humans can voluntarily attend to a variety of visual attributes to serve behavioral goals. Voluntary attention is believed to be controlled
by a network of dorsal frontoparietal areas. However, it is unknown how neural signals representing behavioral relevance (attentional
priority) for different attributes are organized in this network. Computational studies have suggested that a hierarchical organization
reflecting the similarity structure of the task demands provides an efficient and flexible neural representation. Here we examined the
structure of attentional priority using functional magnetic resonance imaging. Participants were cued to attend to location, color, or
motion direction within the same stimulus. We found a hierarchical structure emerging in frontoparietal areas, such that multivoxel
patterns for attending to spatial locations were most distinct from those for attending to features, and the latter were further clustered
into different dimensions (color vs motion). These results provide novel evidence for the organization of the attentional control signals at
the level of distributed neural activity. The hierarchical organization provides a computationally efficient scheme to support flexible
top-down control.

Introduction
Goal-directed behavior requires the selective processing of task-
relevant information in complex environments. Visual selective
attention allows us to focus on specific aspects of the scene for
prioritized processing (Reynolds and Chelazzi, 2004; Carrasco,
2011). Contemporary theories of attention have assumed a role
of top-down control signals that bias bottom-up sensory process-
ing (Wolfe, 1994; Desimone and Duncan, 1995). Neuroimaging
studies have implicated a network of brain areas in dorsal fron-
toparietal cortex during top-down attentional control (Kastner
and Ungerleider, 2000; Corbetta and Shulman, 2002). A possible
function of these areas is to maintain attentional priority, i.e., the
behavioral importance of items. In the case of spatial attention
(selection of spatial locations), the idea has been strongly sup-
ported by data from both single-unit physiology and neuro-
imaging (Moore, 2006; Serences and Yantis, 2006; Bisley and
Goldberg, 2010). More recent studies using the functional
magnetic resonance imaging (fMRI) multivariate decoding
approach have suggested that these areas also represent atten-
tional priority for features and objects (Liu et al., 2011; Guo et
al., 2012; Hou and Liu, 2012). These findings suggest that the
dorsal frontoparietal areas represent attentional priority for
locations, features, and objects.

An important question arises concerning the relationship be-
tween different types of priority signals within the same network.
In particular, the relationship between priority signals for spatial
and nonspatial properties has not been elucidated. In terms of the
modulatory effect of attention, it has been shown that spatial and
feature-based attention have distinct influences on both psycho-
physical performance (Baldassi and Verghese, 2005; Liu et al.,
2007; Ling et al., 2009) and sensory responses (Saenz et al., 2002;
Martinez-Trujillo and Treue, 2004). These considerations thus
pose a challenge in understanding attentional control, that is,
how a domain-general control mechanism provides domain-
specific modulations.

Theoretical and computational studies have provided two
broad perspectives on the organization of neural representations.
On the one hand, it has been suggested that similar objects/con-
cepts are represented by similar neural substrates, which could
form a hierarchical structure for certain domains, such as object
categories and action sequences (Edelman, 1998; Cooper and
Shallice, 2006). On the other hand, nonhierarchical representa-
tions have also been proposed to account for complex behavior
(Botvinick and Plaut, 2004). Although these studies are not con-
cerned with attentional control per se, the differing views imply
different organizational schemes for attentional priority. The for-
mer could predict a hierarchical organization such that priority
signals for features within a dimension are more similar to each
other than across dimensions, and at a higher level, priority sig-
nals for features in general are more similar to each other than
their similarity to priority signals for locations. Alternatively, if
neural representations are nonhierarchical, this would predict a
lack of systematic organization for priority signals.

We hypothesized that priority signals for different properties
are organized in a hierarchical fashion, given such an organiza-
tion can provide both flexible and specific representations (Hin-
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ton et al., 1986; Edelman, 1998). We manipulated top-down
attention to spatial locations and visual features in a single exper-
iment and analyzed multivoxel pattern similarity associated with
different types of attention. The multivariate technique repre-
sents an information-based approach in analysis of neural data,
which is critical in understanding the structure of the underlying
neural representations (Kriegeskorte et al., 2006).

Materials and Methods
Participants
Twelve individuals (6 females) participated in the experiment; all had
normal or corrected-to-normal vision; 11 were right-handed and 1 was
left-handed. Two of the participants were authors, the rest were graduate
and undergraduate students at Michigan State University. Participants
were paid for their participation and gave informed consent according to
the study protocol, which was approved by the Institutional Review
Board at Michigan State University.

Stimulus and display
The visual stimuli consisted of two circular apertures (9° in diameter),
each containing coherently moving dots (dot size: 0.18°), centered 8° to
the left and right of a central fixation point (0.3° diameter) on a black
background. In each of the two apertures, half of the dots were rendered
in red and the other half in green; within each color group, half of the dots
moved upward and the other half moved downward. Thus there were
eight dot groups in total, generated by the combination of 2 locations �
2 colors � 2 directions, with each group of dots containing 15 dots. The
speed of dot groups varied between 1.7 and 2.5°/s, with speed randomly
assigned to each dot group on each trial (Fig. 1).

All stimuli were generated using MGL (http://gru.brain.riken.jp/doku.
php?id�mgl:overview), a set of custom OpenGL libraries running in
MATLAB (MathWorks). Images were projected on a rear-projection
screen located in the scanner bore by a Toshiba TDP-TW100U projector
outfitted with a custom zoom lens (Navitar). The screen resolution was

set to 1024 � 768 and the display was updated at 60 Hz. Participants
viewed the screen via an angled mirror attached to the head coil at a
viewing distance of 60 cm. Auditory stimuli were delivered via head-
phones by a Serene Sound Audio System (Resonance Technology).

Task and design
Attention experiment. Participants were instructed to fixate on the central
disk throughout the experiment. At the beginning of each trial, an audio
cue was played through the headphones worn by participants. There
were three types of cues: two location cues (“left” or “right”) instructed
participants to maintain attention on dots in either the left or right ap-
erture, regardless of their color or direction, two color cues (“red,”
“green”) instructed participants to maintain attention on either the red
or green dots, regardless of their location or direction, and two direction
cues (“up” or “down”) instructed participants to maintain attention to
either upward-moving dots or downward-moving dots, regardless of
their location or color. Thus, with each attentional cue, participants need
to attend to four dot groups, out of eight possible dot groups. The audio
cues were prerecorded with a native English speaker and stored as digital
files on the computer. At 1.1 s after the onset of the audio cue, the dot
stimuli appeared for 6.6 s. At random times during this interval, all dots
in one or two of the dot groups briefly increased their size (Fig. 1). The
size change either occurred on one of the four cued dot groups (target) or
one of the four uncued dot groups (distracter). Participants were in-
structed to press a button when they detected a target, and to withhold
response for distracters. For example, in the “up” trials, participants
needed to attend to all the upward-moving dots and press the button
when they noticed any upward-moving dots increased their size. On each
trial, there was either one target only (a size-change event in one of the
cued dot groups), one distractor only (a size-change event in one of the
uncued dot groups), or one target and one distractor (both aforemen-
tioned size-change events). We counted a key press within a 1.5 s window
after a target or distractor as a positive response to that event (on trials
containing both a target and a distractor, the two events were separated
by at least 1.5 s). A jittered intertrial interval followed the dot stimuli
(3.3–7.7 s). In each scanning run, there were 4 trials for each cue condi-
tion, for a total of 24 trials. Trial order was randomly determined for each
run. Participants performed 10 runs in the scanner, resulting in a total of
240 trials, with 40 trials per cue condition.

At the beginning of each scanning session, the red and green colors
were set at isoluminance via heterochromatic flicker photometry (Kaiser,
1991). We fixed the red color to the RGB value of [255 0 0] and let
participants adjust the green value to achieve minimum flicker. Their
individual color setting was then used for the dot stimuli in the attention
experiment. We also ran a threshold task to determine the appropriate
magnitude of the size change for the dot stimuli. The task was identical to
the attention task described above, except that the magnitude of size
increment was controlled via three separate 1-up 2-down staircases, one
for each attention type (location, color, motion). We fitted the staircase
data with Weibull functions and selected size increments that yielded
�80% correct performance for each of the three attention types.

Practice and eye tracking. Each participant practiced the attention task
in the behavioral lab for at least 1.5 h before the fMRI scan. The first part
of practice consisted of setting isoluminant red/green colors and the size
change threshold task as described above. Once participants achieved
stable thresholds over several runs, we fixed the size changes and prac-
ticed them in the scanner version of the task. During these practice trials,
we also monitored their eye position with an Eyelink II system (SR Re-
search). All participants took part in the eye tracking session, with each
performing at least two runs of the attention task. If we observed any
subtle differences in fixation patterns across conditions, we gave further
instructions and let participants practice more runs, until no systematic
difference could be observed.

Retinotopic mapping. Early visual cortex and posterior parietal areas
containing topographic maps were defined in a separate scanning session
for each participant. We used rotating wedge and expanding/contracting
rings to map the polar angle and radial component, respectively (Sereno
et al., 1995; DeYoe et al., 1996; Engel et al., 1997). Borders between visual
areas were defined as phase reversals in a polar angle map of the visual

Figure 1. Schematic of an “up” trial in the attention task. Arrows denote the moving direc-
tion of dots, which were not shown in the actual stimuli. The third section illustrates a target
event, in which the upward-moving red dots in the right aperture had a transient change (0.2 s)
in dot size.
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field. Phase maps were visualized on computationally flattened represen-
tations of the cortical surface, which were generated from the high-
resolution anatomical image using FreeSurfer and custom MATLAB
code. In addition to occipital visual areas, our retinotopic mapping pro-
cedure also identified topographic areas in the intraparietal sulcus (IPS),
IPS 1– 4 (Swisher et al., 2007). In a separate run, we also presented mov-
ing versus stationary dots in alternating blocks and localized the human
motion-sensitive area, hMT�, as an area near the junction of the occip-
ital and temporal cortex that responded more to moving than stationary
dots (Watson et al., 1993).Thus for each participant, we indentified the
following areas: V1, V2, V3, V3AB, V4, V7, hMT�, IPS1, IPS2, IPS3, and
IPS4. There is controversy regarding the definition of visual area V4 (for
review, see Wandell et al., 2007). Our definition of V4 followed that of
Brewer et al. (2005), which defines V4 as a hemifield representation
directly anterior to V3v.

MRI data acquisition
All functional and structural brain images were acquired using a GE
Healthcare 3.0T Signa HDx MRI scanner with an 8-channel head coil, in
the Department of Radiology at Michigan State University. For each
participant, high-resolution anatomical images were acquired using a
T1-weighted MP-RAGE sequence (FOV � 256 mm � 256 mm, 180
sagittal slices, 1 mm isotropic voxels) for surface reconstruction and
alignment purposes. Functional images were acquired using a T2*-
weighted echo planar imaging sequence consisted of 30 slices (TR � 2.2 s,
TE � 30 ms, flip angle � 80°, matrix size � 64 � 64, in-plane resolu-
tion � 3 mm � 3 mm, slice thickness � 4 mm, interleaved, no gap). In
each scanning session, a 2D T1-weighted anatomical image was also
acquired that had the same slice prescription as the functional scans, for
the purpose of aligning functional data to high resolution structural data.

fMRI data analysis
Data were processed and analyzed using mrTools (http://www.cns.nyu.
edu/heegerlab/wiki/doku.php?id�mrtools:top) and custom code in
MATLAB. Preprocessing of function data included head movement cor-
rection, linear detrend, and temporal high-pass filtering at 0.01 Hz. The
functional images were then aligned to high-resolution anatomical im-
ages for each participant. Functional data were converted to percentage
signal change by dividing the time course of each voxel by its mean signal
over a run, and data from the 10 scanning runs were concatenated for
subsequent analysis. All regions of interest (ROI) analyses were
performed on individual participant’s native anatomical space. For
group-level analysis, we used surface-based spherical registration as im-
plemented in Caret to coregister the individual participant’s functional
data to the Population-Average, Landmark- and Surface-based (PALS)
atlas (Van Essen, 2005). Group-level statistics (random effects) were
computed in the atlas space and the statistical parameter maps were
visualized on a standard atlas surface (the “very inflated” surface). To
correct for multiple comparisons, we set the threshold of the maps based
on individual voxel level p value in combination with a cluster constraint,
using the 3dClustSim program distributed as part of AFNI (http://afni.
nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html). More de-
tails of the group analysis pipeline have been reported in previous studies
(Liu et al., 2011; Hou and Liu, 2012).

Univariate analysis: deconvolution. Each voxel’s time series was fitted
with a general linear model whose regressors contained six attention
conditions (left, right, red, green, up, and down). Each regressor modeled
the fMRI response in a 25 s window after trial onset. The design matrix
was pseudo-inversed and multiplied by the time series to obtain an esti-
mate of the hemodynamic response for each attention condition. To
measure the response magnitude of a region, we averaged the decon-
volved response across all the voxels in an ROI.

In addition to the visual and parietal regions defined by retinotopic
mapping, we also defined ROIs active during the attention task. This was
done by using the goodness of fit measure (r 2 value), which is the amount
of variance in the fMRI time series explained by the deconvolution
model. The statistical significance of the r 2 value was evaluated via a
permutation test by randomizing event times and recalculating the r 2

value using the deconvolution model (Gardner et al., 2005). One thou-

sand permutations were performed and the largest r 2 value in each per-
mutation formed a null distribution expected at chance (Nichols and
Holmes, 2002). Each voxel’s p value was then calculated as the percentile
of voxels in the null distribution that exceeded the observed r 2 value of
that voxel. Using a cutoff p value of 0.05, we defined three additional
areas that were active during the attention task: auditory cortex (AUD),
frontal eye field (FEF), inferior frontal junction (IFJ) in both hemi-
spheres. We were able to define these three areas on each individual
participant’s map. Additional idiosyncratic activations in individual
maps were not further investigated as they were not consistently active
across participants and hence absent in the group map (see below).

For group analysis, we transformed the individually obtained r 2 maps
to the PALS atlas space and averaged their values (see Fig. 3). The null
distributions of each individual participant were combined and the ag-
gregated distribution served as the null distribution to obtain a voxelwise
p value associated with an averaged r 2 value. We used a p of 0.02 and a
cluster extent of 15 to threshold the group r 2 map, which corresponded
to a whole-brain false positive rate of 0.01 according to 3dClustSim. Note
this group average analysis was for visualization purpose only.

Univariate analysis: whole-brain contrast. To localize cortical areas dif-
ferentially activated by different attention cues, we performed three lin-
ear contrasts analysis (location vs color, location vs direction, and color
vs direction). We first transformed the individually estimated hemody-
namic response to the atlas space, and then performed t tests comparing
the average response magnitude for time points 3– 6 (6.6 –13.2 s), which
spanned the peak time of the hemodynamic response (see Fig. 4). We
combined the two cues within each attention type, e.g., for location–
color comparison, the contrast vector was left � right-(red � green). We
also compared individual cues within dimensions to examine differential
brain activity for specific cues. Three linear contrasts were performed: left
versus right, red versus green, up versus down. The resulting t-maps were
thresholded at the same level as the r 2 map above (voxelwise p � 0.02,
cluster extent � 15). This analysis revealed brain areas differentially ac-
tivated by different attention cues (see Fig. 5). For illustration purposes
only, we also obtained the grand average of hemodynamics responses
(across voxels and participants) in select areas to show the relationship
between different conditions.

Multivariate analysis: multivoxel similarity and cluster analyses. All
multivariate analyses were performed in individually defined ROIs, ei-
ther via retinotopic mapping or task-related activation using the r 2 cri-
terion (see above). The retinotopically defined ROIs were further
restricted to voxels whose r 2 values exceeded 0.06. In practice this thresh-
olding procedure excluded most noisy voxels not stimulated by the visual
stimuli (e.g., part of V1 corresponding to the far periphery), while being
lenient enough to retain a sufficient number of voxels for multivariate
pattern analyses. For each voxel and each attention condition, we first
averaged time points 3– 6 in their fMRI response to obtain a response
amplitude. We then averaged this response amplitude across voxels in
that ROI and subtracted the average response from each voxel’s original
response. This resulted in a list of values, with each number being the
normalized response amplitude of a voxel in that condition, which we
refer to as the response vector. For each participant and each ROI, we
thus obtained six response vectors, one for each attention condition. The
normalization procedure ensured that the analysis was insensitive to
mean differences across different conditions and/or ROIs. Multivoxel
similarity was measured by computing the correlation coefficients be-
tween all possible pairs of these response vectors (a total of 15 pairings).
Note we could also use pairwise classification accuracy as a measure of
pattern similarity, which indeed yielded largely similar results as reported
here. However, simple correlation offered a more direct estimate of sim-
ilarity, as classification accuracy depends on other analytical factors (e.g.,
the choice of classifiers and their parameters).

To interpret the correlation results, it is also necessary to have some
measure of the reliability (i.e., the stability of the activity pattern for the
same condition). Reliability was computed using the Spearman–Brown
formula (Nunnally, 1978), which assessed the degree of self-correlation
given the noise in the data. Specifically, a split-half reliability was calcu-
lated by correlating the response vector from a random half of the data
with that from the other half. This was repeated 50 times, and the average
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correlation (r) was used in the following formula: r� � 2 r/(1 � r), to
obtain the corrected reliability (r�).

After obtaining the similarity measures for each ROI in each individual
participant, we averaged the similarity measures across individuals. The
resulting similarity measures were then used to compute a distance mea-
sure, defined as 1 � r. Finally, clustering analyses were performed on the
distance measures, to assign conditions into groups (clusters) such that
conditions within groups are more similar to each other than conditions
in different groups. We used the complete linkage algorithm to build the
cluster structure, which used the largest distance between objects to sep-
arate two clusters (Tan et al., 2005). The results of clustering analyses
were visualized by plotting dendrograms, which can reveal any hierarchi-
cal structure among different conditions. The stability of these structures
was assessed by a permutation test. In the first test, we randomly sampled
half of the trials for each participant and performed the multivoxel sim-
ilarity analysis. We repeated this procedure for 50 times and averaged the
similarity values upon which we performed the same clustering analysis
as described above. In the second test, we again randomly sampled half of
the trials, but with the trial labels randomly shuffled among conditions.
This was repeated 50 times and we again obtained average similarity
values and its associated clustering results.

To further assess the statistical significance of the cluster structures, we
divided the similarity matrix into different partitions suggested by the
clustering results (see Fig. 9). We then averaged the correlation values in
those partitions for each participant and applied Fisher’s z-transform to
convert them into normally distributed z values. Finally, we compared
the average correlations between partitions via paired t tests to evaluate
the statistical significance.

Results
Behavior
Behavioral data were analyzed using both attention type (loca-
tion, color, motion) and cue condition (left, right, red, green,
upward, downward) as factors. We first compared the magnitude
of the size change for different attention types, whose values were
determined by separate staircases (see Materials and Methods).
We did not find any significant differences in size-change mag-
nitude (F(2,22) � 2.66, p � 0.09). For the change detection task,
we found equivalent performance across attention types (Fig. 2);
this was expected given we thresholded the detection task at sim-
ilar performance level. For accuracy scores (Hit–False alarm),
there was no significant effect of attention type (F(2,22) � 1) or cue
condition (F(5,55) � 1.21, p � 0.31). For reaction time (RT), there
was no significant effect of attention type (F(2,22) � 1.53, p �
0.20), but there was a significant effect of cue condition (F(5,55) �
3.21, p � 0.05). Pairwise comparisons showed that reaction time
for the green cue condition (842 	 112 ms, mean 	 SD) was
significantly faster than those for the right (906 	 136 ms), red
(935 	 115 ms), up (905 	 99 ms), and down (937 	 104 ms) cue
conditions (all ps � 0.05), with no other comparisons reaching
significance. Note, however, that this difference in RT did not
correspond to differences in fMRI multivariate patterns reported
below. These results showed that participants were able to attend
to the cued group of dots and ignore the uncued group of dots,
and that task difficulty was similar across conditions.

It has been pointed out recently that averaging results from
multivariate pattern analysis might be confounded by individual-
level behavioral variations across conditions, that, although
exhibiting inconsistent patterns across participants, could never-
theless produce significant group-level effects because the statis-
tics are directionless (Todd et al., 2013). To address this potential
confound, we examined individual participant’s behavior data.
Because our multivariate analyses showed clustering based on
attention type (see results below), we focused our individual
analyses on potential differences across the three attention types.

For each participant, we obtained a 2 � 3 contingency table for
the number of hits and misses in the three conditions. We then
performed a � 2 test for independence and found 4 of 12 partici-
pants showed a significant effect (p � 0.05). In two participants,
color cues led to fewer hits than the other cues; in one participant,
color cues led to more hits than the other cues; and in one par-
ticipant, location cues led to fewer hits than the other cues. We
did not perform this test for false alarm and correct rejection
trials, as false alarms were quite rare (many cells had zero fre-
quency). We also analyzed RT for each participant, treating RT
on single trials as input data to a one-way ANOVA. This analysis
yielded a significant effect in 3 of 12 participants (p � 0.05).
Paired comparison showed that one participant responded faster
for location than direction cues, one participant showed the
opposite pattern, and another participant responded faster for
color than direction cues. Overall, behavioral differences
across conditions were only present in a minority of our par-
ticipants, and these differences did not correspond to the hi-
erarchical structure we found in the fMRI data (see results
below). Finally, when we removed participants who showed a
significant effect in either accuracy or RT (6 of 12 partici-
pants), we obtained essentially the same group-level fMRI re-
sults in frontoparietal areas. We thus conclude that behavioral
variations at individual-subject level cannot account for the
results from fMRI multivariate analyses.
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Figure 2. Behavioral results in the scanner. A, Mean proportion of response for hit, false
alarm (FA), and hit–false alarm. B, Mean reaction time. Error bars indicate 	 1 SEM across
participants (N � 12).
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To verify participants maintained cen-
tral fixation in our task, we monitored
their eye position during practice sessions
in the behavioral lab. Eye position was av-
eraged across trials for each participant
and subjected to ANOVA, which revealed
no significant difference among the three
attention types (location, color, motion),
for either the horizontal (F(2,22) � 1) or ver-
tical (F(2,22) � 1.34, p � 0.28) eye position.
When we compared eye position among
the six cue conditions, there was again no
difference in either horizontal (F(5,55) �
1.05, p � 0.39) or vertical (F(5,55) � 1.76,
p � 0.14) eye position. Thus, participants
were able to maintain their fixation during
the experiment and there was no systematic
difference between fixation behaviors for
different attention conditions.

Overall brain activity during the task
We first defined cortical areas whose ac-
tivities were modulated by the attention
task, using the goodness of fit criterion r 2

(see Materials and Methods). To visualize
these areas, we projected the average r 2

map to the atlas surface (Fig. 3), which
showed activity in a network of areas in
occipital, parietal, and frontal cortex. The
occipital activity coincided with retinoto-
pically defined visual areas (V1, V2, V3,
V3AB, V4, V7, and hMT�), and the pari-
etal activity ran along the IPS, which coin-
cided with retinotopically defined IPS
areas (IPS1– 4). Because individual IPS ar-
eas are quite small, for all following anal-
yses we combined the four IPS areas into
two areas IPS12 and IPS34, to increase power and to simplify data
presentation. Frontal activity included a region around posterior
superior frontal sulcus and precentral sulcus, the putative hu-
man FEF (Paus, 1996) and an area in the posterior inferior
frontal sulcus and precentral sulcus, which we refer to as the
IFJ. In addition, an area in the superior temporal cortex was
also active, which was consistent with the human AUD. All
these areas were found in both hemispheres, in a bilaterally
symmetric pattern. Thus, for each participant, we obtained
retinotopically defined occipital and parietal areas, as well as
three task-defined areas: FEF, IFJ, and AUD. Note the r 2

method is an unbiased criterion to select voxels whose activi-
ties were consistently modulated by the task, regardless of
their relative response amplitude between conditions. To in-
crease power and simplify data presentation, we combined the
corresponding ROIs in the left and right hemisphere in the
subsequent analyses (unless otherwise noted). ROIs were
combined at the level of functional data, not at the level of
summary statistics.

We next examined the time courses in individually defined
ROIs. For this analysis, we averaged fMRI response for each at-
tention type (location, color, motion) across all voxels in an ROI.
All areas showed an increase in fMRI response relative to the
baseline (fixation during intertrial interval). Figure 4 shows fMRI
time course from eight select ROIs. We compared the average
response amplitude among three attention types (location, color,

direction) using one-way repeated-measures ANOVA. We ob-
served a significant effect in six ROIs: V7 (F(2,22) � 3.56, p �
0.05), hMT� (F(2,22) � 4.21, p � 0.05), IPS12 (F(2,22) � 7.24, p �
0.01), IPS34 (F(2,22) � 5.89, p�0.01), FEF (F(2,22) �5.36, p�0.05),
and IFJ (F(2,22) � 7.71, p � 0.01). In those areas, attention to motion
evoked a larger response than attention to color and location. In the
remaining ROIs, the three attention types elicited equivalent levels of
fMRI response.

Because spatial attention is known to retinotopically modu-
late cortical activity, we determined whether the location cue in
our task produced a similar effect. For this analysis, we examined
time course for the “attend to left” and “attend to right” trials
separately for the left and right hemisphere ROIs. In general, we
found a contralateral attentional modulation: attending to the
left aperture produced a larger fMRI response than attending to
the right aperture in right hemisphere ROIs, and vice versa (data
not shown). We performed a two-way repeated-measures
ANOVA on average peak amplitude with factors of spatial atten-
tion (attend to left vs attend to right) and hemisphere (left vs
right). This analysis revealed significant interaction in V3, V3AB,
IPS12, FEF, and IFJ (all p � 0.05). These results are consistent
with previous research showing the contralateral modulation due
to spatial attention (Kastner and Ungerleider, 2000; Carrasco,
2006), indicating our manipulation of spatial attention was
effective.

Figure 3. Group-averaged r 2 map shown on an inflated Caret atlas surface. The approximate locations of the three task-defined
areas (AUD, FEF, IFJ) and two combined IPS regions (IPS12, IPS34) were indicated by arrows. AUD: auditory cortex, FEF: frontal eye
field, IFJ: inferior frontal junction.
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Figure 4. Mean time course data from eight select regions of interest. Error bars indicate 	 1 SEM across participants. The
horizontal bar in the lower left section indicates the duration of the visual stimuli on a trial.
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Whole-brain contrast analysis
The above univariate analyses were performed on predefined
ROIs. We also performed whole-brain contrast analysis to search
for voxels that were differentially activated by different types of
attention. Contrast maps and time courses from select brain areas
are shown in Figure 5A. Attention to motion tended to evoke a
larger response than attention to color and location, and such
differential activity was largely restricted to the dorsal frontopa-
rietal cortex (Fig. 5A, first two rows). These results are consistent

with ROI-based analyses. In the Location–Color contrast (Fig.
5A, third row), we found three areas that showed differential
activity. The right IFJ and an area in the left ventral occipital
cortex (VO) showed higher fMRI response for the two feature
attention conditions (motion and color) than the spatial atten-
tion condition (location). Another area in the right temporal
parietal junction (TPJ) showed a larger initial decrease for atten-
tion to color than attention to motion and location. Overall re-
sults from the contrast analysis showed that attention to motion

Figure 5. Maps of whole-brain contrasts. A, Comparison between attention types (location, color, and motion). Each row shows one contrast map on an atlas surface. Mean time courses in several
select areas are also shown for illustration purpose only. B, Comparison between cues within each dimension. Shown here is a map for attention to left versus attention to right contrast. Time courses
from the retinotopically defined IPS1/IPS2 region are shown to illustrate the effect of spatial attention. Contrasts between the two colors (red vs green) and two directions (up vs down) did not
produce any significant activation. VO, Ventral occipital; TPJ: temporal parietal junction.
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evoked a larger response than attention to
color and location, in a small set of corti-
cal areas. We did not observe strong dis-
sociations between attention conditions,
e.g., a large response differential among
conditions. In particular, we did not find
any brain area that showed a higher fMRI
response to spatial attention than feature-
based attention.

We also performed contrast analyses
between the cue pairs within each atten-
tion type (i.e., left vs right, red vs green, up
vs down). With the same thresholding re-
gime as the above analysis, we found a
contralateral attentional effect in a small
subset of frontoparietal areas for the left
versus right contrast (Fig. 5B), but no sig-
nificant activation for the red versus green
and up versus down contrasts. To illus-
trate the effect of spatial attention, we also
plotted the group-averaged time courses
for retinotopically defined IPS1/IPS2 re-
gion, which showed contralateral atten-
tional modulation.

Multivoxel similarity and
clustering analyses
For each ROI in each participant, we cor-
related the multivoxel response vector for
the six cue conditions to obtain a similar-
ity matrix (see Materials and Methods).
Mean similarity matrices across partici-
pants for select ROIs are shown in Figure
6. The entries on the main diagonal are the
reliability values, a bootstrapped measure
of the self-correlation of the response vec-
tors, the median values of which are
shown on top of each similarity matrix. In
general, we obtained reliability values
�0.8, suggesting a fairly stable pattern of
multivoxel response vectors for a given
cue condition. Off-diagonal entries in Figure 6 are pairwise cor-
relation values (r) between response vectors for different cue
conditions. In general, the reliability values were higher than
pairwise correlations, as expected. Importantly, the off-
diagonal values were not uniform, suggesting differential simi-
larities across conditions.

To capture the structure in these similarity matrices, we per-
formed clustering analyses, which were based on the distance
between conditions, defined as 1 � r (see Materials and Meth-
ods). The results of the clustering analyses can be visualized by
dendrograms, a tree structure with each cue condition as a node
(Fig. 7). Nodes on the same branch were more similar (closer in
distance) to each other than nodes on different branches. In the
visual areas, there tended to be a cluster for spatial attention
(attend to left and right) that was distinct from feature-based
attention, but clustering within the latter was less organized. The
auditory area showed some clustering of spatial attention and
attention to motion, but the distances among all conditions were
quite similar. In IPS12 and IPS34, color- and motion-based at-
tention formed two distinct clusters, which tended to be different
from spatial attention. The clearest clustering emerged in the two
frontal areas, FEF and IFJ. In these areas, color, motion, and

location all formed their own clusters. In addition, there was also
a hierarchical structure among clusters, with the two feature di-
mensions forming a larger cluster, which was distinct from the
cluster for spatial attention.

We first evaluated the reliability of the similarity and cluster-
ing results qualitatively, via permutation analyses (see Materials
and Methods). When we randomly sampled half of the data, we
obtained very similar results as using all data (Fig. 8A), but when
we randomly sampled half of the data with shuffled trial labels, we
did not find any apparent structure in the similarity matrix,
which also led to drastically different dendrograms (Fig. 8B).
These results indicate that the observed similarity and cluster
structures were stable properties of the data.

To further quantitatively evaluate these results, we compared
different groups of correlation coefficients via t tests. These com-
parisons were based on the hierarchical structure revealed by the
clustering analyses. For each ROI, we partitioned the similarity
matrix into five subsets, which is visualized in Figure 9A–C as
follows: (1) correlations between the two spatial attention condi-
tions (SS; Fig. 8A, magenta), (2) correlations between feature and
spatial cues (fs; Fig. 8A, yellow), (3) correlations among all fea-
ture cues (ff; Fig. 8A, cyan), (4) correlations between two feature

Figure 6. Mean similarity matrix across participants for select ROIs. Diagonal entries are the reliability of each condition and the
median values are shown at the top of each part, in parenthesis after the name of the ROI. Off-diagonal entries are correlation
values between each pair of cue condition, indicated by symbols on the horizontal and vertical axes ( , left; , right; , red; ,
green; , upward; , downward).
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Figure 7. Dendrograms showing results from the clustering analysis. The vertical axis is the distance (1 � r) between different
cue conditions. Symbols represented different cue conditions, in the same format as in Figure 6. The numbers in parenthesis are the
average size of each ROI across participants, in number of voxels (mean 	 SD).
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cues within a dimension (wd; Fig. 8B, dark blue), (5) correlations
between two feature cues across dimensions (bd; Fig. 8B, light blue).
Note there were overlaps among partitions, such that the ff partition
is composed of wd and bd partitions. We then averaged the correla-
tion values within each partition, which we refer to as partition cor-
relation, and compared these partition correlations to test for a
significant hierarchical relationship.

We first tested for a separation between spatial attention and
feature-based attention, by comparing partition correlations ss,
fs, and ff (Fig. 9D). For all ROIs except AUD, we found a signif-
icantly higher correlation for the ff than the fs partition, indicat-
ing that the neural patterns were more similar to each other
among attention to different features than between attention to
features and locations. However, correlations for the ss and fs
partition were similar, indicating neural patterns were no more
similar between attention to the two locations (left and right)
than between attention to locations and features. These results
suggest a qualitative difference among conditions of feature-
based attention and spatial attention. We then tested for a sepa-
ration between attention to features within a dimension versus
attention to features across dimensions, by comparing partition
correlations wd and bd. These two partition correlations were
equivalent in visual areas but wd correlation was significantly
higher than bd correlation in frontoparietal cortex (IPS12, IPS34,
FEF, IFJ). Thus, in these high-level cortical areas, attention to

features in the same dimension (e.g., red
vs green) evoked more similar neural pat-
terns than attention to features in differ-
ent dimensions (e.g., red vs upward).
These results suggest a further distinction
between motion and color-based atten-
tion in these areas.

Discussion
In this study, we examined the relation-
ship between attentional priority signals
for different visual properties. Specifi-
cally, we assessed the pattern of neural sig-
nals in the dorsal attention network for
spatial attention and two types of feature-
based attention. Using multivoxel pattern
similarity and clustering analysis, we
found that neural signals in this network
formed a hierarchical structure, such that
spatial priority was distinct from feature
priority, which in turn was further parti-
tioned into dimension-specific priority
signals (for motion and color). These re-
sults suggest that top-down attentional
control is implemented by hierarchical
neural signals that reflect the similarity
structure of the task demands.

Our task design equated sensory stim-
ulation as well as motor output among
conditions, while only manipulating at-
tentional instructions. Thus, any observed
differences can be attributed to top-down
attention, instead of sensorimotor aspects
of the task. Our univariate analyses re-
vealed that both spatial and feature-based
attention activated very similar areas in
the dorsal frontoparietal network (Wo-
jciulik and Kanwisher, 1999; Giesbrecht et
al., 2003; Slagter et al., 2007), supporting

the notion of a domain-general attentional control mechanism.
Some of these studies contrasted spatial and feature-based atten-
tion and found that a subset of frontoparietal areas showed more
activity for spatial cues than feature cues (Giesbrecht et al., 2003;
Slagter et al., 2007). We also performed whole-brain contrast
analyses but did not find preferential activation for spatial atten-
tion in dorsal frontoparietal areas (Fig. 5). Instead, we found
attention to direction of motion tended to evoke the largest re-
sponse in these areas. One important difference is that previous
studies measured cue-related activity in a preparatory period
without visual stimulus whereas we measured activity during ac-
tive selection with a compound visual stimulus. It is possible that
preparing for a potential target could rely on slightly different
control mechanisms than actively maintaining priority for a vi-
sual target. In addition, there might be differences in participants’
ability to attend to the cued information without the visual stim-
ulus. For example, it seems easier to attend to a spatial location
than a color in an empty display, as space is always “present.”
Previous studies were also limited in that they only compared
spatial attention and color-based attention, whereas we also
tested direction-based attention, in a design that equated selec-
tion demands and task difficulty. Thus, measured by average re-
sponse amplitude, our data suggest a distinction between
attention to static (color, locations) versus dynamic (motion)

Figure 8. Results from resampling of trials. Only results for frontoparietal ROIs are shown; other ROIs exhibited similar results.
A, Similarity matrices and dendrograms from randomly sampling half of the trials with original trial labels. B, Similarity matrices
and dendrograms from randomly sampling half of the trials with shuffled trial labels.
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properties, instead of between spatial and
feature-based attention. Such a distinc-
tion is consistent with the finding that the
dorsal frontal and parietal cortices con-
tain many motion-sensitive regions (Cul-
ham et al., 2001; Orban et al., 2006). Areas
with inherent motion sensitivity could ex-
hibit a higher overall response during at-
tention to motion even when the stimuli
remained constant, as the motion signal
presumably became more salient when
attended.

This univariate analytical approach
only provides a partial view of the data,
however, as a contrast only compares the
relative amplitude between two condi-
tions. Thus, a statistically significant dif-
ference does not necessarily mean
functional specificity. A complementary,
and potentially more useful, approach in
comparing different types of attentional
priority is via multivariate analyses, which
allows one to assess the information con-
tent carried by distributed patterns of neu-
ral activity (Kriegeskorte et al., 2006;
Norman et al., 2006). Most current appli-
cations of fMRI multivariate analyses use
the classifier approach, which assesses
whether or not a particular task variable is
represented by neural activities. Going be-
yond this type of categorical assessment,
the multivoxel pattern similarity analysis
combined with hierarchical clustering can further reveal the or-
ganizational structure of the underlying neural representations.
Similar analytical techniques have been used in a previous study
on sequential task control (Sigala et al., 2008). Our results dem-
onstrate that neural signals in frontoparietal areas conform to a
well organized hierarchical structure for attention to different
properties. These results suggest that the frontoparietal areas
contain a domain-general representation of attentional priority,
where priority for all dimensions can be represented in the same
neural populations, via different patterns. We should emphasize
that our calculations of distance/similarity were not affected by
differences in mean response amplitude (due to normalization of
the response vector, see Materials and Methods), thus our simi-
larity and clustering analyses provide new information that is not
available from conventional univariate analyses.

Across all brain areas, we observed a more orderly clustering
structure in the frontoparietal areas than occipital visual areas
(Fig. 7). The visual areas exhibited two overall clusters between
spatial and feature-based attention, whereas additional clustering
along feature dimensions (motion vs color) was also observed in
frontoparietal areas (Fig. 9). This gradient of more orderly clus-
tering structure from visual to frontoparietal areas likely reflects
the fact that activity in visual areas is driven more by bottom-up
sensory input, which remained constant across conditions,
whereas activity in frontoparietal areas is more tied to endoge-
nous control, which varied with different attentional instruc-
tions. We also note that the AUD did not exhibit any clear
clustering structure, which was expected given the acoustic fea-
tures of the auditory cues did not have any built-in hierarchical
structure. Thus results from AUD served as an internal control
that also validated our analytical techniques.

Although pattern similarity between feature and spatial con-
ditions was lower than that among different feature conditions
(smaller fs than ff partition correlation; Fig. 9), suggesting a dis-
tinction between spatial and feature-based priority, the spatial-
feature similarity was about the same as that between the two
spatial conditions, left versus right (i.e., similar fs and ss partition
correlation; Fig. 9). This was due to relatively low correlation
levels between the two spatial conditions (Fig. 6, similarity ma-
trix). This result likely reflects the contralateral nature of spatial
priority, that is, attention to the left and right location primarily
recruits brain areas in the right and left hemisphere, respectively.
Thus there were less overlapped neural populations active in
these two conditions, leading to a low correlation.

In addition to providing insights on neural representations of
attentional priority, our results also have implications on the
general question of the nature of internal representations. A
prominent psychological theory, the so-called “second-order iso-
morphism,” proposes that internal representations should reflect
the similarity relationship of physical stimuli (Shepard and Chip-
man, 1970). Computational analyses suggest that such a repre-
sentation allows easy generalization to novel instances (Hinton et
al., 1986; Edelman, 1998). Neuroimaging studies of object per-
ception have found support of this idea in neural representations
of object shape in the ventral visual stream (Kiani et al., 2007;
Kriegeskorte et al., 2008; Weber et al., 2009). Our results can be
interpreted as an extension of this concept to the domain of at-
tentional control in the dorsal stream. That is, the underlying
neural representation for attentional priority conforms to the
similarity structure of the selection demands. Thus, the fact that
priority signals are more similar between different colors than
between colors and locations can afford the system to encode
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Figure 9. Quantitative evaluation of the hierarchical structure, with A and B showing the scheme of partitioning the similarity
matrix for different comparisons. The similarity matrix is in the same format as in Figure 6, except that the main diagonal is
removed. A, Shows the partition into spatial–spatial (SS), feature–feature (ff), and feature–spatial (fs) correlations. B, Shows the
partition into within-dimension (wd) and between-dimension (bd) correlations. C, A color-coded dendrogram from area IFJ to
illustrate the different pairs of conditions used in the partition scheme. The colors of the branches correspond to the color code in
A and B. Note the ff (cyan) partition is not shown as it encompasses the wd (dark blue) and bd (light blue) partition. D, Average
correlation values within each partition for select ROIs (partition correlations). The colors of the bars correspond to different
partitions according to the color scheme shown in A and B (also shown in the legend). Error bars indicate 	 1 SEM across
participants. Asterisks denote statistical significance between the two partitions for each comparison as evaluated via t tests
(*p � 0.05; **p � 0.005).
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priority for arbitrary colors and locations (i.e., generalization).
Such an organization could support the flexibility in attentional
selection.

Our results demonstrate that different types of attentional
priority can be represented by distinct multivoxel patterns in the
same cortical area. This observation suggests a flexible underlying
neuronal representation where the same neurons can represent
attended features in multiple dimensions and can dynamically
adjust their feature tuning depending on the task. Such a sce-
nario is reminiscent of studies that showed the same prefrontal
neurons can represent different stimulus attributes in working
memory tasks (Rao et al., 1997). In general, theoretical analy-
ses have suggested that prefrontal cortex contains highly flex-
ible neural codes for task variables (Duncan, 2001; Miller and
Cohen, 2001), which is supported by recent studies using tasks
more complex than the selection task in our study (Li et al.,
2007; Woolgar et al., 2011a,b). In a similar vein, attentional
priority could be represented by frontoparietal neurons tuned
to multiple dimensions, i.e., signal multiplexing at the single
neuron level. This conjecture can be tested in future studies
using single-unit recording techniques.

In conclusion, our data revealed distinct neural patterns un-
derlying different types of attentional selection. These neural pat-
terns formed a systematic, hierarchical structure in the dorsal
frontoparietal network that reflects the similarity of task de-
mands. Such an organization likely affords the system to repre-
sent attentional priority in a flexible manner. Multivariate
analyses provided unique insight on the neural organization of
priority signals, which is not obtainable from conventional uni-
variate analyses. Our data further point at signal multiplexing as a
possible neuronal mechanism for the representation of atten-
tional priority.
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