Skip to main content
. 2013 Feb 3;2(1):63–75. doi: 10.1002/cam4.49

Table 5.

A logistic regression model based on informative fusion markers [Fx (III, IV, ETS)], PCA3, and prebiopsy serum PSA to predict cancer risk on biopsy

Univariable logistic regression models Multivariable logistic regression model1
Biopsy cohort (n) Dependent variable Diagnostic Variable OR (95% CI) P Overall accuracy (%) OR (95% CI) P Overall accuracy (%)2
Fx (III, IV, ETS)3 10.11 (3.32–30.81) <0.0001 73.9 7.10 (2.20–22.89) 0.001
92 Biopsy outcome PCA34 1.34 (1.11–1.60) 0.002 65.2 1.22 (1.00–1.49) 0.045 77.25
Serum PSA4 1.63 (0.96–2.76) 0.07 58.7 1.58 (0.89–2.77) 0.116

PSA, prostate-specific antigen.

1

Hosmer–Lemeshow Goodness-of-Fit of logistic regression model: P = 0.307.

2

Defined as (true positives + true negatives)/all.

3

TMP:ERG subtype III or IV, or TMP:ETS (ETV 1, 4, or 5) (binary categorical variable).

4

PCA3 and serum PSA were log-transformed continuous variables.

5

61.5% sensitivity and 88.7% specificity at 50% cut-off value.