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Abstract
At an organism level, the mammalian circadian pacemaker is a two-dimensional system. For these
two dimensions, phase (relative timing) and amplitude of the circadian pacemaker are commonly
used. Both the phase and the amplitude (A) of the human circadian pacemaker can be observed
within multiple physiological measures—including plasma cortisol, plasma melatonin, and core
body temperature (CBT)—all of which are also used as markers of the circadian system. Although
most previous work has concentrated on changes in phase of the circadian system, critically timed
light exposure can significantly reduce the amplitude of the pacemaker. The rate at which the
amplitude recovers to its equilibrium level after reduction can have physiological significance.
Two mathematical models that describe the phase and amplitude dynamics of the pacemaker have
been reported. These models are essentially equivalent in predictions of phase and in predictions
of amplitude recovery for small changes from an equilibrium value (A = 1), but are markedly
different in the prediction of recovery rates when A < 0.6. To determine which dynamic model
best describes the amplitude recovery observed in experimental data; both models were fit to CBT
data using a maximum likelihood procedure and compared using Akaike’s Information Criterion
(AIC). For all subjects, the model with the lower recovery rate provided a better fit to data in
terms of AIC, supporting evidence that the amplitude recovery of the endogenous pacemaker is
slow at low amplitudes. Experiments derived from model predictions are proposed to test the
influence of low amplitude recovery on the physiological and neurobehavioral functions.
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INTRODUCTION
The endogenous circadian pacemaker located in the mammalian hypothalamus exerts a
major influence on many physiological and neurobehavioral measures (Waterhouse and
DeCoursey, 2004). Original studies of the mammalian circadian pacemaker were concerned
solely with the timing (phase) of circadian processes, and to a large extent, this is still the
dominant focus (Czeisler and Khalsa, 2000; Rodenbeck et al., 1998; Strogatz et al., 1986;
Tilley et al., 1982). Winfree (2000) emphasized that the circadian pacemaker as a self-
sustaining oscillator must have both phase as well as amplitude characteristics and
demonstrated the significance of the amplitude of the pacemaker through the “strong” phase
resetting process, which is termed as “Type 0” resetting. To obtain Type 0 resetting, the
light stimulus must be timed to reduce the amplitude of the pacemaker to zero (singularity)
or near zero, and this reduction of amplitude is both a significant as well as a necessary part
of the mechanisms in producing large (~12h) phase shifts.

Type 0 resetting, originally demonstrated for Drosophila species, (Winfree, 1975) has been
demonstrated in humans (Czeisler et al., 1989; Jewett et al., 1991). In humans, this
concurrent amplitude reduction and phase shifting has been demonstrated using surrogate
marker rhythms such as core body temperature (CBT), cortisol, and plasma melatonin levels
(Jewett et al., 1991; Jewett et al., 1994; Shanahan et al., 1999). Theoretically, amplitude
reduction has other physiological significances, as it can enhance phase shifting as well as
result in the reduction of amplitude of physiologic functions influenced by the circadian
pacemaker, including the hormones melatonin and cortisol (Shanahan et al., 1999) as well as
alertness, but not all aspects of performance (Jewett and Czeisler, 1992).

Mathematical models have been developed to understand the amplitude as well as the phase
of the human circadian pacemaker in functional terms (Forger et al., 1999; Jewett et al.,
1999; Jewett and Kronauer, 1998; Kronauer, 1990; Kronauer et al., 1999). These models are
generally used for simulation studies; however, the interaction between mathematical
modelers and experimentalists can provide greater insights into the behavior of the circadian
pacemaker and its output rhythms. The models can also be used for the simulation of
different potential experimental protocols and to provide predictions to generate testable
hypotheses for new experiments. The results of the experiments can then be used to validate
and further refine the parameters of the models thereby to improve the predictive capabilities
of the models.

Kronauer (1990) proposed an original mathematical model of the effects of light on the
phase and amplitude of the human circadian pacemaker. This model predicted many of the
general experimentally observed features of the response of the human circadian pacemaker
to light (Klerman et al., 1996). The model is based on a van der Pol oscillator of cubic
nonlinearity with amplitude recovery following amplitude suppression represented by a low
“stiffness.” This original model has been modified as new experimental observations
became available (Boivin et al., 1996; Jewett et al., 1991). Two of the recent modifications
of the original model are a “higher order” model proposed by Jewett and Kronauer (1998)
and a “simpler” model proposed by Forger and colleagues (1999).

Both the higher order model and simpler model are equally accurate in the prediction of
phase changes in response to a light stimulus, but they differ in the prediction of amplitude
changes of the pacemaker following amplitude suppression. The higher order model
employs a van der Pol type function of higher order nonlinearity with the same stiffness as
the original model; whereas, the simpler model includes cubic nonlinearity of the original
model with enhanced stiffness. As a result, the amplitude recovery following a critical
stimulus is slower at low amplitudes in the higher order model than in the simpler model.
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However, neither of these dynamic models has been carefully validated using experimental
data with low circadian amplitude. Therefore, we compared these two different dynamic
models using CBT data to determine which model provides a better fit to experimental data
in terms of amplitude recovery.

CBT data are a reliable marker of the circadian pacemaker that can be monitored
continuously in real time with a high sampling rate. However, a disadvantage of CBT data is
that they also contain statistical fluctuations due to the body’s thermoregulatory response
and other physiological factors. Under appropriate experimental protocols, such as the
Constant Routine (CR) protocol (described below), these other physiological factors can be
minimized, leaving a variable containing only circadian and thermoregulatory components
(Duffy, 1993). To address the question of which dynamic model best describes the
amplitude recovery of the circadian pacemaker at low amplitudes, we used a method
proposed by Brown and coworkers (2000) to fit the two models to the experimental data.
With this method, each dynamic model is integrated within a statistical framework and is fit
to CBT data using a maximum likelihood approach. The goodness-of-fit measure is used to
compare the models.

MATERIALS AND METHODS
Mathematical Models of the Human Circadian Pacemaker

The mathematical models of the human circadian pacemaker (Forger et al., 1999; Jewett et
al., 1999; Kronauer et al., 1999; Kronauer et al., 2000) to be compared both have two
distinct dynamic units (Figure 1): Process L, a stimulus preprocessor that converts the light
input I(t) into the drive B̂(t), and Process P, a circadian pacemaker unit that has a two-
dimensional self-sustaining Limit Cycle Oscillator (LCO), and a Sensitivity Modulator
(SM). The SM adjusts the strength of B̂(t), depending on circadian pacemaker variables to
produce the drive B(t), that then acts to shift phase and amplitude. The mathematical
equations for the SM and Process L are the same both for higher order and simpler models.

Process L represents the photic input pathway of the circadian system. This preprocessor
intervenes between light and the pacemaker to provide an input to the pacemaker with
strong initial drive followed by a sustained drive for longer-duration light stimuli.

Process L comprises many activator elements that can be either in a “used” state (with
probability n) or in a “ready” state (with probability 1 − n). Light activates the ready
elements and delivers a drive to the Process P, after which the elements enter the used state,
from which they can be recycled back to the ready state. The dynamic equation that
represents Process L is:

(1)

where α is the activation rate and β is a recycling constant. This equation is incorporated to
predict the response of circadian pacemaker due to intermittent light pulses according to
experimental observation (Rimmer et al., 2000).

The activation rate α depends on light intensity I(t) according to a power-law:

(2)

with α0 = 0.05, p = 0.5 as the characteristic exponent (Boivin et al., 1996) and Io = 9500 lux.
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The drive B̂(t) is represented as:

(3)

where G is a scaling constant.

The SM transforms B̂(t) to B(t), which acts as an input to the limit cycle oscillator and is
represented as:

(4)

Equation (4), along with equations (1), (2), and (3), may be interpreted as a modulation of
photic sensitivity of the oscillator according to circadian phase.

Process P is the oscillator unit generating the circadian rhythm with outputs to measurable
physiologic functions.

The LCO in Process P for the higher order model is expressed mathematically as:

(5)

(6)

τx is the period of the circadian oscillator, which varies between subjects and averages 24.2
h (Brown et al., 2004; Czeisler et al., 1999), stiffness μ is set at 0.13; k = 0.55 and q = 1/3.

The LCO for the simpler model is expressed as

(7)

(8)

Note that equation 8 shows the cubic nonlinearity of the original model (Kronauer, 1990)
but with enhanced stiffness μ = 0.23. The simpler model does not contain a secondary
divergence term qBxc as seen in equation 6 for the higher order model. The divergence term
was included in the higher order model to accommodate the extreme precision with which
stimuli must be timed to generate amplitude reduction.

Theoretical Calculation of Growth
We determine the amplitude of the pacemaker for both models using:

(9)

Using the method of averaging (Andronov et al., 1966), the change of amplitude over one
cycle ΔA can be calculated. For the simpler model, we find the classic van der Pol result:
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(10)

where Ā is the average amplitude for the particular cycle.

For the higher order model we obtained:

(11)

Since we are interested in the behavior of the models at low-amplitudes, it is useful to
introduce a normalized growth, GI, defined as:

(12)

along with suffixes to denote the separate models:

(13)

These models differ significantly in their prediction of growth at low amplitudes (Figure 2),
especially with the assigned values μS = 0.23 (Forger et al., 1999) and μH = 0.13 (Jewett and
Kronauer, 1998).

Integration of Dynamic and Statistical Models
To perform the comparisons between the two dynamic models, we represented these models
on a statistical modeling framework using the procedure in Brown and colleagues (2000).
CBT data, yn, were measured during CR at evenly spaced (1 min) intervals of n = 1,2,…, N.
The data yn thus collected were represented as the sum of circadian and thermoregulatory
processes:

(14)

where xn is the circadian component, and υn is the fluctuation in CBT due to the
thermoregulatory response to random excitation.

The circadian system xn is obtained by numerical integration of either higher order model, as
in equations (5) and (6) above, or simpler model, as in equations (7) and (8) above. Since
there is no known interaction between circadian and thermoregulatory systems, the υn are
here represented as an independent first-order autoregressive [AR(1)] process defined as

(15)

where ρ is the coefficient of the AR(1) process and the residual εn are independent, Gaussian

random variables with zero mean and variance . The sampling time Δt is set at 0.1 h (6
min) for increasing the estimation precision of ρ; for details refer Brown and Czeisler
(1992).
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We fit the model in equation 14 by a maximum likelihood method with the Gaussian
assumption for υn and defining the log likelihood (Brown et al., 2000) for either model as

(16)

Here |Γ(ρ)| is the determinant of the covariance matrix of the AR(1) process and

(17)

where θ is the vector of initial conditions of models, xo and xco. The parameters θ and ρ are
estimated by a nonlinear optimization of LN (Brown and Schmid, 1994; Jones, 1980). Since
each data set is fitted to the model by maximizing the likelihood function, we compared
results between the models by the Akaike’s Information Criterion (AIC) that explicitly
embodies the likelihood:

(18)

The model with the lower AIC is considered the better model. AIC is accepted as one of the
most reliable methods for comparing different classes of models in model fitting (Priestley,
2001).

Analysis Procedure
We used CBT data collected from 14 healthy subjects; the experiments were fully described
in Jewett and colleagues (1994). The constant routine (CR) procedure is used to minimize
the evoked effects of sleep, light, postural changes, and activity on CBT (Duffy, 1993).
During a CR, a subject remains awake in dim light in a semi-recumbent posture with
frequent small meals. This minimizes evoked effects on CBT so that our assumption of CBT
reflecting only circadian and thermoregulatory components is valid. A pre-stimulus CR
(CR1) for each subject was used to provide an assessment of the equilibrium (limit cycle)
amplitude of the endogenous circadian pacemaker and the time of CBT minimum (CBTmin),
the marker of circadian phase. The subjects were then exposed to a stimulus of bright light
(7000 to 12,000 lux) near the CBTmin to produce amplitude suppression. A second CR
(CR2) was conducted after this stimulus, during which circadian phase and amplitude were
again assessed. The CRs were conducted using a room light level of 150 lux, except for one
subject (1027 v), who was exposed to 0 lux (total darkness) during CR2.

Of the 14 original subjects, data from four subjects were not included in the final analysis. In
one of these subjects, ~16% of CBT data in CR2 were missing, while in the three other
subjects, the normalized amplitudes in CR2 were close to 1.0 (the limit cycle), indicating
amplitude suppression had not been induced. Therefore, data from 10 subjects were used in
this analysis.

It was assumed that the CBT amplitude oscillation from the mean temperature value during
CR1 was at the limit cycle (equilibrium); however, this amplitude was different for the
different subjects (Jewett et al., 1991). Therefore, the dynamic equations for both models
were scaled with the estimated amplitude at CR1 using the procedure described by Brown
and colleagues (2000). This scaling procedure would help to determine the amplitude at
CR2 considering amplitude at CR1 as the limit cycle. The scaled equations were then fit to
the data of CR2. The final fitting procedure yields three parameters for each model. The first
two parameters are the initial conditions (xo, xco) from which the dynamic equations are
numerically integrated; the third parameter is the coefficient (ρ) of the autoregressive
process.
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We analyzed the residuals using power spectral analysis (Priestley, 2001) to determine
whether our procedure could capture most of the important structure in the data. We
compared the models quantitatively using AIC. For both representations of the dynamic
models, the number of estimated parameters is three (xo, xco, ρ). Hence, any difference in
AIC between the models is a direct measure of likelihood. We evaluated the relation
between change in growth (ΔG) predicted by these models and change in estimated AIC
(ΔAIC) of the model by finding an appropriate relation between ΔG and ΔAIC using a best-
fit procedure. We also compared the model predictions by designing two experimental
protocols. One of the experimental protocols is designed to simulate the amplitude recovery
and the other protocol is designed to study the effect of light on phase shifting at low
amplitudes. Results from these protocols can be used to compare model predictions and
understand the effects of changing circadian amplitude on different physiological as well as
neurological measures.

RESULTS
Model Fits to Data

Both models fit the data well in terms of graphical goodness of fit (Figure 3). The AR(1)
process captured the statistical characteristics of the body’s thermoregulatory response. As
an example, the estimated circadian signal of the models along with the original CBT data of
subject 1027 v is shown in Figure 3(a). Data from this subject were chosen because they
demonstrate the largest difference in AIC between the models. Note that the higher order
model predicts a slower recovery of amplitude than the simpler model, as would be expected
with a lower stiffness and higher order nonlinearity. Figure 3(b and c) shows the estimated
thermoregulatory component captured by the AR(1) process along with the residuals. The
magnitude of the residuals is small indicating that AR process captures statistical

fluctuations in the data for this subject. The estimated variance of the residuals  is on the
order of ~10−4 (approximately 1/100 of the CBT amplitude of 10−2) for all subjects for both
models (Table 1). In addition there were no statistically significant spectral components in
power spectral density of the residual series. We therefore concluded that our integrated
procedure captured both the statistical and dynamic structure in the CBT data.

For all 10 subjects, the AIC of the higher order model was lower than the AIC of the simpler
model, suggesting that the higher order model, which has a slower growth, provides a better

fit to the data. Due to the slower growth, the average amplitude of higher order model 

was ~13% less than the average amplitude of simpler model  during CR2 (Table 1). The
normalized growth of the simpler model (GS) is also considerably larger than the growth of
the higher order model (GH) at low amplitudes.

Relation Between ΔG and ΔAIC
Since the two models differ in their growth at low amplitudes, we explored the relationship
between the estimated difference in growth, ΔG = GS − GH, to the difference in AIC, ΔAIC
= AICH − AICS. The relationship between the change in the goodness of fit measure, ΔAIC,
and the change in dynamic property of the model, ΔG, can be used to determine whether our
methodology is correct and if a relation exists, can eventually help to further refine the
mathematical models. Therefore, first we computed ΔG and ΔAIC with respect to the
circadian amplitude calculated from each of the models. Due to the lack of the divergence
term (qBxc) in the simpler model, equation (10) has to be scaled by a factor of 0.8 to
accommodate the effect of 150 lux on growth of the pacemaker amplitude (Forger et al.,
1999). Since the estimated average amplitudes of the models are different, we define

reference amplitude AR as the mean of  and  for each subject. The estimated ΔG for
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each subject along with theoretical ΔG obtained from the method of averaging (Andronov et
al., 1966) are shown in Figure 4a. There is little difference graphically between the
estimated and theoretical ΔGs, which supports the validity of our methodology. The
difference in growth between the models is greatest at low amplitudes, which is consistent
with the predictions derived from the theoretical analysis of the models (e.g., Figure 2). As
the amplitude increases, ΔG between the simpler and higher order model decreases,
consistent with the finding that the models predict similar growth at higher amplitudes. The
ΔG becomes zero at amplitude AR ~ 0.74.

We also plotted the difference in AIC, ΔAIC = AICH − AICS, with respect to the reference
amplitude (Figure 4b). Unlike the relationship between ΔG and AR, ΔAIC has a biphasic
relationship with a minimum at AR ~ 0.3. Both ΔG and ΔAIC tend to zero at AR ~ 0.74.
Under the current experimental conditions, the lowest recorded pacemaker amplitude is A =
0.17, and hence we are unable to predict the behavior at lower amplitudes. However, a three-
point smoothing procedure (dotted line in Figure 4b) suggests that ΔAIC → 0 as AR → 0,
suggesting that both the higher order and simpler model have similar predictions at these
very low amplitudes.

Proposed Experiments
After comparing the models to experimental data, we used these two models to design two
experimental protocols to generate testable hypothesis to further test the models as well as to
better understand the impact of circadian amplitude on neurobehavioral performance and
circadian phase shifting. These protocols are a modification of the existing experimental
protocols described in Czeisler and colleagues (1989) and Jewett and coworkers (1991). The
first experiment is designed specifically to understand the significance of low amplitude on
neurobehavioral measures influenced by the circadian pacemaker, whereas the second
experiment is designed to study the effect of phase-shifting at low amplitudes on these
measures.

During both protocols, multiple marker variables should be used (e.g., CBT, cortisol and
melatonin) with frequent sampling to assess circadian phase and amplitude. Change in
amplitude in more than one marker variable demonstrates the change in amplitude of the
endogenous circadian pacemaker rather than change in marker amplitude downstream from
the pacemaker. For the practical applications to work and worker safety, multiple
neurobehavioral performance and subjective alertness measurements should be made
frequently when the subject is awake to assess the effects of amplitude reduction of the
circadian pacemaker. These studies also need to be done on younger and older persons,
since the amplitude of the pacemaker is lower in many older persons (Czeisler et al., 1992),
and this effect of decreased pre-stimulus amplitude should be assessed.

In the first experimental protocol, there are three 24 h baseline cycles (Three 8h, 0 lux sleep
episodes and two 16 h, 150 lux wake episodes) followed by a CR (CR1) in 10 lux to assess
circadian phase. The length of the CR will depend on each individual subject’s circadian
phase. The CR must be of such a length so that the center of the light pulse following CR1
occurs directly at the minimum of CBT (CBTmin), as determined during CR1. One light
pulse of 10,000 lux of 6.5 h duration centered in the middle of waking day is applied each
day on two consecutive days with the center of the pulse falling at CBTmin. These two days
are followed by a post-stimulus CR (CR2) to assess the final circadian phase and amplitude.
CR2 is followed by 3 recovery days in 10 lux. The waking background lux level has been
reduced in these proposed experiments from that of previous studies (Boivin et al., 1996;
Rimmer et al., 2000) to eliminate the possibility of confounding the results by phase-shifts
produced by the background light (even ~150 lux). The second experimental protocol is
similar to the first one; with a third 6.5 h, 10,000 lux stimulus is applied following CR2 with
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the pulse centered 3 h after the CBTmin recorded at CR1. This is then followed by another
CR (CR3) to assess circadian phase and amplitude.

The schematic of the experimental protocol and predictions of the models are shown in
Figure 5. In the first experiment (left panel) the amplitudes of the higher order model and
simpler model calculated using equation (9) suppress to a value of 0.20 and 0.15,
respectively, shortly after the two-pulse stimulus. During CR2 the model predicts that the
amplitude reaches a peak value of 0.22 and 0.30, respectively. However, instead of
recovering, the amplitude of the higher order model suppresses during the recovery days,
whereas the amplitude of the simpler model recovers to a value of 0.91. The results of this
proposed experimental protocol should both test these predictions as we compare the models
and help to understand the significance of low amplitude recovery on neurobehavioral
performance and on circadian phase shifting.

In the second experiment (right panel), the higher order model predicts that the third light
pulse produces a phase advance of ~7.7h, whereas the simpler model predicts a phase
advance of ~0.8h. In addition, both models predict recovery of the amplitude of the
circadian pacemaker instead of suppressing as observed in the first experiment. The final
predicted amplitudes are 0.7 for the higher order model and 0.8 for the simpler model. This
experimental protocol would help us to determine whether the low amplitude would enhance
phase shifting.

DISCUSSION
Since both amplitude and phase are required to define the two-dimensions of the circadian
pacemaker, it is of considerable interest to quantify the rate of amplitude recovery when
circadian amplitude is suppressed. Mathematical models reflecting different underlying
physiologies can be used to predict the amplitude recovery dynamics of the endogenous
circadian pacemaker. We compared the performance of two recently developed
mathematical models of the human circadian pacemaker that have different predictions of
amplitude recovery to study which model best describes the experimental data in terms of
amplitude recovery. We also used these models to design experiments to further define the
physiology as well as to further differentiate the model predictions as a part of the ongoing
experiment-mathematical model-experiment paradigm.

Based on the analysis of experimental data, we found that the model with slow growth
(higher order model) provided a better fit to the data in terms of the AIC. Based on this
observation, we predict that, due to slow amplitude recovery of the circadian pacemaker, the
circadian component of alertness and performance will also be recovered slowly to an
equilibrium value after an amplitude-reducing stimulus. This prediction needs to be tested,
especially since both the absolute level of alertness as well as performance and the rate of
change may be important. Furthermore, the light stimulus applied during slow recovery can
enhance phase shifting. We proposed experiments to test these predictions.

We found from the relation between ΔAIC and ΔG that the larger the difference in growth
between the models, the better the prediction by the slow-growth model. However this
feature is seen only in the amplitude region 0.3 < AR < 0.75. At amplitudes AR < 0.3 ΔG are
larger and one might anticipate large ΔAIC. However we found that ΔAIC is smaller at these
amplitudes in comparison with other ones. This implies that related, but as yet undeveloped,
mathematical models with slower growth rates than the higher order model potentially could
provide better fit to the experimental data at these very low relative amplitudes. To
characterize the growth accurately from data, we need to estimate directly the parameters in
the equations corresponding to growth, i.e., the stiffness and the coefficients of the higher-
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order polynomial using this same modeling framework. Also needed are more experiments

at low light levels as well as at lower amplitudes of the circadian pacemaker  to
accurately characterize the growth of the endogenous circadian pacemaker as well as the
behavior of the system at low amplitudes.

Dynamic models are generally designed to predict the qualitative characteristics of the
circadian pacemaker, and the parameters of the model frequently are selected to simulate
these characteristics without using formal statistical methods. The significance of our
analysis is that we implemented a procedure to integrate the dynamic models on a statistical
modeling framework such that the parameters of the model can be estimated directly from
the experimental data. In this analysis, two types of dynamic models with different
amplitude characteristics are compared on a statistical framework by estimating only the
initial conditions of the dynamic models. However, this procedure can also be used to
determine the other parameters of the dynamic model directly from the data, thereby
providing quantitative inferences about the behavior of the pacemaker.

A key feature of our work is that we demonstrate the significance of validating dynamic
models using experimental data as well as designing new experimental protocols using
models to further understand the physiology. Using mathematical models to design
experiments and the results of experiments to refine mathematical models should be
efficient as well as productive in understanding the effect of amplitude of the circadian
pacemaker on different physiological and neurobehavioral measures.
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FIGURE 1.
Schematic diagram of the model of the effect of light on the human circadian pacemaker:
Light (I) enters the dynamic stimulus processor (Process L), where it activates a group of
elements to produce a drive B̂ onto the human circadian pacemaker (Process P). This drive
then enters a circadian stimulus modulator (SM) that reduces or enhances the strength of the
light drive B̂, depending on the phase of the circadian pacemaker, to produce a modulated
drive B. This modulated light drive then acts on the pacemaker, modeled by a limit-cycle
oscillator (LCO), altering the phase and amplitude of the circadian pacemaker via the two
state variables x and xc.
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FIGURE 2.
Theoretical normalized growth for simpler model (GS, dashed line) and higher order model
(GH, solid line), for the average amplitudes between  (singularity) and  (limit
cycle) at 0 lux. The recovery of the amplitude in the higher order model is slower near the
singularity than in the simpler model. The models have similar predictions of growth near
the limit cycle.
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FIGURE 3.
(a) Estimated circadian signal of the higher order (solid line) and simpler model (dashed
line) to CBT of subject 1027v during a constant routine (CR2) in 0 lux following amplitude
suppression due to bright light stimulus. The amplitude at CR1 is 37.14 ± 0.29. The higher
order model predicts slower amplitude growth than the simpler model. Estimations of the
thermoregulatory component (solid line, panels b and c) and residuals (dots, panels b and c)
were made using the integrated procedure with higher order model (b) and simpler model (c)
as the limit cycle oscillator of Process P.
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FIGURE 4.
(a) The estimated difference in growth ΔG, (GS − GH), in individual subjects (closed boxes)
compared with theoretical ΔG (dashed line) at a room light of 150 lux. The open square
represents subject 1027 v, who was at 0 lux during CR2. (b) The difference in AIC, ΔAIC =
AICH − AICS, of the higher order model and simpler model with respect to a reference
amplitude AR. A 3-point smoothing (dotted line) suggests ΔAIC → 0 as AR → 0 and AR →
0.7.
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FIGURE 5.
Comparisons of the amplitude predictions of higher order model (solid line) and simpler
model (dashed line) in two experimental protocols designed to suppress amplitude. Left
panel: Experimental protocol 1 (bottom) in which 2 consecutive cycles of light pulses are
administered such that the center of the light pulses coincides with the CBTmin as recorded
during a pre-stimulus CR (CR1). Right panel: Experimental protocol 2, (bottom), which is
similar to the protocol 1, except with the addition of a third light pulse scheduled following
CR2 such that the center of the pulse falls 3h after CBTmin as recorded during CR1.
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